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Abstract– Predicting the digital communication system performance plays a very important role in the process of system
design. This performance is usually quantified by symbol error probability or bit error probability. Computing these
probabilities in presence of Additive White Gaussian Noise requires to work with integrals involving the Gaussian Q-
function, which cannot be expressed in closed-form in terms of elementary functions. As a result, approximating the
Gaussian Q-function in closed-form expressions with high accuracy becomes a necessity. In this paper, we give an overview
about the Gaussian Q-function approximations and via some illustrating examples, we discuss their accuracy, tractability
as well as their computational complexity.
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1 Introduction

In communication systems, unknown factors, e.g.,
noise, are often modeled as Gaussian random variables
by using the well-known Central limit theorem [1].
Hence, in most cases, when analyzing the system per-
formance normally in terms of probability of errors,
ones usually arrive at solving the semi-infinite integral
involving the right-tail probability of standard normal
distribution known as Q(x), generally written as

∞∫
0

[
N

∏
i=1

Q (Aix)

]
f (x) dx, (1)

where Ai is a certain constant, N is a positive integer,
Q(x) is the Gaussian Q-function, f (x) is the proba-
bility density function (PDF) of signal-to-noise ratio
(SNR) of fading channels that is generally considered as
Nakagami-m for small-scale fading cases. For example,
the conditional symbol error rate (SER) of differential
encoded QPSK (DE-QPSK) on the additive white Gaus-
sian noise (AWGN) channel is given by [2, eq. (8.39)]

Ps (γ) = 4Q (
√

γ)− 8Q2 (
√

γ)

+8Q3 (
√

γ)− 4Q4 (
√

γ) , (2)

with γ being the instantaneous SNR per symbol. The
average SER over a fading channel is obtained by
averaging (2) over the PDF of SNR of corresponding
fading, fγ(γ), expressed as

P̄s =

∞∫
0

Ps (γ) fγ (γ) dγ. (3)

It is obvious that by putting (2) into (3), we will
encounter the expression in (1). Solving (3) in terms

of closed-form expressions plays an important role
in studying the communication system performance.
Closed-form expression of the system performance is
also necessary for system optimization. Unfortunately,
it is well-known that the Q-function cannot be ex-
pressed in closed-form in terms of elementary func-
tions. The integral in (1) may be solved using either
alternative presentation forms of Gaussian Q-function
or Q-function approximations/bounds.

It is shown in [2–5] that by using the Craig Q-
function [6] combining with the moment generating
function (MGF) function of SNR of the fading, known
as the MGF-based approach, the error rate of most
modulation schemes can be derived either in closed-
form expressions or in terms of single integrals with
finite limits.

Besides the MGF-based approach, an alternative is
the PDF-based approach shown in (3), which is useful
in many cases. In general, the PDF-based approach
requires to represent the Q-function in a closed-form
expression so that the expression in (3) can be solved.
Many works related to exactly solving (1) in some
special cases can be found in, e.g., [7–10]. For exam-
ple, the work in [9] solved (1), when Ai = A for
all i, arbitrary integer N and f (x) being the proba-
bility density function (PDF) of Rayleigh fading with
maximal-ratio-combining (MRC) or over Nakagami-m
with integer fading index m. However, the closed-
form result obtained appears in terms of the Lauricella
hypergeometric function of N variables, which seems
slightly complicated and may not be mathematically
tractable. The study in [10] represented the result of (1)
with dissimilar Ai over Nakagami-m fading, but N is
limited up to 3, i.e., N ≤ 3. Hence, generally speaking,
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the need of approximating or bounding the Q-function
is actually necessary and so far, this problem has been
still a hot topic and got high attention [11–21].

This paper aims to give an overview about Q-
function approximation with emphasis on its appli-
cations. We also discuss the advantages and disad-
vantages of these approximations and compare them
in terms of accuracy and mathematical tractability.
The accuracy is defined as the degree of closeness
of approximations of Q-function to the exact function
while the tractability involves the flexibility in algebraic
manipulations, which depends on the form of approx-
imation expressions.

The survey is organized as following. The next sec-
tion presents an overview of Q function approxima-
tion. The accuracy and the mathematical tractability of
approximation are discussed respectively in Section 3
and Section 4. We also shed light on applications of
Q-function approximations in Section 4. In Section 5,
the computation complexity for all approximations are
studied. Section 6 envisions the future and closes the
paper.

2 An Overview on Q-function

Approximation

We start with the definition of the Gaussian Q-function
Q(x), which is the tail probability of the standard
normal distribution as shown in Figure 1. Formally, the
Gaussian Q-function is defined as [22] follows:

Q (x) =
1√
2π

∞∫
x

e
−t2

2 dt, (4)

and can be expressed in terms of the error function
erf(x) as

Q (x) =
1
2
− 1

2
erf
(

x√
2

)
, (5)

and the complementary error function erfc(x) as [1, 2]

Q (x) =
1
2

erfc
(

x√
2

)
. (6)

In order to avoid confusing with other kinds of
Q-function, such as Marcum Q-function [23], Nuttall
Q-function [24] or alternative representation of Gaus-
sian Q-function as Craig Q-function [6], the term “Q-
function” should be understood hereafter as “one-
dimensional Gaussian Q-function” for convenience un-
less explicitly stated otherwise. Without loss of general-
ity, the argument of Q-function under consideration is
in the rang of [0, ∞). Another case of negative argument
can be derived based on the relationship as follows:

Q (x) = 1−Q(−x). (7)

Among many different Q-function approximation
forms reported in the literature, we classify them into
three classes including Mills’-ratio-based form (MRBF),
sum of exponential function based form (SEFB), and
polynominal based form (PLBF) based on the form of
the existing Q-function approximations as shown in
Figure 2.
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Figure 1. A plot of Q-function, erf(·) function and erfc(·) function.

2.1 The Mills’-ratio-based Form

We find out that there is a class of approximations
explicitly related to the Mills’ ratio [25–27]. We denote
this class as the Mills’-ratio-based form (MRBF). The
Mills’ ratio, r(x), is the ratio of the probability density
function (PDF), ϕ (x), to the reliability function, φ (x),
of the standard normal law, where

ϕ (x) =
1√
2π

e
−x2

2 , (8)

and

φ (x) =
1

2π

∞∫
x

ϕ (t) dt. (9)

From (8) and (9), we can rewrite the Q-function in terms
of the Mills’ ratio as

Q (x) =
r (x)√

2π
exp

(
− x2

2

)
. (10)

Equation (10) leads to form a class of Q-function
(upper and lower) bounds by bounding the function
r(x). Also, approximating function r(x) will result in
approximating the Q-function. It should be noted here
that the approximation results of the Mills’ ratio r(x)
are commonly derived through empirical approaches.

We start with the approximations to Q(·) developed
by Borjesson and Sundberg [11] as

Qa-Borjesson (x) =
1√
2π

1

(1− a) x + a
√

x2 + b
e−

x2
2 , (11)

where a and b are scalar fitting parameters.
Here, we denote Qa(x) as the expression of the Q-

function approximation. From (10) and (11), we can
write r(x) as follows:

r(x) =
1

(1− a) x + a
√

x2 + b
. (12)

The parameters a and b in (12) can be determined by
any numerical optimization procedure along with the
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Figure 2. Classification of Q-function approximations.

constraint Q(0) = 0.5. In particular, we can minimize the
maximum absolute relative error (MARE), i.e.,

min
a,b
|ε (x)| , (13)

where the absolute relative error |ε (x)| is defined as

|ε (x)| = |Qa (x)−Q (x)|
Q (x)

. (14)

Solving (13) is equivalent to find a and b for which
|ε (x)| is as small as possible for the considered interval
of x. As shown in [11], the combination of a = 0.339
and b = 5.510, denoted as Qa-Borjesson-1 (x), gives the
best approximation for x ≥ 0, namely

Qa-Borjesson-1(x) =
1√
2π

1

0.661x + 0.339
√

x2 + 5.510
e−

x2
2 .

(15)
Another widely used approximation for x ∈ [0, ∞) is
a = 1 and b = 1 leading to

Qa-Borjesson-2 (x) =
1√
2π

1√
x2 + 1

e−
x2
2 . (16)

Qa-Borjesson-2 (x) in (16) is obtained by taking the geo-
metric mean of the upper bound, i.e., [11, eq. (8)], and
lower bound, i.e., [11, eq. (5)], of the Q-function. As
stated in [11], the expression in (16) is quite useful as
simple analytical approximation of Q(x) for all x ≥ 0.
Other values of a and b for many different argument
ranges can be found in [11, Table 1].

However, all approximations developed by Borjesson
and Sundberg [11] are not suitable for algebraic manip-
ulations related to communication system performance
analysis. For example, it seems difficult for solving (1)
with the PDF of Nakagami-m fading. As pointed out
in [11], this form is only applicable for programmable
pocket calculators with the aim at improving the ef-
ficiency, e.g., minimizing the number of programing
steps required.

Recently, an improvement in the sense of simplifying
algebraic manipulations has been proposed in [12, 28],
where the approximation form is given as

Qa-Karagiannidis (x) =
1√
2π

(
1− e−A x√

2

)
Bx

e−
x2
2 , (17)

In (17), A and B are derived numerically to minimize
the integral of the absolute error given by

{A, B} = arg min
{A,B}

1
R

R∫
0

∣∣∣Qa-Karagiannidis (x)−Q (x)
∣∣∣ dx,

(18)

with R being the range of argument values of interest.
As stated in [12], R = 20 is the value satisfying
in most communication system applications, and the
corresponding optimum values of A and B are 1.98
and 1.135.

Taking the same form with [12, eq. (6)], a simple
upper bound of the Gaussian has been very recently
proposed by Jang in [19] as follows:

Qa-Jang (x) =
1√
2π

(
1− e−

√
π
2 x
)

x
e−

x2
2 . (19)

Comparing (19) to (17), we see that A =
√

π and
B = 1. However, according to [19], expression (19) is
an actual upper bound for Q-function while (17) is
an approximation expression, i.e., neither upper bound
nor lower bound. So, this is viewed as an advantage
property of (19) over (17).

Nonetheless, the disadvantage of (17) as well as (19)
is that the denominator contains the argument. As com-
mented in [28], it is not quite convenient for integrating
the expression over the PDF of Nakagami-m fading. By
this motivation, a slightly modified version of (17) was
derived in [14]. By performing Taylor series expansion
of the term exp(−Ax/

√
2) in (17), we have

e−
Ax√

2 =
∞

∑
n=0

(−Ax)n

√
2

n
n!

. (20)

Substituting (20) into (17), the approximation expres-
sion can be expressed as [14] follows:

Qa-Isukapalli (x) = 1√
2π

[
na
∑

n=1

(−1)n+1(A)n

B(
√

2)
n

n!
xn−1

]
e−x2/2,

(21)
where A and B are selected according to [12]; na is
the number of selected terms depending on the desired
tightness.
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It is straightforward to see that the form in (21)
is more mathematically tractable than that of (17) in
dealing with the Nakagami-m fading, i.e., avoiding the
presence of argument in the denominator and easily
being integrable for any fading index m of Nakagami-
m fading. Furthermore, as stated in [14], by selecting
appropriate parameter na, the tightness is comparable
to that of (17).

2.2 Sum-of-exponential-function-based form
Together with the MRBF approximations, the approx-

imations of Q-function can appear in sum of expo-
nential functions form (SEFF). It was shown that the
SEFF approximations are more flexible than the MRBF
approximations.

The SEFF approximations are started with the Chi-
ani approximation [13], which is based on the well-
known alternative representation of Q-function known
as Craig Q-function [6] as follows:

Q (x) =
1
π

π/2∫
0

exp
(
− x2

2sin2 φ

)
dφ. (22)

From (22), the complementary error function erfc(x)
can be expressed as

erfc (x) =
2
π

π/2∫
0

exp
(
− x2

sin2 (φ)

)
dφ. (23)

Using the monotonous increasing property of the func-
tion exp

(
−x2/sin2φ

)
with φ ∈ [0, π/2] and then

making use the trapezoidal rule, erfc(x) with two im-
mediate points of θ can be approximated as follows:

erfc (x) ' g (x, φ) =

(
1
2
− φ

π

)
e−x2

+
1
2

e−(x2/sin2φ).

(24)

The optimum value of φ is chosen to satisfy the follow-
ing condition as

φopt = arg min
φ

1
R

R∫
0

|g (x, φ)− erfc (x)|
erfc (x)

dx, (25)

where R is the considered range of argument values.
With R = 20, the value of φopt is π/3. Hence, the
approximation for erfc(x) is straightforwardly written
as follows:

erfc (x) ' 1
6

e−x2
+

1
2

e−4x2/3. (26)

From the relationship in (6), the approximation expres-
sion of Q-function in this case can be expressed as

Qa-Chiani (x) =
1
12

e−
x2
2 +

1
4

e−
2x2

3 . (27)

Different from the approach used in [13], the work
in [21] began with the formally Q-function definition
in (4). By making a change of variable, i.e., z =
(t− x) /

√
2, the Q-function can be rewritten as follows:

Q (x) =
1√
π

∞∫
0

e−z2
e−
√

2ze−
1
2 x2

dz. (28)

The semi-definite integral in (28) can be approximated
by a using N-point Gauss-Hermite quadrature rule
defined in [29]. It should be noted that the Gauss-
Hermite quadrature rule in [29] is defined in [0, ∞),
this is different from the conventional rule in [30] that
defined in (−∞, ∞). Expression (28) can be rewritten as
follows:

Qa-Shi (x) =
1√
π

e−
1
2 x2

N

∑
n=1

ωne−
√

2ζnx, (29)

where ζn and ωn are the nth root of N-order Hermite
polynomial and the corresponding weights. As illus-
trated in [21], this approximation result is sufficiently
accurate only with N = 2, i.e., using only two Gauss
points. Thus, in this case, the expression (29) reduces
to two exponential terms form as in (27).

The works in [15, 17] provided a highly accurate
result of (1) in sum of exponential by using Prony ap-
proximation, with n = 1, Rayleigh and Rice fading with
some common diversity combining techniques such as
maximal ratio combining (MRC), equal-gain combining
(EGC) and selection combining (SC). An approximation
of Q-function also has been proposed in these works.
In detail, they claim that the Q-function can be exactly
represented by an infinite sum of exponential terms,
expressed as follows:

Q (x) = lim
N→∞

1
N

N

∑
i=1

1
2

e−aix2
, (30)

where

ai =
1
2

sin−2
(

π (i− 1)
2 (N − 1)

)
. (31)

According to (30), the Prony approximation of the Q-
function in terms of two exponential functions has
represented in [17], namely

Qa-Loskot-1 (x) = 0.208e−0.971x2
+ 0.147e−0.525x2

. (32)

A higher accurate result by adding one more exponen-
tial term is given by

Qa-Loskot-2 (x) = 0.168e−0.876x2
+ 0.144e−0.525x2

+ 0.002e−0.603x2
. (33)

An illustration in [17] shown that the result in (32) has
comparable accuracy to the approximation in (30) with
N = 50.

In [18], a very simple result with only one ex-
ponential term was derived. However, different from
all the above-mentioned SEFF approximations, which
are based on analytical methods, it is from empirical
method. In particular, originated from the principle of
the result in (17) and (21), the approximation proposed
in [18] is started with

1− e−
A√

2
x

x
' ae−bx, (34)

where A was determined in [12] as 1.98.



V. N. Q. Bao et al.: A Survey on Approximation of One-Dimensional Gaussian Q-Function 5

In (34), the optimum values of fitting parameters a
and b were given in [18] as 1.394 and 8/13 leading to

Qa-Sofotasios (x) = 0.49e−
8

13 xe−
x2
2 . (35)

It is straightforward to see that the result in (35) is
simpler than that in (17) and further as concluded
in [18], its accuracy is quite acceptable in general.
Another similar result has recently proposed in [20],
also based on the empirical approach, written as

Qa-Benitez (x) = eax2+bx+c, (36)

where a, b and c ∈ R are fitting parameters derived by
using numerical method.

Two criteria for finding the optimum fitting pa-
rameters are i) minimizing the sum of square errors
(SSE) and ii) minimizing the MARE expressed in (14).
Using MARE gives a = −0.4920, b = −0.2887, and
c = −1.1893 for x ∈ [0, 20] while SSE criteria yields
a = −0.3842, b = −0.7640, and c = −0.6964. Other op-
timum values of fitting parameter (a, b, c) are provided
in [20, Table 1].

Very recently, Dao et al. have proposed approxima-
tions for Q(·) function in the free and the exponential
forms using genetic programming with semantic based
crossover [31]. The proposed approximation is of the
form

Q(x)a-Dao(x) = eax6+bx5+cx4+dx3+ex2+ f x+g, (37)

where a = −0.0000009, b = 0000104, c = 0.000686,
d = 0.015205, e = −0.363992, f = −0.762741 and
g = −0.694072. The numerical results in [31] shows
that approximations in both forms are more accurate
than all previous approximations designed by human
experts.

2.3 Polynomial-based form

The work in [16] has shown that the MRBF and SEFF
cannot be applied to log-normal channels despite their
simplicity and tractable forms. The PDF of SNR on log-
normal channel is given by [2]

p (γ) =
10/ ln (10)√

wπσ2γ
exp

(
− (10 lg γ− µ)2

2σ2

)
, γ > 0,

(38)

where µ and σ are the logarithmic mean and logarith-
mic standard deviation of the shadowing, respectively.

It is obvious that the SEFF makes the exponential
term in (38) becomes more complicated in derivation of
the system performance. It is due to the need to make
the integral of the product of (38) and the Q-function
approximation over [0, ∞) integrable, as shown in (1).
By this motivation, the work in [16] has approximated
the Q-function by a polynomial. In particular, the anal-
ysis in [16] is based on the observation that a sum of
n uniform random variables over (−1/2, 1/2) can be
employed to approximate a Gaussian random variable
with mean zero and variance n/12 due to the central

limit theorem [32]. The approximation expression is
then given by

Qa-Chen (x) = 1−
n

∑
m=0

n

∑
p=0

(−1)m+p(n
p)

m! (n−m)!

( n
12

)p/2

×
(n

2
−m

)n−p
xp

×U

[
x−

√
12
n

(n
2
−m

)]
, (39)

where |x| <
√

3n and U(·) is the unit step function
defined as U (x) = 1 if x > 0, U (x) = 1/2 if x = 0 and
U (x) = 0 if x < 0.

A closed-form result of derivation of symbol error
rate over log-normal channel with M-PAM modulation
scheme was given in [16]. It should be noted here that
the MGF-based approach proposed in [2] also cannot
derive the corresponding result in closed-form because
the Laplace transformation of (38) cannot be obtained in
closed-form. Thus, the approximation in (39) is rather
useful in this scenario.

Before closing this section, we provide an summary
of all Q function approximations on Table I. An com-
parison among all Q(·) function approximations is also
given on Table II and Figure 3.

3 Accuracy Comparison

The accuracy is one of the two important factors when
approximating the Q-function. It is clearly shown that
when using the empirical method, the fitting param-
eters strictly depend on the range of argument and
hence, so does the accuracy. It is shown in [12] that the
range of argument, which is appropriate for commu-
nication applications, is over [0, 20]. In this section, we
perform accuracy comparisons among approximations
based on minimizing the MARE criteria given in (14).
Unless otherwise specified, we set n = 2 (the minimum
number) to demonstrate its accuracy and efficiency.

The comparison of MRBF based Q-function approxi-
mations results are illustrated through Figure 4 and Fig-
ure 5. As shown in Figure 4, the Borjesson-1 expression
in (15) is the best approximation over a wide range of
argument. The accuracy of Karagianidis is comparable
to that of Borjesson-1 only over the range of [0, 2]
and better than Borjesson-2 over the range of [0, 3].
However, as discussed, the form of Karagianidis is more
mathematically tractable than that of Borjesson-1 and
Borjesson-2. This is viewed as the cost of more tractable
form of Karagianidis. Moreover, the approximation of
Jang is better than Karagianidis with the argument of
x > 3 and is comparable to Borjesson-2. The advantage
of Jang approximation is that it is an upper bound of
the Q-function and when x → ∞, the Jang’s approxi-
mation approaches to zero while the one provided by
Karagianidis approaches to a constant [19].

Figure 5 illustrates the accuracy comparison between
Isukapalli’s approximation to Karagianidis’ one. It is
clear that the accuracy of Isukapalli increases as increas-
ing the number of terms na in Taylor series, i.e., (21).
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Table I
A Summary on Q(·) Approximations

Q
fu

nc
ti

on
ap

pr
ox

im
at

io
ns

M
R

BF

Qa-Borjessson(x) =
1√
2π

1
(1− a)x + a

√
x2 + b

e−
x2
2

Qa-Karagiannidis(x) = 1√
2π

(
1−e

−A x√
x

)
Bx e−

x2
2

Qa-Jang(x) = 1√
2π

(
1−e−
√

π
2 x
)

x e−
x2
2

Qa-Isukapilli(x) = 1√
2π

[
na
∑

n=1

(−1)n+1(A)n

B(
√

2)
n

n!
xn−1

]
e−x2/2

SE
FF

Qa-Chiani(x) = 1
12 e−

x2
2 + 1

4 e−
2x2

3

Qa-Shi(x) = 1√
π

e−
1
2 x2 N

∑
n=1

ωne−
√

2ζn x

Qa-Loskot(x) = 0.208e−0.971x2
+ 0.147e−0.525x2

Qa-Sofotasios(x) = 0.49e−
8
13 xe−

x2
2

Qa-Benitez(x) = eax2+bx+c

Qa-Dao(x) = eax6+bx5+cx4+dx3+ex2+ f x+g

PN
BF Qa-Chen(x) = −

n

∑
m=0

n

∑
p=0

(−1)m+p
(

n
p

)
m! (n−m)!

( n
12

)p/2( n
2
−m

)n−p
xpU

[
x−

√
12
n

( n
2
−m

)]

Table II
Comparison among All Q(·) Function Approximations

x = 0.1 x = 0.3 x = 0.5 x = 0.7 x = 1 x = 5 x = 10 x = 15 x = 20

Q(x) 4.6017e-01 3.8209e-01 3.0854e-01 2.4196e-01 1.5866e-01 2.8665e-07 7.6199e-24 3.6710e-51 2.7536e-89

Qa-Borjessson(x) 3.9498e-01 3.6530e-01 3.1490e-01 2.5581e-01 1.7110e-01 2.9157e-07 7.6564e-24 3.6790e-51 2.7570e-89

Qa-Karagiannidis(x) 4.5693e-01 3.8415e-01 3.1232e-01 2.4552e-01 1.6062e-01 2.6174e-07 6.7794e-24 3.2486e-51 2.4321e-89

Qa-Jang(x) 4.6759e-01 3.9842e-01 3.2786e-01 2.6056e-01 1.7287e-01 2.9678e-07 7.6946e-24 3.6871e-51 2.7605e-89

Qa-Isukapilli(x) 4.5693e-01 3.8416e-01 3.1241e-01 2.4595e-01 1.6247e-01 2.0881e-05 2.2070e-20 8.8628e-47 2.9462e-84

Qa-Chiani(x) 3.3126e-01 3.1511e-01 2.8516e-01 2.4556e-01 1.7890e-01 3.2500e-07 1.6073e-23 1.1553e-50 1.1532e-88

Qa-Shi(x) 4.6017e-01 3.8206e-01 3.0838e-01 2.4154e-01 1.5767e-01 1.6129e-07 9.9883e-25 8.5944e-53 1.0270e-91

Qa-Loskot(x) 3.5222e-01 3.3081e-01 2.9209e-01 2.4291e-01 1.6573e-01 2.9323e-07 2.3273e-24 7.3499e-53 9.2358e-93

Qa-Sofotasios(x) 4.5846e-01 3.8947e-01 3.1789e-01 2.4929e-01 1.6062e-01 8.4183e-08 2.0086e-25 6.6557e-54 3.0629e-93

Qa-Benitez(x) 4.5995e-01 3.8282e-01 3.0899e-01 2.4185e-01 1.5809e-01 7.3647e-07 4.9426e-21 1.5065e-43 2.0853e-74

Qa-Dao(x) 4.6002e-01 3.8210e-01 3.0858e-01 2.4200e-01 1.5866e-01 2.8672e-07 9.0226e-24 2.0201e-46 5.4641e-36

Qa-Chen(x) 4.6139e-01 3.8551e-01 3.1352e-01 2.4764e-01 1.6381e-01 1.8652e-14 5.6843e-14 1.3642e-12 3.1832e-12

Recalling that the expression of Isukapalli is an im-
provement version of Karagianidis in terms of math-
ematical tractability by using Taylor series expansion
with the purpose of canceling the argument in the
denominator. It can be observed that there is an interval
of arguments so that the Isukapalli’s approximation
coincide with that of Karagianidis. For example, the
agreement interval for na = 20 is about [0, 5] as shown
in Figure 5.

The comparisons of the SEFB approximations are il-
lustrated in Figure 6 and Figure 7. We see from Figure 6

that the Chiani’s approximation with two exponential
terms is the worst approximations as compared to Shi’s
and Loskot’s. The approximation of Loskot, even with
two terms, is better than that of Chiani. In Figure 6, we
also plot the Shi’s expression with N increasing from 2
to 5. It is obvious that the accuracy of Shi’s expres-
sion improves as increasing N. Furthermore, the Shi’s
approximation with only two terms, i.e., N = 2, has
comparable accuracy to the approximations provided
by Chiani as well as Loskot. Since the exponential terms
is limited to two, the accuracy of Shi’s approximation is
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better than that of Loskot with x ∈ [0, 3] but is worsen
with x > 3. Moreover, with x ≥ 5, these three approx-
imation expressions are comparable to each other in
terms of the accuracy as well as the tractability.

Figure 7 illustrates the accuracy comparisons of
among Chiani, Sofotasios, Benitez-MARE and Benitez-
SSE approximations. It is shown that with x < 3, the
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Figure 5. Comparison among Borjesson-2, Karagianidis and Isuka-
palli approximations.

approximation of Benitez according to SSE criteria is
the best. But for wide range of argument, it can be
observed that the Benitez’s approximation according to
MARE criteria is better. The Safotasios’ approximation
has same form as Benitez’s one but it gives the worse
accuracy compared to Benitez. Although the expression
of Chiani contains two exponential terms but it is less
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accurate than the Benitez-MARE with only one term
and only better than Benitez-SSE with x > 3.

In Figure 8, we plot the polynomial expression of
Chen with 8 and 12 terms. Chiani and Benitez approx-
imations are also included for references. We can see
that the Chen’s approximations provide good accuracy
with small argument, i.e., x ∈ [0, 3]. In addition, increas-
ing N does not give much improvement in accuracy.
It is worth to note here that the accuracy for Chen’s
approximation associated with the range of argument
directly depends on the number of terms n, that is,
|x| <

√
3n as mentioned previously. For example, with

n = 12, the accuracy only can be observed on the range
x < 6. For the range x < 20, the required value of n is
about 140 and the plot of this case cannot be shown in
this figure.

In Figure 9, we show the accuracy of many selected
previously mentioned approximations in terms of ARE
and we leave the evaluation for interest readers.
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Figure 8. Comparison among Chiani, Benitez-MARE and Chen
approximations with 8 and 12 terms.

4 Tractability Comparison and

Application Illustration

In this section, three examples are provided to illus-
trate the mathematical tractability and applications of
Q function approximations. Note that we just limit
our attention to Q function approximations, which are
applicable for algebraic manipulations related to com-
munications performance derivation. Other Q function
approximations, which are efficient on programming,
i.e., the Borjesson’s approximations, will not be consid-
ered here. The first example is to derive the average
SEP of differentially encoded QPSK over Nakagami-m
fading channels using the Benitez approximation. The
second example is to show the usefulness of the PLBF
approximation. And the last one is for performance
derivation of emerging wireless networks.

4.1 Average SEP of Differentially Encoded QPSK
over Nakagami-m Fading Channels

This example is to give readers a particular illustra-
tion of how the general expression in (1) manipulated
for the average SEP of DE-QPSK over single Nakagami-
m fading. Recalling (2) and (3), we have

Ps = 4I1(m, γ̄)− 8I2(m, γ̄) + I3(m, γ̄)− 4I4(m, γ̄). (40)

With the assumption that Qa-Benitez is used, In(m, γ̄) can
be approximated as follows:

In(m, γ̄) =

∞∫
0

Qn
a-Benitez (

√
γ) fγ(γ)dγ

=enc mm

γ̄mΓ (m)

×
∞∫

0

γm−1e−
(

na+ m
γ̄

)
γe−nb

√
γγm−1dγ, (41)

where a, b, and c are the absolute values of optimum
fitting parameters in (36).
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In (41), fγ(γ) denotes the PDF of Nakagami-m fading
channels given as [1, 2]

fγ (γ) =
mmγm−1

γ̄mΓ (m)
e−

m
γ̄ γ, (42)

where m ≥ 0.5 is the fading parameter; Γ (·) is the
Gamma function [30]; γ̄ is the average SNR per symbol,
respectively.

By making a change of variable, i.e., γ = x2, (41) can
be rewritten as

In (m, γ̄) =
enc

2
mm

γ̄mΓ (m)

×
∞∫

0

x2(m−1)−1e−
(

na+ m
γ̄

)
x2

e−nbxdx

=
enc

2
mm

γ̄mΓ (m)
Jn(m, γ̄). (43)

With the help of [33, eq. (3.462.1)], Jn(m, γ̄) can be

solved in closed-form as

Jn(m, γ̄) = exp

(
(nb)2

8na + 8m
γ̄

){
2na +

2m
γ̄

}−(m−1)

× Γ (2m− 2) D−2(m−1)

 nb√
2na + 2m

γ̄

 ,

(44)

where Dν (.) denotes the parabolic cylinder func-
tion [33, eq. (9.240)] which can be expressed in terms
of confluent hypergeometric function 1F1(. , . ; .) [30,
ch.13].

Combining (44), (43) and (40), we can obtain the
closed-form expression of the average approximated
SEP for DE-QPSK modulation over single Nakagami-m
fading channel. It is noted that the derivation approach
here can be applied to many other Q function approx-
imation forms.

In Figure 10, we compare the simulated (exact) SEP
with the approximated one for different m ranging from
0.5 to 4.9. It is clearly shown that the approximations
are excellent agreement with the exact ones.



10 REV Journal on Electronics and Communications, Vol. 5, No. 1–2, January–June, 2015

Average SNR [dB]

0 5 10 15 20 25 30 35 40

A
v
e
ra

g
e
 S

E
P

10-6

10-5

10-4

10-3

10-2

10-1

100

Exact

Benitez-MARE Approx.

 m = 4.9

 m = 2.2

 m = 1.0

 m = 0.5

Figure 10. Average SEP for DE-QPSK over Nakagami-m fading
channel.

4.2 Average BEP for Square M-QAM over
log-normal Channels

In this subsection, we will consider the average
BEP for square M-QAM over log-normal channels
given as [34]

BER =
2√

Mlog2

√
M

∞∫
0

log2
√

M

∑
k=1

υk

∑
`=0

φk
`Q (
√

ω`γ) fγ(γ)dγ,

(45)

where υk, φk
` , and ω` are defined respectively as

υk = (1− 2−k)
√

M− 1,

φk
` = (−1)

⌊
`2k−1√

M

⌋ (
2k−1 −

⌊
`2k−1
√

M
+

1
2

⌋)
,

and

ω` =
(2`+ 1)23log2M

M− 1
.

We further define b.c and fγ(γ) as the floor function
and the PDF of γ.

Interchanging the order of the integration and the
summation, we have

BER =
2√

Mlog2

√
M

log2
√

M

∑
k=1

υk

∑
`=0

∞∫
0

φk
`Q (
√

ω`γ) fγ(γ)dγ

︸ ︷︷ ︸
I

.

(46)

Observing the form of fγ(γ), we can see that it is
very difficulty (or impossible) to employ MBRF or SEFF
approximations to obtain the closed-form expression
for (46) since exponential terms will make it more com-
plicated. As a result, PLBF is a solution. In particular,
substituting (39) into (45) and then taking the integral,

we have

I =φk
` − φk

`

n

∑
m=0

n

∑
p=0

(−1)m+p
(

n
p

)
m! (n−m)!

( n
12

)p/2

×
(n

2
−m

)n−p
ω`

p
2

10/ ln (10)√
2πσ2

×
∞∫

0

γ
p
2−1 exp

(
−
(
10log10γ− µ

)2

2σ2

)

×U

[
√

ω`γ−
√

12
n

(n
2
−m

)]
dγ. (47)

Due to the step function, U(x), we can rewrite I as
follows:

I =φk
` − φk

`

n/2

∑
m=0

n

∑
p=0

(−1)m+p
(

n
p

)
m! (n−m)!

( n
12

)p/2

×
(n

2
−m

)n−p
βM

p
2

10/ ln (10)√
2πσ2

×
∞∫

γC

γ
p
2−1 exp

(
−
(
10log10γ− µ

)2

2σ2

)
︸ ︷︷ ︸

I1

dγ (48)

− φk
`

n

∑
m=n/2

n

∑
p=0

(−1)m+p
(

n
p

)
m! (n−m)!

( n
12

)p/2

×
(n

2
−m

)n−p
ω`

p
2

10/ ln (10)√
2πσ2

×
∞∫

0

γ
p
2−1 exp

(
−
(
10log10γ− µ

)2

2σ2

)
dγ

︸ ︷︷ ︸
I2

, (49)

where γC = 12
ω`n
( n

2 −m
)2.

For I1, making use a change of variable, i.e., t =
10 log10 γ, we have

I1 =
ln 10

10

√
πσ2

2
e
(

ln 10
20
√

2

)2
p2σ2+ ln 10

20 pµ

×
[

1 + erf
(

ln 10
20
√

2
pσ +

µ− tC√
2σ2

)]
, (50)

where tC = 10 log10

[
12

ω`n
( n

2 −m
)2
]
.

I2 is of the form

I2 =
ln 10

10

√
2πσ2e

ln 10
20 pµ+ ln 102

800 p2σ2
. (51)

Figure 11 studies the simulation (exact) BEP with the
approximated BEP. It can be seen that the approximate
BEP is very close to the exact SER for both 4-QAM
and 16-QAM. We can see that the accuracy of the BEP
approximation improves as n increases. For example,
the case of n = 9 outperforms the other two cases,
n = 6 and n = 3 in all range of SNRs. Figure 11 also
indicates that the BEP approximations does not work
well for large SNRs with small n.
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Figure 12. System model: the cognitive underlay network.

4.3 Average BEP of cognitive underlay networks
Recently, cognitive radio is considered as a promising

technique to improve the spectrum utilization due to
the ineffective of the fixed spectrum allocation policy
by allowing cognitive (un-licensed) networks operating
on the same spectrum with licensed networks [35]. The
underlay approach is an efficient cognitive approach as
compared with the overlay and interweave approach
since it is able to provide concurrent transmission for
un-licensed networks [36–38]. Here, we consider the
underlay cognitive networks as shown in Figure 12.

To protect the primary network’s communication, the
transmit power of the secondary network, P, is a func-
tion of the channel gain of the interference link from
the secondary source (s) to the primary receiver (p).
Let us denote h and f as the channel coefficients of the
channels from s→ d and from s→ p, respectively, we
have [39]

P = min
(

Ip

| f |2 , Pm

)
, (52)

where Ip denotes the interference tolerable interference
power at the primary receiver and Pm is the maximum
transmission power, leading to the instantaneous SNR
as follows [40]:

γ = min
(

Ip

N0

|h|2
| f |2 ,

Pm

N0
|h|2

)
. (53)

Over Rayleigh fading channel, the CDF and PDF of
γ are given respectively as follows [39]:

Fγ(γ) = 1− e−
γ

α1 + α2
γ

γ + α3
e−

γ
α1 , (54)

and

fγ(γ) =
1
α1

e−
γ

α1 +
α2

γ + α3
e−

γ
α1

− α2

α1

γ

γ + α3
e−

γ
α1 − α2γ

(γ + α3)
2 e−

γ
α1 , (55)

where

α1 =
Pm

N0
E{|h|2},

α2 = e
Ip/N0

PmE{| f |2} ,

α3 =
Ip

N0

E{|h|2}
E{| f |2} .

We now can write the average bit error probability
for secondary networks as follows:

BER =

∞∫
0

aQ(
√

bγ) fγ(γ)dγ, (56)

where a and b are modulation-dependent parame-
ters [41]. For example, a = 1 and b = 2 for BPSK. For
other modulation schemes, the combination of a and b
can be given in [41, Table 6.1].

It is noted that (56) does not exist closed-form ex-
pression with the exact form of Q(·). To deal with
this problem, approximations of Q(·) should be used.
However, except Chiani approximations, i.e, (27), other
approximations mentioned above do not make (56)
integrable. In particular, plugging (27) into (56), we
have following equation:

BER =

∞∫
0

(
1
12

e−γ +
1
4

e−
2γ
3

)

×
[

1
α1

e−
γ

α1 +
α2

γ + α3
e−

γ
α1

−α2

α1

γ

γ + α3
e−

γ
α1 − α2γ

(γ + α3)
2 e−

γ
α1

]
dγ. (57)

After rearrangement and grouping like terms, we have

BER =
1

12α1
I1

(
1 +

1
α1

)
+

1
4α1
I1

(
4
3
+

1
α1

)
+

α2

12
I2

(
α3, 1 +

1
α1

)
+

α2

4
I2

(
α3,

4
3
+

1
α1

)
− α2

12α1
I3

(
α3, 1 +

1
α1

)
− α2

4α1
I3

(
α3,

4
3
+

1
α1

)
− α2

12
I4

(
α3, 1+

1
α1

)
− α2

4
I4

(
α3,

4
3
+

1
α1

)
. (58)

In (58), with the help of [33, eq. (3.353.2)], [33,
eq. (3.353.3)] and [33, eq. (3.353.5)], Ik with k = 1, 2, 3, 4
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Figure 13. Average BEP for BPSK of underlay cognitive networks,
E{|h|2} = 1 and E{| f |2} = 3.

is calculated respectively as follows:

I1(φ2) =

∞∫
0

e−γφ2 dγ =
1
φ2

,

I2(φ1, φ2) =

∞∫
0

e−φ2γ

γ + φ1
dγ

= eφ1φ2 Γ(0, φ1φ2),

I3(φ1, φ2) =

∞∫
0

γ

γ + φ1
e−φ2γdγ

=
1
φ1
− φ2e−φ1φ2 Γ(0, φ1φ2),

I4(φ1, φ2) =

∞∫
0

γ

(γ + φ1)
2 e−φ2γdγ

= (1 + φ1φ2) eφ1φ2 Γ(0, φ1φ2)− 1.

In Figure 13, we compare the simulation BEP and
the approximated BEP using Chiani approximations for
three cases of Ip, i.e., Ip = 10 dB, Ip = 20 dB, and Ip =
30 dB over the range of 0 - 40 dB of operating SNRs. It
can be seen that the approximated results are in good
agreement with the simulated results in all range of
SNRs. The gap between the the exact result and the
approximated is very small and does not depend on
neither Ip nor Eb/N0.

5 Computational Complexity

To evaluate the complexity of all approximations, we
use an in-direct approach by measuring the average
time to compute approximations. For the same argu-
ment of x, i.e., an equidistant vector from 1 to 10 with
10000 elements, Table III and Figure 14 provide the av-
erage time in computing for all approximations. We can
see that in terms of average time, MRBF outperforms
SEFF, which, in turns, outperforms PNBF.

Table III
Average Time for All Approximations

Approximations Average time [s]

Qa-Borjessson(x) 0.0606

Qa-Karagiannidis(x) 0.1496

Qa-Jang(x) 0.2429

Qa-Isukapilli(x) 0.5745

Qa-Chiani(x) 0.8872

Qa-Shi(x) 1.0161

Qa-Loskot(x) 1.1403

Qa-Sofotasios(x) 1.2318

Qa-Benitez(x) 1.3050

Qa-Dao(x) 1.7795

Qa-Chen(x) 5.0110

6 Conclusion

In this paper, we have presented an overview about
the approximation of the one-dimensional Gaussian
Q-function. In spite of many different approaches
used by researchers, there are just three approximation
forms, namely The Mills’-ratio-based form, the sum-of-
exponential-function-based form and the polynomial-
based form. Via some illustrating examples, we also
discussed their accuracy and tractability. The obtained
results are systematically presented either by graphs or
by tables, where necessary information about the per-
formance of each method is shown. These illustrating
examples have been chosen by their representativeness
and their complexity in order to show that by using ac-
curate approximations of Q-function, the performance
analysis of digital communication systems becomes
much simpler. We can therefore conclude that these
approximations can help simplify the design procedure
of digital communication systems.
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