An efficient hardware implementation of Convolutional Neural Network in detect Breast Cancer Histopathology Image
Abstract
Full Text:
PDFReferences
Swathi, T. V., Krishna, S., & Ramesh, M. V. (2019, March). A Survey on Breast Cancer Diagnosis Methods and Modalities. In 2019 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET) (pp. 287-292). IEEE.
DeSantis, C. E., Bray, F., Ferlay, J., Lortet-Tieulent, J., Anderson, B. O., & Jemal, A. (2015). International variation in female breast cancer incidence and mortality rates. Cancer Epidemiology and Prevention Biomarkers, 24(10), 1495-1506.
Ginsburg, O., Yip, C. H., Brooks, A., Cabanes, A., Caleffi, M., Dunstan Yataco, J. A., ... & Anderson, B. O. (2020). Breast cancer early detection: A phased approach to implementation. Cancer, 126, 2379-2393.
Rositch, A. F., Unger‐Saldaña, K., DeBoer, R. J., Ng’ang’a, A., & Weiner, B. J. (2020). The role of dissemination and implementation science in global breast cancer control programs: frameworks, methods, and examples. Cancer, 126, 2394-2404.
Kajala, A., & Jain, V. K. (2020, February). Diagnosis of Breast Cancer using Machine Learning Algorithms-A Review. In 2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3) (pp. 1-5). IEEE.
Laghmati, S., Tmiri, A., & Cherradi, B. (2019). Machine Learning based System for Prediction of Breast Cancer Severity. In 2019 International Conference on Wireless Networks and Mobile Communications (WINCOM) (pp. 1-5). IEEE.
Gupta, A., Kaushik, D., Garg, M., & Verma, A. (2020, October). Machine Learning model for Breast Cancer Prediction. In 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) (pp. 472-477). IEEE.
El Rahman, S. A., Al-montasheri, A., Al-hazmi, B., Al-dkaan, H., & Al-shehri, M. (2019, February). Machine Learning Model for Breast Cancer Prediction. In 2019 International Conference on Fourth Industrial Revolution (ICFIR) (pp. 1-8). IEEE.
Singh, O. V., & Choudhary, P. (2019, February). A Study on Convolution Neural Network for Breast Cancer Detection. In 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP) (pp. 1-7). IEEE.
Omonigho, E. L., David, M., Adejo, A., & Aliyu, S. (2020, March). Breast Cancer: Tumor Detection in Mammogram Images
Using Modified AlexNet Deep Convolution Neural Network. In 2020 International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS) (pp. 1-6). IEEE.
Yamlome, P., Akwaboah, A. D., Marz, A., & Deo, M. (2020, July). Convolutional Neural Network Based Breast Cancer Histopathology Image Classification. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 1144-1147). IEEE.
Roy, A. (2019, October). Deep convolutional neural networks for breast cancer detection. In 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON) (pp. 0169-0171). IEEE.
Narayanan, B. N., Krishnaraja, V., & Ali, R. (2019, July). Convolutional Neural Network for Classification of Histopathology Images for Breast Cancer Detection. In 2019 IEEE National Aerospace and Electronics Conference (NAECON) (pp. 291-295). IEEE.
Shahidi, F., Daud, S. M., Abas, H., Ahmad, N. A., & Maarop, N. (2020). Breast Cancer Classification Using Deep Learning Approaches and Histopathology Image: A Comparison Study. IEEE Access, 8, 187531-187552.
Kieffer, B., Babaie, M., Kalra, S., & Tizhoosh, H. R. (2017, November). Convolutional neural networks for histopathology image classification: Training vs. using pre-trained networks. In 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA) (pp. 1-6). IEEE.
Adeshina, S. A., Adedigba, A. P., Adeniyi, A. A., & Aibinu, A. M. (2018). Breast cancer histopathology image classification with deep convolutional neural networks. In 2018 14th international conference on electronics computer and computation (ICECCO) (pp. 206-212). IEEE.
Patil, A., Tamboli, D., Meena, S., Anand, D., & Sethi, A. (2019, November). Breast Cancer Histopathology Image Classification and Localization using Multiple Instance Learning. In 2019 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE) (pp. 1-4). IEEE.
Angara, S., Robinson, M., & Guillén-Rondon, P. (2018, December). Convolutional neural networks for breast cancer histopathological image classification. In 2018 4th International Conference on Big Data and Information Analytics (BigDIA) (pp. 1-6). IEEE.
Xiang, Z., Ting, Z., Weiyan, F., & Cong, L. (2019, June). Breast cancer diagnosis from histopathological image based on deep learning. In 2019 Chinese Control And Decision Conference (CCDC) (pp. 4616-4619). IEEE.
Ding, R., Tian, X., Bai, G., Su, G., & Wu, X. (2019). Hardware Implementation of Convolutional Neural Network for Face Feature Extraction. In 2019 IEEE 13th International Conference on ASIC (ASICON) (pp. 1-4). IEEE.
Farrukh, F. U. D., Xie, T., Zhang, C., & Wang, Z. (2018, November). Optimization for efficient hardware implementation of CNN on FPGA. In 2018 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA) (pp. 88-89). IEEE.
Chen, W., Wang, Y., Yang, C., & Li, Y. (2020, June). Hardware Acceleration Implementation of Three-Dimensional Convolutional Neural Network on Vector Digital Signal Processors. In 2020 4th International Conference on Robotics and Automation Sciences (ICRAS) (pp. 122-129). IEEE.
Janowczyk, A., & Madabhushi, A. (2016). “Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases”. Journal of pathology informatics, 7.
Cruz-Roa, A., Basavanhally, A., González, F., Gilmore, H., Feldman, M., Ganesan, S., ... & Madabhushi, A. (2014, March). “Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks”. In Medical Imaging 2014: Digital Pathology (Vol. 9041, p. 904103). International Society for Optics and Photonics.
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016). Tensorflow: A system for large-scale machine learning. In 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16) (pp. 265-283).
Cruz-Roa, A., Gilmore, H., Basavanhally, A., Feldman, M., Ganesan, S., Shih, N. N., ... & Madabhushi, A. (2017). Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent. Scientific reports, 7(1), 1-14.
Khan, S., Rahmani, H., Shah, S. A. A., & Bennamoun, M. (2018). A guide to convolutional neural networks for computer vision. Synthesis Lectures on Computer Vision, 8(1), 1-207.
Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O'Reilly Media.
Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1, No. 2). Cambridge: MIT press.
Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In 2015 Third International Conference for Learning Representations (ICLR ), 13.
Zeiler, M. D. (2012). Adadelta: An adaptive learning rate method. arXiv:1212.5701.
Noronha, D. H., Salehpour, B., & Wilton, S. J. (2018, August). LeFlow: Enabling flexible FPGA high-level synthesis of tensorflow deep neural networks. In FSP Workshop 2018; Fifth International Workshop on FPGAs for Software Programmers (pp. 1-8). VDE.
Lattner, C., & Adve, V. (2004, March). LLVM: A compilation framework for lifelong program analysis & transformation. In International Symposium on Code Generation and Optimization, 2004. CGO 2004. (pp. 75-86). IEEE.
Canis, A., Choi, J., Aldham, M., Zhang, V., Kammoona, A., Czajkowski, T., ... & Anderson, J. H. (2013). LegUp: An open-source high-level synthesis tool for FPGA-based processor/accelerator systems. ACM Transactions on Embedded Computing Systems (TECS), 13(2), 1-27.
DOI: http://dx.doi.org/10.21553/rev-jec.280
Copyright (c) 2022 REV Journal on Electronics and Communications
ISSN: 1859-378X Copyright © 2011-2024 |
|