Terahertz Resistor-coupled Arrayed Resonant-tunneling-diode Oscillators with High DC-to-RF Efficiency using Metal-insulator-metal Capacitor

Mai Van Ta, Tran Thi Thu Huong, Nguyen Thuy Linh, Kieu Khac Phuong, Nguyen Tuan Hung, Pham Hai Yen, Luong Duy Manh

Abstract


Resistor-coupled arrayed resonant-tunneling-diode (RTD) oscillators have emerged as promising candidates for high-performance Terahertz sources. Despite various advantages, the DC-to-RF efficiency of such oscillators is still low. The reason is the loss caused by resistors, which form the ends of the slot antennas. This paper presents a method to increase the DC-to-RF efficiency of resistor-coupled arrayed oscillators. Edged resistors at the ends of slot antennas are covered by metal-insulator-metal capacitors, which shunt the currents flowing through those resistors. Thus, the conduction loss caused by edged resistors is reduced. Owing to low conduction loss, high output power is obtained, resulting in a high DC-to-RF efficiency. It is estimated that the proposed oscillator’s output power and DC-to-RF efficiency reach 1.53 mW and 0.44% at 450 GHz, respectively. A high power density of up to 62 mW/mm2 is another advantage of the proposed RTD oscillator. With the improved characteristics, we believe the proposed oscillators could promote various Terahertz applications.

Full Text:

PDF

References


D. Cimbri, J. Wang, A. Al-Khalidi, and E. Wasige, “Resonant tunneling diodes high-speed terahertz wireless communications - a review,” IEEE Transactions on Terahertz Science and Technology, vol. 12, no. 3, pp. 226 - 244, May. 2022.

W. Gao, T. Saijo, K. Maekawa, T. Ishibashi, H. Ito, and T. Nagatsuma,“ Terahertz wireless communications using SiC-substrate-based Fermi-level managed barrier diode receiver,” 2023 IEEE/MTT-S International Microwave Symposium - IMS 2023, San Diego, CA, USA, Jun. 2023.

R. Kaola, K. Iyoda, M. Fujita, and T. Nagatsuma,“ Terahertz link with orthogonal polarization over silicon dielectric waveguide,” Electronics Letters, vol. 59, no. 14, Art. no. e12779, Jul. 2023.

L. Yi, R. Kaname, R. Mizuno, Y. Li, M. Fujita, H. Ito, and T. Nagatsuma, “Ultra-wideband frequency modulated continuous wave photonic radar system for three-dimensional terahertz synthetic aperture radar imaging,” Journal of Lightwave Technology, vol. 40, no. 20, pp. 6719 - 6728, Oct. 2022.

L. Yi, Y. Nishida, T. Sagisaka, R. Kaname, R. Mizuno, M. Fujita, and T. Nagatsuma, “Towards practical terahertz imaging system with compact continuous wave transceiver,” Journal of Lightwave Technology, vol. 39, no. 24, pp. 7850 - 7861, Dec. 2021.

A. Dobroiu, K. Asama, S. Suzuki, M. Asada, and H. Ito, “Terahertz-wave three-dimensional imaging using a resonant-tunneling-diode oscillator,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 43, no. 5 - 6, pp. 464 - 478, Jun. 2022.

X. Wu, Y. Dai, L. Wang, Y. Peng, L. Lu, Y. Zhu, Y. Shi, and S. Zhuang, “Diagnosis

of methylglyoxal in blood by using far-infrared spectroscopy and o-phenylenediamine

derivation,” Biomed Opt Express, vol. 11, no. 2, pp. 963-970, Jan. 2020.

Z. Chen, Z. Zhang, R. Zhu, Y. Xiang, Y. Yang, and P.B. Harrington, “Application

of terahertz time-domain spectroscopy combined with chemometrics to quantitative

analysis of imidacloprid in rice samples,” J. Quant. Spectrosc. Radiat. Transfer, vol. 167,

no. 6, pp. 1- 9, 2015.

B. You, J. Y. Lu, “Sensitivity analysis of multilayer microporous polymer structures for terahertz volatile gas sensing,” Opt. Express, vol. 25,

no. 5, pp. 5651 - 5661, 2017.

K. Okamoto, K. Tsuruda, S. Diebold, S. Hisatake, M. Fujita, and T. Nagatsuma, “Terahertz sensor using photonic crystal cavity and resonant tunneling diodes,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 38, pp. 1085 - 1097, May. 2017.

K. Fujita, S. Jung, Y. Jiang, J. H. Kim, A. Nakanishi, A. Ito, et al., “Recent progress in terahertz difference-frequency quantum cascade laser sources”, Nanophotonics, vol. 7, no. 11, pp. 1795-1817, 2018.

K. Fujita, S. Hayashi, A. Ito, M. Hitaka and T. Dougakiuchi, “Sub-terahertz and terahertz generation in long-wavelength quantum cascade lasers”, Nanophotonics, vol. 8, no. 12, pp. 2235-2241, 2019.

H. Eisele “High performance InP Gunn devices with 34 mW at 193 GHz,” IEEE Trans. Microwave Theory and Technique, vol. 48, no. 4, pp. 626-631, 2000.

X J. Nishizawa, P. Potka, T. Kurabayashi and H. Makabe, “706-GHz GaAs CW fundamental-mode TUNNETT diodes fabricated with molecular layer epitaxy,” Phys. Stat. Sol.(c), vol. 5, no. 9, pp. 2802-2804, 2008.

J. Yun, J. Kim and J.-S. Rieh, “A 280-GHz 10-dBm signal source based on InP HBT technology”, IEEE Microw. Wireless Compon. Lett., vol. 27, no. 2, pp. 159-161, 2017.

J. Yun, J. Kim, D. Yoon and J.-S. Rieh, “645-GHz InP heterojunction bipolar transistor harmonic oscillator,” Electron. Lett., vol. 53, no. 22, pp. 1475-1477, 2017.

W. R. Deal, X. B. Mei, V. Radisic, K. Leong, S. Sarkozy, B. Gorospe, J. Lee, P. H. Liu, W. Yoshida, J. Zhou, M. Lange, J. Uyeda, and R. Lai, “Demonstration of a 0.48 THz amplifier module using InP HEMT transistors,” IEEE Microwave and Wireless Components Letters, vol. 20, no. 5, pp. 289- 291, 2010.

M. Asada and S. Suzuki, “Terahertz emitter using resonant-tunneling diode and applications,” Sensors, vol. 21, no. 4, Art. no. 1384, 2021.

Y. Koyama, Y. Kitazawa, K. Yukimasa, T. Uchida, T. Yoshioka, K. Fujimoto, et al., "A high-power terahertz source over 10 mW at 0.45 THz using an active antenna array with integrated patch antennas and resonant-tunneling diodes", IEEE Trans. Terahertz Sci. Technol., vol. 12, no. 5, pp. 510-519, 2022.

P. Ourednik, T. Hackl, C. Spudat, D. Tuan Nguyen, and M. Feiginov, “Double-resonant-tunneling-diode patch-antenna oscillators,” Appl. Phys. Lett. vol. 119, Art. no. 263509, 2021.

T. V. Mai, M. Asada, Y. Suzuki, S. Suzuki, “Coherent power combination in a resonant-tunneling-diode arrayed oscillator with simplified structure,” IEEE Trans. THz. Sci. and Technol., vol. 13, no. 4, pp. 405-414, Jul., 2023.

S. Endo, S. Suzuki, “Terahertz resonant-tunneling-diode oscillator with two offset-fed slot-ring antennas,” Appl. Phys. Exp., vol. 17, no. 4, Art. no. 044001, Apr. 2024.

F. Han, T. Shimura, H. Tanaka, and S. Suzuki, “Two coupled resonant-tunneling-diode oscillators with an air-bridged transmission line for high-power coherent terahertz radiation,” Appl. Phys. Exp., vol. 16, no. 6, Art. no. 064003, Jun. 2024.

T. V. Mai, Y. Suzuki, X. Yu, S. Suzuki, and M. Asada, “Structure dependence of oscillation characteristics of structure-simplifiedresonant-tunneling-diode terahertz oscillator,” Appl. Phys. Express, vol. 15, no. 4, Art. no. 042003, Mar. 2022.

T. Nagatsuma, “Terahertz technologies: Present and future,” IEICE Elec Express, vol. 8, no. 14, p. 1127–1142–11142, Jul., 2011.

K. Kasagi, S. Suzuki, and M. Asada, “Large-scale array of resonant-tunneling-diode terahertz oscillators for high output power at 1 THz,” J. Appl. Phys., vol. 125, no. 15, Art. no. 151601, Mar. 2019.

A. Al-Khalidi, K. H. Alharbi, J. Wang, R. Moraiu, L. Wang, A. Khalid, J. Figueiredo, and E. Wasige, “Resonant tunneling diode terahertz sources with up to 1 mW output power in the J-band,” IEEE Trans. THz. Sci. and Technol., vol. 10, no. 2, pp. 150-157, Mar. 2020.

J. Lee, M. Kim, and J. Lee, “692 GHz high-efficiency compact-size InP-based fundamental RTD oscillator,” IEEE Trans. THz. Sci. and Technol., vol. 11, no. 6, pp. 716-719, Nov. 2021.




DOI: http://dx.doi.org/10.21553/rev-jec.377

Copyright (c) 2024 REV Journal on Electronics and Communications


ISSN: 1859-378X

Copyright © 2011-2024
Radio and Electronics Association of Vietnam
All rights reserved