An Ultra-high Quality Factor Terahertz Photonic Crystal Cavity
Abstract
High quality factor Terahertz (THz) cavities are highly desired for many THz applications. This paper presents an ultra-high quality factor terahertz planar photonic crystal cavity at 300 GHz range. Two approaches are employed to reduce the losses in the cavity increasing the quality factor of the cavity. Firstly, short embedded photonic crystal waveguides are employed to reduce the in – plane loss. Secondly, a novel way of hole displacement is adopted for four edged holes of the L3 – type photonic crystal cavity to decrease the radiation loss. An ultra – high quality factor of 65000 at a resonant frequency of 315.3 GHz was achieved for the designed cavity. This result could enable promising applications such as THz sensing.
Full Text:
PDFReferences
D. Cimbri, J. Wang, A. Al-Khalidi, and E. Wasige, “Resonant tunneling diodes high-speed terahertz wireless communications - a review,” IEEE Transactions on Terahertz Science and Technology, vol. 12, no. 3, pp. 226 - 244, May. 2022. DOI: 10.1109/TTHZ.2022.3142965.
W. Gao, T. Saijo, K. Maekawa, T. Ishibashi, H. Ito, and T. Nagatsuma,“ Terahertz wireless communications using SiC-substrate-based Fermi-level managed barrier diode receiver,” 2023 IEEE/MTT-S International Microwave Symposium - IMS 2023, San Diego, CA, USA, Jun. 2023. DOI: 10.1109/IMS37964.2023.10188178.
R. Kaola, K. Iyoda, M. Fujita, and T. Nagatsuma, “Terahertz link with orthogonal polarization over silicon dielectric waveguide,” Electronics Letters, vol. 59, no. 14, Art. no. e12779, Jul. 2023. DOI: 10.1049/ell2.12779.
L. Yi, R. Kaname, R. Mizuno, Y. Li, M. Fujita, H. Ito, and T. Nagatsuma, “Ultra-wideband frequency modulated continuous wave photonic radar system for three-dimensional terahertz synthetic aperture radar imaging,” Journal of Lightwave Technology, vol. 40, no. 20, pp. 6719 - 6728, Oct. 2022. DOI: 10.1109/JLT.2022.3193397.
L. Yi, Y. Nishida, T. Sagisaka, R. Kaname, R. Mizuno, M. Fujita, and T. Nagatsuma, “Towards practical terahertz imaging system with compact continuous wave transceiver,” Journal of Lightwave Technology, vol. 39, no. 24, pp. 7850 - 7861, Dec. 2021. DOI: 10.1109/JLT.2021.3092779.
A. Dobroiu, K. Asama, S. Suzuki, M. Asada, and H. Ito, “Terahertz-wave three-dimensional imaging using a resonant-tunneling-diode oscillator,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 43, no. 5 - 6, pp. 464 - 478, Jun. 2022. DOI: 10.1007/s10762-022-00863-5.
H. Konno, A. Dobroiu, S. Suzuki, M. Asada, and H. Ito, “Discrete fourier transform radar in the terahertz-wave range based on a resonant-tunneling-diode oscillator,” Sensors, vol. 21, no. 13, pp. Art. no. 4367, Jun. 2021. DOI: 10.3390/s21134367.
X. Wu, Y. Dai, L. Wang, Y. Peng, L. Lu, Y. Zhu, Y. Shi, and S. Zhuang, “Diagnosis of methylglyoxal in blood by using far-infrared spectroscopy and o-phenylenediamine derivation,” Biomed Opt Express, vol. 11, no. 2, pp. 963-970, Jan. 2020. DOI: 10.1364/BOE.381542.
Z. Chen, Z. Zhang, R. Zhu, Y. Xiang, Y. Yang, and P.B. Harrington, “Application of terahertz time-domain spectroscopy combined with chemometrics to quantitative analysis of imidacloprid in rice samples,” J. Quant. Spectrosc. Radiat. Transfer, vol. 167,
no. 6, pp. 1- 9, 2015. DOI: 10.1016/j.jqsrt.2015.07.018.
I. Al-Naib, “Biomedical sensing with conductively coupled terahertz metamaterial resonators,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 23, no. 4, Art. no. 16512256, Aug. 2016. DOI: 10.1109/JSTQE.2016.2629665.
B. You, J. Y. Lu, “Sensitivity analysis of multilayer microporous polymer structures for terahertz volatile gas sensing,” Opt. Express, vol. 25, no. 5, pp. 5651 - 5661, 2017. DOI: 10.1364/OE.25.005651.
K. Okamoto, K. Tsuruda, S. Diebold, S. Hisatake, M. Fujita, and T. Nagatsuma, “Terahertz sensor using photonic crystal cavity and resonant tunneling diodes,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 38, pp. 1085 - 1097, May. 2017. DOI: 10.1007/s10762-017-0391-0.
M. Verstuyft, E. Akiki, B. Walter, M. Faucher, J. F. Lampin, M. Vanwolleghem, and B. Kuyken, “Proposal for an integrated silicon – photonics terahertz gas detector using photoacoustics,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 28, no. 15, pp. 22424 - 22442, Jul. 2020. DOI: 10.1364/OE.397272.
E. Akiki, M. Verstuyft, B. Kuyken, B. Walter, M. Faucher, J – F. Lampin, G. Ducournau, and M. Vanwolleg, “High Q THz photonic crystal cavity on loss suspended Silicon platform,” IEEE Transactions on Terahertz Science and Technology, vol. 11, no. 1, pp. 42 - 53, Aug. 2020. DOI: 10.1109/TTHZ.2020.3019928.
S. M. Hanham, M. M. Ahmad, S. Lucyszyn, and N. Klein, “LED-switchable high-Q packaged THz microbeam resonators,” IEEE Transactions on Terahertz Science and Technology, vol. 7, no. 2, pp. 199 - 208, Mar. 2017. DOI: 10.1109/TTHZ.2016.2634547.
X. Yu, J. Kim, M. Fujita, and T. Nagatsuma, “Highly stable terahertz resonant tunneling diode oscillator coupled to photonic-crystal cavity,” The 2018 Asia-Pacific Microwave Conference, (APMC 2018), Kyoto, Japan, Nov. 2018. DOI: 10.23919/APMC.2018.8617332.
W. J. Otter, S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, S. Lucyszyn, “100 GHz ultra-high Q-factor photonic crystal resonators,” Sensors and Actuators A, vol. 217, pp. 151 - 159, Sep. 2014. DOI: 10.1016/j.sna.2014.06.022.
C. M. Yee, and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Applied Physics Letters, vol. 94, no. 15, Art. no. 154104, Apr. 2019. DOI: 10.1063/1.3118579.
Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-Factor of 109,” Journal of Lightwave Technology, vol. 26, no. 11, pp. 1532 - 1539, Jun. 2008. DOI: 10.1109/JLT.2008.923648.
DOI: http://dx.doi.org/10.21553/rev-jec.345
Copyright (c) 2024 REV Journal on Electronics and Communications
ISSN: 1859-378X Copyright © 2011-2024 |
|