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We received comments from three reviewers. Following are the corrections and revisions in response to the comments 
and suggestions made by the reviewers. 

Responses to Reviewer B Comments 

Comment/Suggestion of Reviewer B Response/Action 

In this paper, authors consider the problem of wall 
clutter removal and target image reconstruction in 
through-wall radar imaging. To this end, the problem 
is formulated in terms of a joint low-rank and sparse 
regularized optimization problem where low-rank 
structure and sparseness are to take into account the 
effect of the wall antenna signals and target pixels. 
The results on synthetic and real data showed that 
the proposed approach outperforms several existing 
ones. 

The paper is well written and the idea is clear. 

The following problems are concerned: 
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Comment/Suggestion of Reviewer B Response/Action 

• Intuitively why does joint solving the problem of 
wall clutter removal and target image 
reconstruction yield better result than the 
sequential tasks? 

 

 

 - Background: in indoor radar imaging, the received target 
signals are corrupted by strong wall returns. Thus, for 
target localization, the problem of wall clutter mitigation 
and target image formation needs to be solved. By 
formulating such task as a joint low-rank and sparse 
regularized optimization problem, we can 
simultaneously capture the wall interference and 
reconstruct the target image, instead of performing 
multistage processing of signal estimation, wall clutter 
suppression, and target image reconstruction.  
 

- Intuitively, jointly modeling the wall and target image 
components through a full optimization model could lead 
to an optimal solution, thereby yielding improved 
performances. In other words, by incorporating further 
prior knowledge into the model, we hope to improve the 
model performance. In comparison, independent solving 
such tasks sequentially through multi-stage could be 
affected by suboptimality and uncertainly; the 
performance of wall clutter mitigation and target image 
formation are sensitive to the estimation error arising in 
the signal recovery stage.   
 

- In the revised paper, the discussion on the key 
motivation of the joint solving wall clutter removal and 
target image reconstruction, instead of considering such 
tasks independently is now further highlighted in 
Paragraph 4, Introduction Section. The revised text now 
reads:    
 
"Instead of performing multistage independently, the key 
idea of the proposed approach in this paper is to perform 
wall clutter mitigation and target image reconstruction in CS 
TWRI simultaneously through an optimization model. This 
optimization model is formulated by incorporating two 
intrinsic signal structures: (1) low-dimensional structure of 
wall clutter and (2) the sparsity profile of the target scene. 
The former structure is due to the fact that the 
electromagnetic reflections from the front wall received 
along the antenna array are highly correlated. As a result, 
if the wall antenna signals are arranged as columns of a 
matrix, this matrix is low-rank. The later attribute of the 
model is because target pixels occupy only a small region 
in the form image. In other words, the target image is 
sparse. Intuitively, we could perform these two important 
tasks even better if we represent the model more precisely 
and completely. By incorporating further prior knowledge 
into the model, we hope to improve the model 
performance."  
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Comment/Suggestion of Reviewer B Response/Action 

• In my opinion, comparison of different methods 
on synthetic data is also necessary to assess 
performance of the proposed approach. 

 - Considering the suggestion of the reviewer, in the 
revised paper, more experiments have been conducted 
on synthetic data to compare the performances of the 
proposed approach and the different existing methods. 
The simulation results are presented in Subsection IV-
A3. The discussion now reads as follows:  
 

- "This experiment aims to evaluate the performance of 
the proposed low-rank and sparse approach in 
comparison with other existing CS-based imaging 
methods. For comparison, we implement the existing 
direct CS and multistage CS-based approaches for wall 
clutter mitigation and target image reconstruction using 
50% reduced dataset acquired in the same manner as 
in Subsection IV-A2. While the direct CS method 
reconstructs a target image from the raw reduced data 
vector 𝒚,  the existing multistage approaches first 
perform data recovery, then employ a spatial filtering 
[15] or a subspace projection technique [16] for wall-
clutter mitigation, i.e., removing the wall component 𝒁 , 
and finally reconstruct a target image by solving the 𝑙 -
norm regularized problem in (10) using the wall-clutter 
subtracted data.  

 
- Fig. 4 shows the target images formed by the different 

imaging methods. Without clutter removal, the direct CS 
method forms an image shown in Fig. 4(a). Clearly, 
strong wall clutter dominates the targets, making target 
localization very difficult. On the other hand, by using the 
spatial filtering for wall clutter migration, the multistage 
CS approach produces the target image, shown in Fig. 
4(b), in which strong wall clutter has been significantly 
mitigated, but this image still contains a high level of 
false alarms. Fig. 4(c) presents the image reconstructed 
by the multistage CS method, but the subspace 
projection is used, instead of the spatial filtering, for wall 
clutter mitigation. The quality of the target image is 
enhanced slightly due to better level of clutter mitigation, 
i.e., the subspace projection outperforms the spatial 
filtering in terms of clutter suppression. The proposed 
rank-deficient and sparse approach yields the image 
depicted in Fig. 4(d), where the target pixels are further 
enhanced and clutter pixels are alleviated considerably. 

 
- The TCR values of the target images, shown in Fig. 4, 

formed by the different CS-based methods are 
computed and listed in Table II. As we expect from the 
visual interpretation, the proposed joint nuclear-norm 
and 𝑙 -norm approach significantly enhances the image 
quality in terms of TCR; it yields the target image with a 
TCR value of 42.33 dB, the highest TCR value among 
those of the evaluated CS-based imaging approaches." 
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Comment/Suggestion of Reviewer B Response/Action 

• In terms of image reconstruction quality, it is clear 
from the figures that the proposed approach 
provides better result than the others. However, 
how can we localize the target after target image 
reconstruction since, for example, from Fig.5 (c) 
and (d), it is difficult to know what is target without 
ground-truth data? 

 - It is worth noting that the focus of this paper is to solve 
the problem of image reconstruction in the presence of 
strong wall clutter. Once the target image is obtained, 
target detection and localization techniques can be 
applied. Hence, high quality of target image leads to 
improved target detection. 
 

- Considering the suggestion from the reviewer, to 
compare the detection performances among the 
different techniques, we now apply a thresholding 
detector to the formed images shown in Fig. 5*. Here the 
threshold is determined by partitioning the input image 
into two classes of object and background; the threshold 
used for classification is found by maximizing the 
between-class variance. The result shown in Fig. 7(d) 
demonstrates that the target can be easily localized by 
the proposed approach, without prior knowledge of the 
ground-truth.     

 
- The relevant discussion has been added to the revised 

paper. The text now reads “To evaluate the capability of 
target detection by different wall clutter mitigation and 
image reconstruction methods, we apply a thresholding 
technique to the target images formed by the different 
methods shown in Fig. 6. Here, the input image is 
partitioned into two classes: object and background. The 
threshold used for classification is found by maximizing 
the between-class variance. Fig. 7 presents the 
detection results after applying the same threshold value 
to the form images. As expected, without wall clutter 
mitigation, the direct CS fails to localize the target as 
demonstrated in Fig. 7(a). By contrast, it can be 
observed from Figs. 7(b) and (c) that the multistage CS 
approach can detect the target with a high level of false 
alarms. The detection result in Fig. 7(d) shows that the 
proposed model is able to localize the target well, with 
no appearance of false alarms.” 

 

 

 

 

 

 

 

 

 

 

 

                                                     
* Fig. 6 in the revised paper. 
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Responses to Reviewer C Comments 

 

Comment/Suggestion of Reviewer C  Response/Action 

In this paper, the authors proposed a rank-deficient 
and sparsity regularized optimization model to 
address two important problems of wall clutter 
mitigation and target image formation in compressive 
indoor radar imaging. The task of wall clutter 
suppression and target image reconstruction is 
formulated as a composite nuclear and 𝑙 -penalized 
minimization problem and an iterative algorithm based 
on the proximal forward-backward splitting technique 
is developed, which captures wall clutter and yields an 
indoor target image simultaneously.  

  
 
 

+ How many kinds of noise may appear in Indoor 
Radar Target Localization? Only Gaussian white 
noise was concerned in this work. 

 - In indoor radar target imaging, there are two major 
types of interferences. The first interference is due to 
the electromagnetic reflections from the wall, known as 
wall clutter. The second type is the sensing noise, 
which is considered to follow the complex Gaussian in 
the model. While the wall clutter is the major factor that 
affects the imaging performances and thereby being 
treated in this paper, we assume the second type of 
noise to follow the Gaussian distribution as in several 
other research works [8, 9, 10, 11].        
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Comment/Suggestion of Reviewer C  Response/Action 

+ How is the regularization parameter chosen in this 
work? 

 - Background: The proposed algorithm requires the 
selection of two regularization parameters 𝛾  and 𝜆. 
Parameter 𝛾 controls the importance of the low-rank 
term and uses in the singular value thresholding to 
estimate the low-rank wall clutter matrix. This 
regularization parameter is used as that in the low-rank 
matrix completion approaches [23, 25], in which 𝛾 is 
typically set to 𝛾 = 10 ‖𝒜∗(𝒚)‖ . Here, because 
Subproblem (23) is a low-rank matrix completion 
problem, we keep the same setting for 𝛾  and found 
that it is suitable for through-wall radar imaging. 
Similarly, 𝜆 guarantees the sparsity level of the target 
image 𝒔 , which is similar to that in the CS 𝑙  
minimization algorithms [5, 6, 18, 19], where 𝜆 is set to 𝜆 = 𝜅‖𝑫 𝒚‖  ; the factor 𝜅 can be chosen as 𝜅 = 10  
for high probability of precise reconstruction. Here, this 
typical setting for 𝜆 is kept for the 𝑙  minimization in the 
image formation problem (29).   
 

- In the paper, the relevant text in Subsection IV-A2 has 
been revised for clarity. The text now reads: “Using 𝒚 
an 𝑫, clutter mitigation and target image reconstruction 
can be performed with Algorithm 1. This algorithm 
requires three parameters 𝛾, 𝜆, and tol, which need to 
be selected appropriately. Parameter 𝛾  controls the 
importance of the low-rank term and uses in SVT to 
estimate the low-rank wall clutter matrix, see Step 3 in 
Algorithm 1. Setting 𝛾 to a very large value, e.g., 𝛾 =‖𝒜∗(𝒚)‖ ,  leads to the solution of 𝒁  being rank 0, 
whereas choosing a small value, e.g., 𝛾 =10 ‖𝒜∗(𝒚)‖  makes the algorithm converge very 
slowly. The values 10 ‖𝒜∗(𝒚)‖  and  ‖𝒜∗(𝒚)‖  can 
be regarded as the lower and upper bounds for 𝛾 , 
respectively. Here, in the experiments, 𝛾  was set to 𝛾 = 10 ‖𝒜∗(𝒚)‖ . While 𝛾 controls the rank of matrix 𝒁 , the parameter 𝜆 guarantees the sparsity level of 
the target image 𝒔. For 𝜆 ≥ 10 ‖𝑫 𝒚‖ , the unique 
solution to Problem (15) for 𝒔 is the zero vector. In the 
following experiments, 𝜆 was set to 𝜆 = 10 ‖𝑫 𝒚‖ .” 

+ Do the authors need to estimate the level of noises?  - The proposed model does not estimate the level of 
noise explicitly. However, the noise level is bounded by 
the first term in the objective function (15), i.e., ‖𝒚 − [𝒜(𝒁 ) + 𝑫𝒔]‖ .   

+ Why did the authors set up the simulation and 
experiment with different settings? We expect to see 
the same scenario in both the simulation and 
experiment. 

 - The performance of the proposed model was 
evaluated using both simulations and experiments. In 
fact, both simulations and experiments use the same 
setting of stepped-frequency synthetic aperture radar 
(SAR) with monostatic mode for data collection. The 
main differences are the number of antennas, 
frequency range, and number of behind-wall targets. 
The motivation is we aim to test the robustness of the 
proposed model under different scenarios, that may 
happen in various potential applications. 
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Responses to Reviewer D Comments 

Comment/Suggestion of Reviewer D  Response/Action 

The paper proposed a rank-deficient and sparse 
penalized optimization method for through-wall radar 
imaging in the presence of structured wall clutter. 
Experiments are conducted on both simulated and 
real radar data to evaluate the performance of the 
proposed method. The paper is well-written and the 
experimental results look promising. 

  

Major comments: 

• The conference [1] should be cited in the journal 
version itself. 

[1] “Van Tang, Ha, and Van-Giang Nguyen. A Rank-
Deficient and Sparse Penalized Optimization Model 
for Compressive Indoor Radar Imaging. 2019 3rd 
International Conference on Recent Advances in 
Signal Processing, Telecommunications & 
Computing (SigTelCom). IEEE, 2019.” 

  

- In the revised paper, the reference has been cited as 
[17]. The relevant text in Paragraph 5, Introduction 
Section reads: “The idea of joint wall clutter mitigation 
and image formation, and preliminary results have 
been presented in [17].”  

• Similarities and differences with the conference 
paper [1] should be elaborated in details. 

 - In the revised paper, the similarities and differences 
between the paper and the conference [1] are 
discussed in Paragraph 5, Introduction Section. The 
relevant text now reads:  
 

- “The idea of joint wall clutter mitigation and image 
formation, and preliminary results have been 
presented in [17]. This paper extends this work in three 
respects: model formulation, iterative algorithm, and 
experimental evaluation. The problem formulation is 
described completely in this paper, for both full and 
compressive sensing operations. Furthermore, the 
problem formulation is discussed and compared with 
the two existing techniques of DS beamforming and 
multistage CS-based models, which highlights the 
advantages of the proposed model. In terms of 
algorithm design, this paper presents rigorous steps for 
solving the joint nuclear-norm and 𝑙 -norm regularized 
least squares (LS) minimization problem, based on the 
proximal forward-backward splitting framework [18]–
[20]. This generic technique, its application to TWRI, 
and how the proximal evaluations of the two key 
operators, namely singular value thresholding and soft-
thresholding to overcome the challenging nonsmooth 
nature of the penalty terms are detailed in this paper. 
Algorithm analysis, its convergence, and 
computational complexity are discussed. Extensive 
simulations and experiments are conducted to 
evaluate the performance of the proposed model. In 
addition, performance comparisons with several state-
of-the-art methods are described and analyzed in 
different CS settings.” 

• Although the paper is well organized, many sections 
are copied from [1]. The author should rewrite the 
paper to avoid self-plagiarism. 

 - The paper has been revised carefully to avoid the 
repetitions from the conference [1].  
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Comment/Suggestion of Reviewer D  Response/Action 

• The objective function 𝑓(𝒁, 𝒔) (15) is not convex in 
both (𝒁, 𝒔)  in general. The function 𝑓(𝒁, 𝒔)  is only 
convex in term of one variable (𝒁 or 𝒔) when the other 
is fixed (i.e., constant).  Therefore, the claim 
“Algorithm 1 terminates after it reaches a local 
optimum. This local point is also the global one 
because the problem is convex” is not true. Please 
clarify and correct it. 

 - In the paper, the relevant issue has been clarified and 
corrected. The text in Paragraph 5, Subsection III-B 
has been revised for correctness. The text now reads 
“It is worth noting here that in the minimization, the wall 
clutter matrix is estimated via SVT applied to the data 
matrix in which the recent estimated target component 
has been fixed and subtracted. Likewise, the scene 
image is reconstructed by applying the shrinkage 
operator to the measurement vector in which the recent 
estimated wall component is fixed and segregated. 
Algorithm 1 terminates after it reaches a local optimum. 
We implement this termination condition as the change 
of the cost function is very small (Step 5).”  
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Comment/Suggestion of Reviewer D  Response/Action 

Minor comments: 

• Introduction: it would be nicer to give some insight in 
the advantages and disadvantages of the state-of-the-
arts. 

 - The introduction section has been revised in which the 
key features of the state-of-the-art approaches have 
been discussed, and their benefits and shortcomings 
have been analyzed. The relevant discussion in 
Paragraphs 2 and 3 in Introduction Section now reads: 
 

- “Conventionally, TWRI techniques require a complete 
dataset to generate an image of indoor targets using 
backprojection, such as delay-and-sum beamforming 
[1, 2, 4]. In other words, such techniques are effective 
for image formation only for the case in which all the 
antennas and frequencies are available for data 
acquisition. However, this data collection mode makes 
data acquisition prolonged and system storage 
ineffective. To accelerate data collection and provide 
high-resolution imaging, several TWRI approaches 
have been considered using the compressive sensing 
(CS) framework [5]–[7]. As CS is a powerful signal 
processing technique that allows compressive 
sampling and precise reconstruction of sparse signals, 
it has been applied to TWRI for image formation from 
far reduced measurements [8]–[10]. Using CS, the task 
of image formation is formulated as an 𝑙  penalized 
minimization problem, in which the 𝑙  regularizer is 
used to promote the sparseness of the target scene. It 
has been shown that this minimization model is 
suitable for the situations where strong wall clutter has 
been completely removed prior to image 
reconstruction through background subtraction. 
Having the access to the background scene, however, 
is impossible in many practice operations. In fact, the 
presence of wall clutter causes the 𝑙 -penalized 
approaches ineffective; they reconstruct only the pixels 
belonging to wall clutter that tend to dominate the 
target pixels, making target detection very difficult. 
 

- To alleviate wall interferences, the problem of target 
image formation in conjunction with wall clutter 
mitigation has been considered in several CS-based 
studies that consist of two major stages [11]–[14]. The 
first stage performs wall clutter mitigation, followed by 
image formation in the second stage. In the wall clutter 
suppression stage, a full data volume needs to be 
estimated from the reduced dataset before spatial 
filtering [15] or subspace projection [16] techniques are 
applied to the estimated data for wall clutter removal. 
The wall-clutter free data are then used in the second 
stage for image formation through an 𝑙  minimization. 
Due to the multistage signal processing, these CS-
based approaches may be affected by suboptimality 
and uncertainly; the performances of wall clutter 
mitigation and target image formation are sensitive to 
the estimation error arising in the signal recovery 
stage.” 
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Comment/Suggestion of Reviewer D  Response/Action 

• The experimental results show convergence rate 
only, therefore the computational complexity of the 
proposed method should be presented. 

 - Considering the suggestion of the reviewer, the 
computational complexity of the proposed algorithm 
has been evaluated and presented in the revised 
paper. The relevant text in Paragraph 4, Subsection III-
B now reads: “It can be observed that Algorithm 1 
performs gradient computation (Step 2), followed by 
the proximal evaluations of SVT operator for wall 
clutter estimation (Step 3) and shrinkage operator for 
target image reconstruction (Step 4). Evaluations of 
these two operators are the most time-consuming 
steps and thereby forming the computational 
complexity of Algorithm 1. The computational 
complexity of the SVT operation in Step 3 is 𝒪(𝑀𝑁 ), 
and the time complexity of the shrinkage operator in 
Step 4 is 𝒪(𝑄) . Thus, the overall computation 
complexity of each iteration is 𝒪(𝑀𝑁 + 𝑄).”  

• Fig 3.b shows the value of the cost function versus 
the number of iterations t. Theoretically, the value of f 
should be zero when the iteration t go to the infinity, 
because of the minimization.  The value, however, 
approximates ~ 0.6 . 10^7 when the iteration t, it is too 
big which means that the algorithm fails to minimize 
the cost function f. What wrong with that value?   

 - During the minimization, we evaluate the cost function 
using Equation (15). It comprises the least squares 
term, the nuclear-norm term and the l1-norm term. 
These terms play their trade-off roles with the 
regularization parameters. Although the objective is to 
find the lowest rank matrix 𝒁 , and the sparest vector 𝒔 , these solutions must also follow the data fidelity 
induced the least squares term.   
 

- With the setting of the regularization parameters 𝛾 and 𝜆, we observe that the value of the cost function is 
monotone-decreasing. In other words, the algorithm 
yields the target image and captures the wall clutter by 
minimizing the objective function of the optimization 
problem, though the value of the cost function is large. 
The large value of the cost function is mainly due to the 
contribution of the nuclear-norm term (sum of the 
singular values of the wall clutter matrix 𝒁 ), which 
tend to be big values.   

 

Finally, we gratefully thank the Editor-in-Chief, Associate Editor, and three reviewers for the constructive and 
detailed comments that helped us improve the paper. We appreciate your time and feedback. 

 

*********** End *********** 


