Combining Content and Social Features in a Deep Learning Approach to Vietnamese Email Prioritization
Abstract
Full Text:
PDFReferences
Thanh, H. N., Dinh, Q. D., & Anh-Tran, Q. (2017). Personalized Email User Action Prediction Based on SpamAssassin. In Cong Vinh P., Tuan Anh L., Loan N., Vongdoiwang Siricharoen W. (eds) Context-Aware Systems and Applications. ICCASA 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (Vol. 193). Springer, Cham. https://doi.org/10.1007/978-3-319-56357-2_17
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781. https://arxiv.org/abs/1301.3781
Vu, T., Nguyen, D. Q., Dras, M., & Johnson, M. (2018, June). VnCoreNLP: A Vietnamese Natural Language Processing Toolkit. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations (pp. 56-60). https://arxiv.org/abs/1801.01331
Yin, Z., & Shen, Y. (2018, December). On the dimensionality of word embedding. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (pp. 895-906). https://arxiv.org/abs/1812.04224
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929-1958. https://dl.acm.org/doi/10.5555/2627435.2670313
Riedmiller, M., & Braun, H. (1993, March). A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In IEEE international conference on neural networks (pp. 586-591). IEEE. https://ieeexplore.ieee.org/document/298623
Hinton, G., Srivastava, N., & Swersky, K. (2012). Neural networks for machine learning lecture 6a overview of mini-batch gradient descent. Retrieved from http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. https://arxiv.org/abs/1412.6980
Thanh, H. N., Dinh, Q. D., & Tran, Q. A. (2018, November). Predicting user’s action on emails: improvement with ham rules and real-world dataset. In 2018 10th International Conference on Knowledge and Systems Engineering (KSE) (pp. 169-174). IEEE. https://ieeexplore.ieee.org/abstract/document/8573330/
Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of machine learning research, 12(7). Retrieved from https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
Boykin, P. O., & Roychowdhury, V. P. (2005). Leveraging social networks to fight spam. Computer, 38(4), 61-68. https://ieeexplore.ieee.org/abstract/document/1432647/
Yoo, S., Yang, Y., Lin, F., & Moon, I. C. (2009, June). Mining social networks for personalized email prioritization. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 967-976). https://dl.acm.org/doi/abs/10.1145/1557019.1557124
Yoo, S., Yang, Y., & Carbonell, J. (2011, October). Modeling personalized email prioritization: classification-based and regression-based approaches. In Proceedings of the 20th ACM international conference on Information and knowledge management (pp. 729-738). https://dl.acm.org/doi/abs/10.1145/2063576.2063683
Mi, G., Gao, Y., & Tan, Y. (2015, June). Apply stacked auto-encoder to spam detection. In International Conference in Swarm Intelligence (pp. 3-15). Springer, Cham. https://link.springer.com/chapter/10.1007/978-3-319-20472-7_1
Covey, S. R. (2004). The 7 habits of highly effective people: Powerful lessons in personal change. Simon and Schuster. https://books.google.com/books/about/The_7_Habits_of_Highly_Effective_People.html?id=upUxaNWSaRIC
Seth, S., & Biswas, S. (2017, December). Multimodal spam classification using deep learning techniques. In 2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS) (pp. 346-349). IEEE. https://ieeexplore.ieee.org/abstract/document/8334769/
Yawen, W., Fan, Y., & Yanxi, W. (2018, April). Research of email classification based on deep neural network. In 2018 Second International Conference of Sensor Network and Computer Engineering (ICSNCE 2018) (pp. 73-77). Atlantis Press. https://www.atlantis-press.com/proceedings/icsnce-18/25894523
Kooti, F., Aiello, L. M., Grbovic, M., Lerman, K., & Mantrach, A. (2015, May). Evolution of conversations in the age of email overload. In Proceedings of the 24th international conference on world wide web (pp. 603-613). https://dl.acm.org/doi/abs/10.1145/2736277.2741130
Jain, G., Sharma, M., & Agarwal, B. (2019). Optimizing semantic LSTM for spam detection. International Journal of Information Technology, 11(2), 239-250. https://link.springer.com/article/10.1007/s41870-018-0157-5
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444. https://www.nature.com/articles/nature14539
Dabbish, L. A., & Kraut, R. E. (2006, November). Email overload at work: An analysis of factors associated with email strain. In Proceedings of the 2006 20th anniversary conference on Computer supported cooperative work (pp. 431-440). https://dl.acm.org/doi/abs/10.1145/1180875.1180941
Amazon Web Services, Inc. (n.d.). Amazon EC2 Instance Types. Amazon Web Services (AWS). Retrieved May 26, 2021, from https://aws.amazon.com/ec2/instance-types
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427-437. https://www.sciencedirect.com/science/article/abs/pii/S0306457309000259
DOI: http://dx.doi.org/10.21553/rev-jec.271
Copyright (c) 2021 REV Journal on Electronics and Communications
ISSN: 1859-378X Copyright © 2011-2024 |
|