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Abstract– This paper studies a maximum energy selection receiver for an adaptive decode-and-forward (DF) cooperative
wireless system with multiple-antenna equipped destination. In particular, the destination selects the maximum output
from all the outputs of the square-law detectors to perform the detection of the transmitted information. A close-form
expression for the bit-error-rate (BER) is analytically derived when the system is deployed with binary frequency-shift
keying (BFSK) modulation. The thresholds used at the relays to address the issue of error propagation are optimized to
minimize the BER. While finding the optimal thresholds requires information on the average signal-to-noise ratios (SNRs)
of all the transmission links in the system, the approximate thresholds at each relay that require only information on the
average SNR of the source-corresponding relay are investigated. It is also derived that the system achieves a full diversity
order with the approximate thresholds. Finally, both analytical and simulation results are provided to verify our analysis.

Keywords– cooperative diversity, frequency-shift keying, fading channel, decode-and-forward protocol, selection combining,
square-law detector.

1 Introduction

Frequency shift keying (FSK) is a popular modulation
scheme in noncoherent communications in which the
receiver does not require any channel state informa-
tion (CSI) to decode the transmitted signals [1]. Con-
sequently, using FSK signals in cooperative systems
has been focused recently since there is a complexity
advantage in decoding [2–7]. It is due to the fact that
there are many wireless fading channels involved in
the systems [8, 9], which makes the task of channel
estimation more difficult. With the decode-and-forward
(DF) protocol employing FSK in cooperative systems,
reference [3] proposed maximum likelihood (ML) and
suboptimal piecewise linear (PL) schemes to decode the
signals at the destination. However, it was shown that
the system could not achieve a full diversity order due
to the error forwarding at the relays. References [6, 7]
proposed to use a threshold at the relays to address
the issue of error propagation for binary frequency-
shift keying (BFSK) modulation. While the destination
in [6] combines all the signals from the retransmitting
relays, the destination in [7] selects only one signal
with the largest magnitude of the energy difference to
decode. Unfortunately, designing the optimal thresh-
olds to minimize the average bit-error-rate (BER) of the
system relies on the MATLAB Optimization Toolbox
and a theoretical analysis of the diversity order is
not available. Reference [10] proposes to employ the
maximum energy selection (MES) receiver, i.e., selecting
the maximum output from the square-law detectors of

all branches to perform a detection, for a threshold-
based (i.e., adaptive) DF cooperative system. The results
in [10] show that the system achieves a full diversity
order with the approximate thresholds.

This work is a further development of [10]. It is
concerned with a threshold-based DF cooperative sys-
tem in which the destination is equipped with mul-
tiple antennas. In particular, after receiving the signal
from the source in the first phase, each relay decides
to retransmit the decoded information if its decision
variable is higher than a threshold. Otherwise, it re-
mains silent in the second phase. At the destination,
maximum energy selection is employed to select the
maximum output from the square-law detectors of
all branches (i.e., source, relays, different antennas) to
perform a detection. The average end-to-end bit-error-
rate (BER) is analytically determined in a closed-form
expression. Based on the BER expression, the use of
the optimal thresholds at the relays is discussed to
minimize the BER. The approximate thresholds that
achieve full diversity are also provided. Note that the
main difference between this paper and reference [10] is
that the destination is equipped with multiple antennas.
This leads to a study of a more generalized multi-
antenna DF relay network.
The remainder of this paper is organized as follows.
Section 2 describes the system model. Section 3 presents
the BER computation and discusses how to find the
optimal and approximate thresholds. Numerical and
simulation results are presented in Section 4. Finally,
Section 5 concludes the paper.
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2 System Model
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Figure 1. A wireless relay network.

We consider a cooperative relaying system in which
the source, denoted by node 0, communicates with the
destination, denoted by node K + 1, with the assistance
of K half-duplex relays, denoted by node i, i = 1, . . . , K,
as illustrated in Figure 1. The source and the relays are
equipped with a single antenna. Meanwhile, the desti-
nation is equipped with ND antennas. It is assumed that
the K relays retransmit signals to the destination over
orthogonal channels. In this paper, we also assume that
the fading channel coefficient between transmit node i
and the kth receive antenna of node j, denoted by hk

i,j,
and the noise component at the kth receive antenna
of node j, denoted by nk

i,j, are modeled as zero-mean
complex Gaussian random variables with variances(

σk
i,j

)2
and N0, respectively. It is worth mentioning that

the transmit node is always equipped with a single
antenna. The instantaneous signal-to-noise ratio (SNR)
of the channel between node i and the kth receive
antenna of node j, which is denoted by γk

i,j, is given as
γk

i,j = Ei|hk
i,j|2/N0 where Ei is the average transmitted

energy of node i. The corresponding average SNR is

γk
i,j = Ei

(
σk

i,j

)2
/N0.

The signal transmission from the source to destina-
tion is illustrated in Figure 1. In the first phase, the
source broadcasts the signal xm and the received signals
at the kth receive antenna of node i, i = 1, . . . , K + 1, are
written as

yk
0,i =

√
E0hk

0,ixm + nk
0,i, i = 1, 2, . . . , K + 1 (1)

where xm is the mth symbol of an BFSK constellation.
Note that since the relays are equipped with a single
antenna and the destination is equipped with ND an-
tennas, k = 1 if i = 1, 2, . . . , K and k = 1, 2, . . . , ND if
i = K + 1.

Similar to [10], signal detection at the ith relay node
is carried out by a square-law detector. Without loss of
generality, assume that the the first symbol from the
signal constellation is transmitted. The outputs of the
square-law detector for the first and second symbols at

node i, i = 1, . . . , K are written, respectively, as

y1
0,i,1 =

∣∣√E0h1
0,i + n1

0,i,1
∣∣2, (2)

y1
0,i,2 =

∣∣n1
0,i,2
∣∣2. (3)

As in [6, 10], the difference of the outputs of the
square-law detector, namely θ0,i =

∣∣y1
0,i,1 − y1

0,i,2

∣∣, is
considered as a reliability measure of the detection at
node i. Therefore, node i decodes and retransmits a
BFSK signal only if θ0,i > θth

r . When node i transmits
a correct bit in the second phase, the outputs of the
square-law detector for the first and second symbols at
the k receive antenna of the destination are

yk
i,K+1,1 =

∣∣√Eihk
i,K+1 + nk

i,K+1,1
∣∣2, (4)

yk
i,K+1,2 =

∣∣nk
i,K+1,2

∣∣2. (5)

Meanwhile, the outputs of the square-law detector for
the first and second symbols at the k receive antenna
of the destination can be written as follows if node i
transmits an incorrect bit:

yk
i,K+1,1 =

∣∣nk
i,K+1,1

∣∣2, (6)

yk
i,K+1,2 =

∣∣√Eihk
i,K+1 + nk

i,K+1,2
∣∣2. (7)

If θ0,i < θth
r , node i remains silent in the second phase

and the outputs of the square-law detector for the first
and second symbols at the k receive antenna of the
destination are

yk
i,K+1,1 =

∣∣nk
i,K+1,1|2, (8)

yk
i,K+1,2 =

∣∣nk
i,K+1,2|2. (9)

Finally, the destination compares and chooses the
maximum output from all the outputs of the square-law
detectors, i.e., employs the maximum energy selection
(MES), to detect the transmitted information. In other
words, the decision rule is of the following form:[

î, k̂, m̂
]

= arg max
i=0,...,K

k=1,...,ND
m=1,2

yk
i,K+1,m. (10)

3 BER Computations and Thresholds

In this section, the BER analysis for MES scheme is
first carried out for a network with arbitrary qualities
of source-relay and relay-destination links. Then, the
optimal thresholds chosen to minimize the average BER
are discussed. Finally, the approximate thresholds are
proposed to achieve a full diversity order.

3.1 BER Computations
The law of total probability is employed to compute

the average BER of the system. First, denote Ω1, Ω2,
and Ω3 as the sets of the relays that forward a correct
bit, an incorrect bit, and remain silent, respectively. It
is clear that K = |Ω1|+ |Ω2|+ |Ω3| where |Ω| denotes
the cardinality of set Ω. The probability of occurrence
for the specific set {Ω1, Ω2, Ω3} is [7]:

P(Ω1, Ω2, Ω3) = ∏
i∈(Ω1∪Ω2)

[
1− I1(θ

th
r , γ1

0,i)
]

∏
i∈Ω3

I1(θ
th
r , γ1

0,i)

× ∏
i∈Ω1

[
1− I2(θ

th
r , γ1

0,i)
]

∏
i∈Ω2

I2(θ
th
r , γ1

0,i), (11)
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where A ∪ B denotes the union of sets A and B. The
function I1(θ

th
r , γ1

0,i) is the probability of the event θ0,i <

θth
r and is computed as [7]:

I1(θ
th
r , γ1

0,i) =
1 + γ1

0,i

2 + γ1
0,i

[
1− e−θth

r /(1+γ1
0,i)
]

+
1

2 + γ1
0,i

[
1− e−θth

r
]

. (12)

On the other hand, the function I2(θ
th
r , γ1

0,i)is the
probability of error at node i, i = 1, . . . , K, given the
event θ0,i > θth

r and is determined by [7]

I2(θ
th
r , γ1

0,i) =
1

2 + γ1
0,i

1
1− I1(θth

r , γ1
0,i)

e−θth
r . (13)

Now let Wk
w,m (w ∈ {Ω1 ∪ {0}}), Vk

v,m (v ∈ Ω2) and
Rk

r,m (r ∈ Ω3) denote the outputs of the square-law
detector for the mth symbol, m = 1, 2, measured at the k
receive antenna of the destination. With the assumption
that the the first symbol from the signal constellation
is transmitted, the probability density functions (pdfs)
of Wk

w,m, Vk
v,m and Rk

r,m are given, respectively, by

fWk
w,m

(x) =

{
f k
w,1(x), m = 1

f k
w,2(x), m = 2

(14)

f k
Vv,m

(x) =

{
f k
v,2(x), m = 1

f k
v,1(x), m = 2

(15)

f k
Rr,m

(x) = f k
r,2(x), m = 1 or m = 2, (16)

where
f k
h,1(x) = 1

N0(1+γk
h,K+1)

e−x/(N0(1+γk
h,K+1)), x ≥ 0

and
f k
h,2(x) = 1

N0
e−x/N0 , x ≥ 0.

An error occurs at the destination if among the 2(K +
1)ND statistics Wk

w,m, Vk
v,m and Rk

r,m, w ∈ {Ω1 ∪ {0}},
v ∈ Ω2, r ∈ Ω3, k = 1, . . . , ND, m = 1, 2, the one with
the largest value is 1) Case 1 (Θ = 1) one of Wk

w,1, 2)
Case 2 (Θ = 2) one of Vk

v,1, and 3) Case 3 (Θ = 3) one
of Rk

r,1. Thus, given the set {Ω1, Ω2, Ω3}, the BER can
be computed as

PΩ1,Ω2,Ω3(ε) =
3

∑
i=1

PΩ1,Ω2,Ω3(ε, Θ = i)

=
ND

∑
k=1

∑
w∈Ω1∪{0}

P
(

Wk
w,2 −Wk

w,2 < 0
)

+
ND

∑
k=1

∑
v∈Ω2

P
(

Vk
v,2 −Vk

v,2 < 0
)

+
ND

∑
k=1

∑
r∈Ω3

P
(

Rk
r,2 − Rk

r,2 < 0
)

(17)

where

Wk
w,2 = max

(i,j) 6=(w,k)
j,h=1,...,ND

m=1,2

(
W j

i,m, Wk
w,1, Vh

v,m, Rh
r,m

)
, (18)

Vk
v,2 = max

(i,j) 6=(v,k)
j,h=1,...,ND

m=1,2

(
Wh

w,m, V j
i,m, Vk

v,1, Rh
r,m

)
, (19)

and

Rk
r,2 = max

(i,j) 6=(r,k)
j,h=1,...,ND

m=1,2

(
Wh

w,m, Vh
v,m, Rj

i,m, Rk
r,1

)
. (20)

.
The conditional BER PΩ1,Ω2,Ω3(ε, Θ = i), i = 1, 2, 3,

can be computed1 as (21), (22), and (23) on the next
page, where (G1 ∪ G2) = Ω means that G1 and G2
are two disjoint subsets of Ω and the union of those
disjoint subsets is Ω and the set G is defined as
G = ((x, y) : x ∈ (Ω1 ∪Ω2 ∪ {0}), y ∈ {1, 2 . . . , ND}).
Obviously, the average BER with a given threshold θth

r
can be expressed as

BER
(

θth
r

)
= ∑

Ω1∈P(S)
∑

Ω2∈P(S\Ω1)

3

∑
i=1

PΩ1,Ω2,Ω3(ε, Θ = i)P(Ω1, Ω2, Ω3), (24)

where P(Ω) denotes the power set of Ω. The set S =
{1, . . . , K}.

3.2 Optimal and Approximate Thresholds

Given the closed-form expression of the average BER
in (24), one can choose the threshold θth

r to minimize
the average BER of the system by using the MATLAB
Optimization Toolbox. The optimization problem can
be set up as follows:

θ̂th
r = arg min

θth
r

BER(θth
r ). (25)

It is clear from (24) that the system need to collect
information on the average SNRs of all the transmission
links to find the optimal thresholds. Unfortunately, an
close-form solution for optimal threshold values is very
difficult, if not impossible, to find. Therefore, to further
reduce the complexity of the system2, in what follows,
we propose approximate thresholds and prove that
by using those thresholds, the system can achieve the
maximum diversity order.

Lemma 1: If the relays use the threshold θth
r = Q log cγ

where γ = E0/N0, the system achieves a full diversity
order of K+ ND for any Q ≥ ND and a positive constant
c.

Proof: To simplify our derivation, we consider the
i.i.d. case, i.e., γ1

0,i = γk
i,K+1 = γk

0,K+1 = γ0, i =

1, . . . , K, k = 1, . . . , ND where γ0 = E0σ2
0 /N0. Since

θth
r = Q log cγ and limγ0→∞

1−
(

1
cγ

) Q
1+γ0

log(γ)/γ
= Q γ0

γ = Qσ2
0 ,

1The pdfs of Wk
w,2, Vk

v,2 and Rk
r,2 are given in Appendix A.

2By using the approximate thresholds, besides the information
collection, the system does not need to find the optimal thresholds
centrally and send to the relays, hence, reducing the complexity and
implementation costs of the system.



H.X. Nguyen et al Noncoherent Receiver for Decode-and-Forward Cooperative Systems with Multi-Antenna Equipped Destination55

PΩ1,Ω2,Ω3(ε, Θ = 1) = ND (|Ω1|+ 1)
ND(K+|Ω3|+1)−1

∑
l=0

(
ND(K + |Ω3|+ 1)− 1

l

)
 ∑

i∈(Ω1∪Ω2∪{0})
h∈{1,...,ND}

∑
(G1∪G2)=(G\{(i,h)})(−1)ND(K+|Ω3|+1)+|G2|−l−1 1

N0

(
1 + γh

i,K+1

)

 1

∑(t,k)∈G2
1

N0(1+γk
t,K+1)

+ 1
N0(1+γh

i,K+1)
+ ND(K+|Ω3|+1)−l

N0




+
ND (|Ω1|+ 1) (ND(K + |Ω3|+ 1)− 1)

N0

ND(K+|Ω3|+1)−2

∑
l=0

(
ND(K + |Ω3|+ 1)− 2

l

) ∑
(G1∪G2)=G

(
(−1)ND(K+|Ω3|+1)+|G2|−l−2

) 1

∑(t,k)∈G2
1

N0(1+γk
t,K+1)

+ ND(K+|Ω3|+1)−l
N0


 (21)

PΩ1,Ω2,Ω3(ε, Θ = 2) =
ND(K+|Ω3|+1)

∑
l=0

(
ND(K + |Ω3|+ 1)

l

)
∑

v∈Ω2
h∈{1,...,ND}

 ∑
(i,j)∈G\{(v,h)}

∑
(G1∪G2)=G\{(v,h),(i,j)}(−1)ND(K+|G2|+1)+|Ω3|−l 1

N0

(
1 + γ

j
i,K+1

)


 1

∑(t,k)∈G2
1

N0(1+γk
t,K+1)

+ 1
N0(1+γ

j
i,K+1)

+ 1
N0(1+γh

v,K+1)
+ ND(K+|Ω3|+1)−l

N0




+
1

N0

ND(K+|Ω3|+1)−1

∑
l=0

(
ND(K + |Ω3|+ 1)− 1

l

)
∑

v∈Ω2
h∈{1,...,ND}

 ∑
(G1∪G2)=G\{v,h}

(
(−1)ND(K+|Ω3|+1)+|G2|−l−1

) 1

∑(t,k)∈G2
1

N0(1+γk
t,K+1)

+ 1
(N0(1+γh

v,K+1)
+ ND(K+|Ω3|+1)−l

N0


 (22)

PΩ1,Ω2,Ω3(ε, Θ = 3) = ND|Ω3|
ND(K+|Ω3|+1)−1

∑
l=0

(
ND(K + |Ω3|+ 1)− 1

l

) ∑
i∈(Ω1∪Ω2∪{0})

h∈{1,...,ND}

∑
(G1∪G2)=G\{(i,h)})(−1)ND(K+|Ω3|+1)+|G2|−l−1 1

N0

(
1 + γh

i,K+1

)

 1

∑(t,k)∈G2
1

N0(1+γk
t,K+1)

+ 1
N0(1+γh

i,K+1)
+ ND(K+|Ω3|+1)−l

N0




+
ND|Ω3| (ND(K + |Ω3|+ 1)− 1)

N0

ND(K+|Ω3|+1)−2

∑
l=0

(
ND(K + |Ω3|+ 1)− 2

l

) ∑
(G1∪G2)=G

(
(−1)ND(K+|Ω3|+1)+|G2|−l−2

) 1

∑(t,k)∈G2
1

N0(1+γk
t,K+1)

+ ND(K+|Ω3|+1)−l
N0


 (23)
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it follows from (11) that3

P(Ω1, Ω2, Ω3) ≤
(

I1(θ
th
r , γ0,i)

)|Ω3| (
I2(θ

th
r , γ0,i)

)|Ω2|

4
=
= (log(γ)/γ)|Ω3|

(
1/γQ+1

)|Ω2|
. (26)

On the other hand, the conditional BER PΩ1,Ω2,Ω3(ε) =

∑3
i=1 PΩ1,Ω2,Ω3(ε, Θ = i) can be evaluated from the large

SNR behavior by considering the value of the first non-
zero order derivative of the PDF at the origin [11].
According to [12], one can verify that

PΩ1,Ω2,Ω3(ε, Θ = 1)
4
= (1/γ0)

ND(|Ω1|+|Ω2|+1) , (27)

PΩ1,Ω2,Ω3(ε, Θ = 2)

4
=

{
1, if |Ω1|+ |Ω2| = 1

(1/γ0)
ND(|Ω1|+|Ω2|) , if |Ω1|+ |Ω2| > 1

(28)

PΩ1,Ω2,Ω3(ε, Θ = 3)
4
= (1/γ0)

ND(|Ω1|+|Ω2|+1) . (29)

Thus, one has

PΩ1,Ω2,Ω3(ε)

4
=



(1/γ0)
K+ND , if |Ω2| = 0

(1/γ0)
K+Q , if |Ω1| = 0 and |Ω2| = 1

(1/γ0)
|Ω3|+|Ω2|(Q+1)+ND(|Ω1|+|Ω2|) ,

if |Ω1| > 0 and |Ω2| > 0

(30)

Therefore, for sufficiently large values of SNR and
θth

r = Q log cγ where Q ≥ ND, it follows from (24) that

BER
(

θth
r

) 4
= (1/γ0)

K+ND . So Lemma 1 is proved.

4 Simulation Results

This section presents analytical and simulation results
for the BER performance of different noncoherent DF
cooperative systems. In all simulations, the noise com-
ponents at the destination and relays are modeled as
i.i.d. zero-mean complex Gaussian random variables
with variances 1. The source and relays have an equal
transmit power, i.e., Ei = E, i = 0, . . . , K. The channels
between any two antennas are assumed to be Rayleigh
flat fading. It is also assumed that the variances of
Rayleigh fading channels between any two antennas of

two nodes are identical, i.e.,
(

σk
i,j

)2
= σ2

i,j.
Figure 2 plots the average BERs of the proposed

scheme, PL scheme and the scheme in [6] in a two-
relay system with single-antenna equipped destination
when the variances of Rayleigh fading channels are
set to be 2σ2

0,i = 0.1σ2
i,K+1 = 5σ2

0,K+1 = 1, i = 1, 2. It
is note that the system with single-antenna equipped
destination is a special case of the one with multiple-
antenna equipped destination. From the figure, both

3With two positive real functions f (x) and g(x), we say f (x)
4
=
= g(x)

if lim supx→∞
f (x)
g(x) = d where d < ∞ is a positive constant.
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Figure 2. BERs of a two-relay network with different schemes when
2σ2

0,i = 0.1σ2
i,K+1 = 5σ2

0,K+1 = 1.
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Figure 3. BERs of a three-relay network with different schemes when
σ2

0,i = σ2
i,K+1 = σ2

0,K+1 = 1.

the analytical (shown as marker symbols) and sim-
ulation (shown in line with marker symbols) results
are identical, hence verifying our analysis in Section 3.
The figure also shows that the BER of the proposed
scheme is significantly better than the BER of the PL
scheme. It is institutively clear since the PL scheme
suffers from the error propagation. The scheme in [6]
outperforms the other two schemes due to the fact
that the destination in [6] combines all the signals
from the retransmitting relays besides dealing with the
problem of error propagation. However, the proposed
scheme does not require any statistical information of
the fading channels to perform a detection. Such the
information is required for the PL scheme and the
scheme in [6].

Figure 3 presents the average BERs obtained by
simulation and analysis for two different schemes in
a three-relay cooperative system. Here σ2

0,i = σ2
i,K+1 =

σ2
0,K+1 = 1, i = 1, 2, 3. The figure again confirms the
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Figure 5. BERs of a two-relay network with different schemes
when the destination is equipped with two antennas and
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i,K+1 = 10σ2

0,K+1 = 1.

analysis performed in Section 3. At sufficient large
values of SNR, the proposed scheme yields a superior
performance compared to the PL scheme.

Figures 4 and 5 plot the average BER of the pro-
posed scheme for a single-relay network and a two-
relay network, respectively, in which the destination is
equipped with two antennas. Here 0.2σ2

0,1 = 2σ2
1,2 =

10σ2
0,2 = 1 for a single-relay network and 0.2σ2

0,1 =

0.2σ2
0,2 = 2σ2

1,3 = 2σ2
2,3 = 10σ2

0,3 = 1 for a two-relay
network. The figures show that the exact analysis and
simulation results are the same. One can again observe
that the proposed scheme outperforms the PL scheme.
By using the approximate thresholds, the system can
achieve a maximum diversity order of 3 for a single-
relay network with two-antenna equipped destination
as confirmed in Figure 4.

5 Conclusion

This paper studies the maximum energy selection re-
ceiver for an adaptive decode-and-forward (DF) relay-
ing system with BFSK signals. The considered relaying
system consists of a source, a relay, and destination in
which the source and relays are equipped with a single
antenna and the destination is equipped with multiples
antennas. A closed-form BER expression is obtained
and used to choose the optimal thresholds to minimize
the average BER. Approximate thresholds are proposed
and the diversity order is verified. Performance com-
parison reveals that the proposed scheme outperforms
the PL scheme.
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Appendix A
Pdfs of Ww,2, Vv,2, and Rr,2 random

variables

The pdf of Ww,2, Vv,2, and Rr,2 can be found, respec-
tively, as follows:

f
Wk

w,2
(x) =

d
dx

P(Wk
w,2 < x) = ∑

i∈(Ω1∪Ω2∪{0})
h=1,...,ND

f h
i,1(x)

× ∏
j∈(Ω1∪Ω2∪{0})

l=1,...,ND
(j,l) 6=(i,h)

Fl
j,1(x)

(
F1

1,2(x)
)ND(K+|Ω3|+1)−1

+
ND(K + |Ω3|+ 1)− 1

N0
e−x/N0

(
F1

1,2(x)
)ND(K+|Ω3|+1)−2

× ∏
j∈(Ω1∪Ω2∪{0})

h=1,...,ND

Fh
j,1(x) (31)

f
Vk

v,2
(x) =

d
dx

P(Vk
v,2 < x) = ∑

i∈(Ω1∪Ω2∪{0})
h=1,...,ND
(i,h) 6=(v,k)

f h
i,1(x)

× ∏
j∈(Ω1∪Ω2∪{0})

l=1,...,ND
(j,l) 6={(v,k),(i,h)}

Fl
j,1(x)

(
F1

1,2(x)
)ND(K+|Ω3|+1)

+
ND (K + |Ω3|+ 1)

N0
e−x/N0

(
F1

1,2(x)
)ND(K+|Ω3|+1)−1

× ∏
j∈(Ω1∪Ω2∪{0})

h=1,...,ND
(j,h) 6=(v,k)

Fh
j,1(x) (32)
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f
Rk

r,2
(x) =

d
dx

P(Rk
r,2 < x) = ∑

i∈(Ω1∪Ω2∪{0})
h=1,...,ND

f h
i,1(x)

× ∏
j∈(Ω1∪Ω2∪{0})

l=1,...,ND
(j,l) 6=(i,h)

Fl
j,1(x)

(
F1

1,2(x)
)ND(K+|Ω3|+1)−1

+
ND(K + |Ω3|+ 1)− 1

N0
e−x/N0

(
F1

1,2(x)
)ND(K+|Ω3|+1)−2

× ∏
j∈(Ω1∪Ω2∪{0})

h=1,...,ND

Fh
j,1(x) (33)

where Fl
k,1(x) = 1− e−x/(N0(1+γl

k,K+1)) and Fl
k,2(x) = 1−

e−x/N0 .
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