PGN-LM Model and Forcing-Seq2Seq Model: Multiple Automatic Models of Title Generation for Natural Text using Deep Learning
Abstract
Full Text:
PDFReferences
Mehdi Allahyari, Seyedamin Pouriyeh, Mehdi Assef, Saeid Safaei, Eliza-beth D. Trippe, Juan B. Gutierrez and Krys Kochut, Text Summarization Techniques: A Brief Survey. arXiv:1707.02268v3, 2017
K. S. Jones, Automatic summarizing: the state of the art. Information Processing and Management, Elsevier, Vol. 43, No. 6, 2007.
Vishal Gupta and Gurpreet Leha, A Survey of Text Summarization Extrac-tive Techniques. Journal of Emerging Technologies in Web Intelligence2, 2010
Chandra Khatri, Gyanit Singh and Nish Parikh, Abstractive and Extractive Text Summarization using Document Context Vector and Recurrent Neural Network. arXiv:1807.08000, 2018
P. Li, W. Lam, L. Bing, and Z. Wang, Deep recurrent generative decoder for abstractive text summarization. arXiv preprint arXiv:1708.00625,2017
Tal Baumel, Matan Eyal, Michael Elhada, Query Focused Abstractive Summarization: Incorporating Query Relevance, Multi Document Coverage, and Summary Length Constraints into seq2seq Models.arXiv:1801.07704, 2018
Abigail See, Peter J. Liu, Christopher D. Manning, Get To The Point: Summarization with Pointer-Generator Networks.
arXiv:1704.04368,2017
K. Lopyrev, Generating News Headlines with Recurrent Neural Networks.arXivpreprint arXiv:1512.01712, 2015
Thomas Cherian, Akshay Badola, Vineet Padmanabhan, Multi-cell LSTM Based Neural Language Model. arXiv:1811.06477, 2018
A. Aizawa, An information-theoretic perspective of tf–idf measures. Information Processing and Management, vol. 39, no. 1, pp. 381-397,2003
Anirudh Goyal, Alex Lamb, Ying Zhang, Saizheng Zhang, AaronCourville and Yoshua Bengio, Professor Forcing: A New Algorithm for Training Recurrent Networks. NeurIPS 2016
Ralf C. Staudemeyer, Eric Rothstein Morris, Understanding LSTM - a tutorial into Long Short-Term Memory Recurrent Neural Networks.arXiv:1909.09586, 2019
Andrea Galassi, Marco Lippi, Paolo Torroni, Attention in Natural Language Processing. arXiv:1902.02181, 2019
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, LlionJones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin, Attention Is All You Need. arXiv:1706.03762, 2017.
lya Sutskever, Oriol Vinyals, Quoc V. Le, Sequence to Sequence Learning with Neural Networks. arXiv:1409.3215, 2014
Shahzad Qaiser, Ramsha Ali, Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents. International Journal of Computer Applications (0975 – 8887), 2018
Amir Jalilifard, Vinicius F. Carid ́a, Alex F. Mansano, Rogers S. Cristo,Felipe Penhorate C. da Fonseca, Semantic Sensitive TF-IDF to Determine Word Relevance in Documents. arXiv:2001.09896, 2021
Qingyun Dou, Yiting Lu, Joshua Efiong, Mark J. F. Gale, Attention Forcing for Sequence-to-sequence Model Training. arXiv:1909.12289,2019
Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean, Efficient Estimation of Word Representations in Vector Space. arXiv:1301.3781,2013
Fred Jelinek and Robert L. Mercer, Interpolated estimation of Markovsource parameters from sparse data. In: Proceedings, Workshop on Pattern Recognition in Practice, pp. 381-397, 1980
Christopher D. Manning and Hinrich Schutze, Foundations of Statistical Natural Language Processing, 1999
Arman Cohan, Nazli Goharian, Revisiting Summarization Evaluation for Scientific Articles. arXiv:1604.00400, 2016
Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu, BLEU: a method for automatic evaluation of machine translation. In: ACL-2002:40th Annual meeting of the Association for Computational Linguistics, pp. 311-318, 2002
Kishore Papineni, Salim Roukos, Todd Ward and John Henderson, Corpus-based comprehensive and diagnostic MT evaluation: Initial Ara-bic, Chinese, French, and Spanish results. In: Proceedings of HumanLanguage Technology, pp. 132-137, 2002
Chris Callison-Burch, Miles Osborne and Philipp Koehn, Reevaluating the Role of BLEU in Machine Translation Research. In: 1th Conference of the European Chapter of the Association for Computational Linguistics:EACL, pp. 249-256, 2006
DOI: http://dx.doi.org/10.21553/rev-jec.285
Copyright (c) 2022 REV Journal on Electronics and Communications
ISSN: 1859-378X Copyright © 2011-2024 |
|