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Abstract– The physical meaning of the composite Nakagami-lognormal fading model is not well understood by many
researchers using the model. The signal power transfer and transform at the interface between the global lognormal
shadowing sub-channels and the local Nakagami multipath sub-channels in the presence of correlation between these
diversity sub-channels is rather complex. This is the main reason why a thorough analysis or a simulation model is absent
to date for the case of correlated composite Nakagami-lognormal diversity channels. This paper presents a novel technique
for the estimation of the probability density function (PDF) of the signal-to-noise (SNR) at the output of a maximum ratio
combining (MRC) receiver operating in correlated composite diversity fading channels. The PDF is estimated using the
recently proposed two-point lossless moment generating function (MGF) matching technique and a closed-form expression
for the bit-error rate (BER) for QPSK signal is consequently presented using the Gauss-Hermite polynomial approximation.
The paper also presents the complex Monte-Carlo simulation model for the MRC reception and BER counting in correlated
composite Nakagami-lognormal fading channels.

Keywords– Nakagami-lognormal, maximum ratio combining (MRC), two point matching, moment generating function
(MGF).

1 Introduction

It has long been established that diversity reception is
a very effective technique for combating the detrimen-
tal effects of channel fading in wireless propagation,
and for coherent reception, maximum ratio combining
(MRC) is known to be the optimal linear combining
technique. The principle of MRC is to sum up the
powers, hence the signal-to-noise ratios (SNRs), of the
diversity receiving signals. In a general radio propaga-
tion scenario over a large urban area, the signal in each
diversity path encounters a series/cascade of scattering
objects. This leads to what is commonly known as
shadow fading referring to the fluctuation in the local
mean of the received power as the mobile receiver
moves through the shadow of an obstruction object.

The multiplicative nature of the cascading obstruc-
tions is widely accepted as having a lognormal distri-
bution and the sum of lognormal powers underlying
the analysis of MRC diversity reception has therefore
become a challenging topic for research, particularly
when the shadowing effects in the diversity channels
are correlated. An exact closed-form expression for
the probability density function (PDF) of the sum of
lognormal RVs is not available to date but a number of
analytical approximations do exist.

Most approximation techniques assume that the sum
of lognormal RVs can be modelled as another single
lognormal RV whose parameters are found by match-
ing of the moments as in the Fenton-Wilkinson (F-W)

method [1] or by matching of the log-moments as in
the Schwartz-Yeh (S-Y) technique [2] or by matching
of the moment generating functions (MGF) at two
points as in [3]. A relatively more recent paper in [4]
proposes a two-step algorithm, via the Pearson-Type IV
distribution, for approximating the lognormal sum and
the linear combination with arbitrary weights of the
lognormal RVs and shows that the proposed technique
is superior to many other techniques currently avail-
able. The authors in [3] point out that the popular F-
W approximation method in [1] puts more weight on
larger SNRs resulting in a poor approximation in the
tail portion of the PDF and a better tracking of the head
portion.

On the other hand, the S-Y approximation method
in [2] suffers from severe error in the head portion but
achieves better tracking in the tail portion of the PDF.
In [3] by adjusting the position of the two MGF match-
ing points, the PDF tracking error can be controlled and
distributed according to applications. In [5] a novel I
two-point MGF matching technique is introduced to
accurately locate the optimal MGF matching points.

However, in more realistic scenarios in mobile radio
in urban areas, the multipath effect at the mobile re-
ceiver due to scattering from local scatterers such as
buildings in the neighbourhood of the receiver causes
a fast fading while the variation in the terrain configu-
ration between the base-station and the mobile receiver
causes a slow shadowing. Therefore, the mobile radio
signal envelope is usually composed of a small scale
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multipath fading component superimposed on a much
larger scale or slower shadowing component [6]. It is well
known that the signal envelope of the multipath com-
ponent can be modelled as a Nakagami-m distributed
random variable (RV) [7] or equivalently, its power
can be modelled as a gamma distributed RV. Thus the
path power gain, hence the SNR, has a mixed gamma-
lognormal distribution which was first proposed in [8]
as a generalization of the Rayleigh-lognormal, also
known as the Suzuki fading distribution model in [9].

The sum-of-products model in Figure 1 is useful
in studying this statistical mix in most physical mo-
bile radio channels. The problem of approximating the
power sum of correlated composite gamma-lognormal
random variables is again more challenging than that of
the power sum of correlated lognormal RVs. While [10]
only presented the sum of the independent Nakagami-
Lognormal fading channel, the aim of this paper is to
present closed-form expressions for the approximated
bit-error rate (BER) of the output from an MRC diver-
sity receiver under the correlated composite Nakagami-
lognormal fading channels. This is the main contribu-
tion of this paper.

The rest of the paper is organized as follows. Sec-
tion 2 covers Composite Nakagami-lognormal fading
channel model. The MRC diversity reception in cor-
related composite Nakagami-lognormal fading chan-
nels algorithm is described in Section 3. Monte Carlo
simulation of diversity MRC repetition in correlated
composite Nakagami-lognormal fading channels is de-
scribed in Section 4. Finally, Section 5 gives the conclu-
sions.

2 Composite Nakagami-Lognormal Fading

Channel Model

It is well known that, if h is the amplitude channel gain
and s(t) and n(t) are transmit signal and channel noise
then the receive signal can be defined

r(t) = hs(t) + n(t). (1)

The amplitude channel gain assumed to be constant
over the transmission time of a symbol block. n(t) is
modeled as a zero-mean additive white Gaussian noise
(AWGN) process with one-sided power spectral density
N0. The received SNR is then

γ =
|h|2Es

N0
, (2)

where the signal energy is Es = E[s2(t)].
In this paper we use the term power gain, p = h2,

and signal-to-noise ratio, γ, interchangeably where it is
appropriate. If the energy is that of one bit, then we de-
note γb as the SNR per bit of transmitted information,
then we express

γb(p) = pEb/N0. (3)

To avoid dealing with distance dependency, we nor-
malize the average channel power gain E|h2| = 1, thus

Figure 1. Modeling of diversity branches in a composite Nakagami-
lognormal fading environment.

making the average received SNR per bit per channel
γb = Eb/N0

At high SNR, the symbol-error-rate for rectangular
M-QAM in AWGN with M = 2k when k is even, is
approximated as [9].

SERAWGN,MQAM ≈ 4

(
1−

√
1
M

)
Q

(√
3

M− 1
γs

)
, (4)

in which γs is the average SNR per symbol per channel
(without combining), and for equiprobable orthogonal
signals the corresponding bit-error-rate is [11].

BERAWGN,MQAM =
M

2(M− 1)
SERAWGN,MQAM . (5)

For QPSK signaling, M = 4 and without using Gray
code, we have

BERAWGN,QPSK(γb) =
4
3

Q(
√

2γb). (6)

From the model in Figure 1 for mobile radio propaga-
tion in urban areas, the path fading from the transmitter
to the cluster of buildings in the neighbourhood of
the receiver is predominantly large-scale or slow fad-
ing with lognormal distribution after the main wave
encounters multiplicative reflections and or refractions
by obstructions. In most situations the mobile receiver
is surrounded by a local cluster of scatterers such as
buildings in urban areas, the arriving main wave is
scattered into multiple local paths and combined at the
receiver causing multipath fading. These local paths
arrive at the receiver roughly with the same strength
but with different phases, giving rise to small-scale or
fast fading with Nakagami-m distributed envelope, i.e.
fading power gain is gamma-distributed.

The probability density function (PDF) of the SNR
in the composite Nakagami-lognormal fading channel
may be derived by equating the local average power
of the much faster Nakagami-m fading signal, to the
instantaneous power of the much slower arriving log-
normal signal. This implies first, a complete transfer
of signal power from the arriving global lognormal
signal to the local multipath sub-channel, and second,
no loss of power in the local multipath channel, i.e. the
average power gain of the local Nakagami-m channel
can be assumed to be unity. In the diversity com-
posite fading model in Figure 1, in each branch the
received channel power gain is the product of the main
shadowing lognormal power gain PLN = |hLN|2 and
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its local multipath Nakagami-m power gain (gamma
distributed) pNG = |hNG|2. Since in this paper we are
mainly interested in the gamma-distributed power of
the local multipath Nakagami-m fading channels, we
will denote this as pGM instead of pNG in what follows,
i.e.

pGM-LN(i) = pGM(i)pLN(i), i = 1, 2, ..., L (7)

and the average power gain of the local Nakagami-m
channel is

pGM = 1, for all i. (8)

The PDF of the power gain of the Nakagami(m, Ω)
channel, i.e. a gamma(m, θ) random variable (RV), is

fGM(GM) =
1

Γ(m)

(
1
θ

)m
pm−1

GM exp
(
− pGM

θ

)
, m > 0.5 (9)

where

θ =
Ω
m

, (10a)

Ω = E[pGM], (10b)

m =
(E[pGM])2

Var[pGM]
, (10c)

and the PDF of the power gain of the lognormal channel
is given by

fLN(PLN) =
1

pLN

ζ

σz
√

2π
exp

(
−
(
10 log10 x− µz

)2

2σ2
z

)
, (11)

where the lognormal power fading is modeled as pLN =
100.1Z = exp(z/ζ) with Z ∼ ℵ(µz, σ2

z ) in dB unit and
ζ = 10/ log 10 is the conversion constant between dB
and net, and pLN is in linear unit.

The PDF for the product power gain pGM-LN in (7) of
each composite Nakagami-lognormal diversity channel,
using the Jacobian transformation technique, can be
found from (9) and (11) to be

fNG-LN(p) =
∞∫

0

1
Γ(m)

(m
x

)m
pm−1 exp

(
−mp

x

)
1
x

ζ

σz
√

2π
exp

(
−
(
10 log10 x− µz

)2

2σ2
z

)
dx, m > 0.5. (12)

The composite PDF in (12) was first introduced in [7].
If m = 1, it reduces to the composite Rayleigh-
lognormal, also known as Suzuki distribution [8].

3 MRC Diversity Reception in Correlated

Composite Nakagami-lognormal Fading

Channels

3.1 MGF of the Sum of Correlated Composite
Gamma-lognormal Powers

In this section, the main contribution of our paper
is presented. The mathematical derivation requires the
following definitions and notations:

p =
L

∑
i=1

pGM-LN(i) =
L

∑
i=1

pi

is the resultant power gain at the output of the MRC
combiner. fGM-LN(p1, p2, ..., pL) is the joint distribution

of the correlated composite gamma-lognormal input
powers, and fLN(x1, x2, ..., xL) is the joint distribution
of the lognormal fading component with its associated
generating Gaussian vector z = (z1, z2, ..., zL) in which
the elements zi are identically distributed with mean
µz and variance σ2

z and are correlated with covariance
matrix Cz, i.e.

fZ(z) =
1

(2π)L/2|Cz|1/2 exp
(
− 1

2
(z− µz)

TC−1
z (z− µz)

)
. (13)

Then the MGF of p is

Mp,MRC(s) =
∞∫

0

...
∞∫

0

L

∏
i=1

exp(−spi) fGM-LN(p1, ..., pL)dp1...dpL

where s is the transform variable in the Laplace domain.
We can immediately recognize that the integral with

respect to p1 inside the square brackets gives the MGF
of the gamma(m, θi)-distributed RV [12] with θi = xi/m,
or by directly calculating the integral using [13], we
have

Mp,MRC(s) =
∞∫

PL

....
∞∫

p2
∞∫

0

(
1

1 + sx1/m

)m
fLN(x1, p2, ..., pL)dx1

 dp2...dpL.

We proceed in the same way for p2, p3,...,pL

Mp,MRC(s) =
∞∫

xL

...
∞∫

x1

L

∏
i=1

MGM(s,
xi
m
) fLN(x1, ...., xL)dx1...dxL (14)

where

MGM(s,
xi
m
) =

(
1

1 + s xi
m

)m

(15)

is the MGF of the gamma(m, θi)-distributed RV [12]
with θi = xi/m and xi is the local power of the
corresponding lognormal diversity branch.

The expression in (14) is rather expected because, in
the microdiversity model in Figure 1, the correlation is
initially between the global lognormal arriving waves
and the MRC detection acts on the local Nakagami
diversity multipath sub-channels. The correlation be-
tween the latter is through their gamma-distributed
powers being conditioned on the corresponding arriv-
ing local average lognormal power.

In the vector form for x = (x1, x2, ..., xL), (14) can be
rewritten as

Mp,MRC(s) =
∞∫

0

L

∏
i=1

MGM(s, xi/m) fLN(x)dx.

By equating fLN(x)dx = fz(z)dz and using (13) we have
equation (16) (see next page).

To de-correlate (16), we make a change of variable
z =
√

2C1/2
z u + µz and (10) becomes (17).

where cij is the (i, j) element of C1/2
z which is ob-

tained from Cz = C1/2
z (C1/2

z )T using Cholesky decom-
position. Since Cz is symmetric and positive definite,
C1/2

z is lower triangular.
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Mp,MRC(s) =
∞∫
−∞

1
(2π)L/2|Cz|1/2

L

∏
i=1

(
1

1 + s
m exp(zi/ζ)

)m
exp

(
−1

2
(z− µz)

TC−1
z (z− µz)

)
. (16)

Mp,MRC(s) =
∞∫
−∞

1
πL/2

L

∏
i=1

[
1 +

s
m

exp

(√
2

ζ

L

∑
j=1

cijuj +
µj

ζ

)]−m

exp
(
−uTu

)
du. (17)

Mp,MRC(s, µz, Cz) ≈
Np

∑
nl=1

...
Np

∑
n1=1

wn1 ...wnL

πL/2

L

∏
i=1

[
1 +

1
m

s exp

(√
2

ζ

L

∑
j=1

cijanj +
µj

ζ

)]−m

. (18)

The integral in (17) can be accurately approximated
using Gauss-Hermite expansion [14]. The MGF of the
sum of L correlated composite Rayleigh-lognormal
power gains finally is given in (18). in which wn, an
and Np are, respectively, the weights, the abscissas
and the order of the Gauss-Hermite polynomial. As
in [5] for the case of MRC diversity reception when
only lognormal shadowing exists, in this paper we
have found that (18) gives a very accurate result when
Np = 12.

3.2 Calculation of Cz from the Lognormal Channel
Covariance Matrix CLN

The same as in [5], we use the popular decreasing
correlation model proposed in [15] for shadow fading
channels. The covariance matrix of the channel power
gains, assuming micro-diversity channels being identi-
cally distributed, is

CLN(i, j) = Cov(pLNi , pLNj) = Var(pLN)ρ
|i−j|, (19)

in which ρ is the correlation coefficient of two adjacent
channel power gains.

The following statistical relationships are well known
between the lognormal random variable pLN and its
associated Gaussian random variable Z:

E(pLN) = pLN = eµz/ζ+σ2
z /2ζ2

,
Var(pLN)

p2
LN

=
(

eσ2
z /ζ2 − 1

)
.

Hence

σ2
z = ζ2 ln

(
1 +

Var(pLN)

p2
LN

)
, (20)

µz = ζ ln(pLN)− 0.5ζ ln

(
1 +

Var(pLN)

p2
LN

)
, (21)

and

Cz(i, j) = Cov(Zi, Zj) = ζ2 ln

(
1 +

Var(pLn)ρ
|i−j|

p2
LN

)
. (22)

In this paper, we normalize the lognormal channel’s
mean power gain pLN = 1 to avoid dependency
on propagation distance and adopt a fixed Gaussian
standard deviation σz = 8 dB. Therefore the MGF of

the MRC output in (18) can be completely known in
terms of the correlation coefficient ρ. Note that this
normalization automatically gives pGM-LN = 1 since
from (16), pGM = Ω = 1 which is inherent in the
composite fading model in (17) and (18).

3.3 Estimation of Sum of Composite
Gamma-lognormal RVs as a Single Lognormal RV

In this section, we approximate the sum of L cor-
related composite gamma-lognormal RVs by a single
lognormal RV, p̂Ln = 100.1Ẑ where Ẑ ∼ N(µ̂z, σ̂2

z ).
Similar approximation has been investigated for the
case of independent Suzuki RVs, i.e. Nakagami with
m = 1, as a single lognormal RV in [2] using a two-point
MGF matching technique, and as a single Suzuki RV
in [16] by using the mean and variance matching tech-
nique. In a recent paper [5] we introduced a ‘lossless’.
two-point MGF matching technique which guarantees
conservation of average signal power across the MRC
combiner and which can locate the two matching points
accurately, and therefore is more accurate than that
proposed in [2]. By matching the MGF of the lognormal
approximation p̂LN with the MGF of the sum of the
composite gamma-lognormal input powers p in (18) at
two different positive real values s1 and s2 , a system
of two simultaneous equations as in (17) is obtained
which can then be used to solve for µ̂z and σ̂2

z .

Np

∑
n=1

wn exp
[
−si exp{(anσ̂z

√
2 + µ̂z)/ζ}

]
=
√

πMp,MRC(si, µz, Cz), i = 1, 2. (23)

The principle of a lossless MRC thus gives the ap-
proximated average power gain at the output of the
receiver as

p̂LN = exp

[
µ̂z

ζ
+

1
2

(
σ̂z

ζ

)2
]

. (24)

Equation (25) provides a valid and reliable equation
for iteratively improving the accuracy of the locations of
the two MGF matching points s1 and s2. The percentage
error of power loss is defined as follows [5].

error(%) = 100
L− p̂LN

L
. (25)
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Figure 2. MGF matching of the power sum of L correlated gamma-
lognormal RVs to a single lognormal RV.

A simple iterative search algorithm for the two
matching locations, hence the values of µ̂z and σ̂z,
in (22) is carried out until the power loss decreases to
a specified error threshold which is set at 0.1% in this
paper.

The PDF of the channel power gain at the output of
the MRC receiver, approximated as a single lognormal
RV, finally is

f̂LN,MRC(p) =
1
p

ζ

σ̂
√

2π
exp

(
−
(10 log10 p− µ̂z)2

2σ̂2
z

)
. (26)

Table 1 presents the MGF matching results for match-
ing points (s1, s2) and (µ̂z, σ̂2) for different shadowing
channel correlations ρ and different multipath fading
parameters m when the MRC output is approximated
as a single lognormal RV. The error is limited to be-
low 0.1%. As discussed in the introduction, the per-
formance parameter in this paper is the agreement in
the theoretical BER and the Monte-Carlo simulated
BER. Therefore we want to give an equal weight, i.e.
exp(−sp), as much as possible to the entire range of
SNR in the MGF calculation, i.e. keeping the MGF
matching points (s1, s2) as small as possible but still
satisfying the specified matching error ceiling.

Figure 2 shows the MGF matching of the correspond-
ing solutions in Table 1 for m = 1. It can be observed
that when there are only two microdiversitybranches to
add together, the sum of two exponential-distributed
multipath components, i.e. a chi-square of only four
degrees of freedom, is not sufficient to be approximated
as a lognormal RV. As a result, the MGF matching
of the sum of two gamma-lognormal RVs to a single
lognormal RV cannot be expected to be as good as the
matching when there are many moregamma-lognormal
RVs, i.e. a chi square of many more degrees of freedom,
to sum up.

The consequence of assuming a single lognormal
RV for the output is to skew the distribution of SNR
to the lower end as demonstrated in Figure 3, giving
rise to higher BER as shown in Figure 4 for L = 2.
We notice that this poor matching at low values of

Figure 3. PDF of the single lognormal RV approximating the MRC
output for ρ = 0.2 and N = 2.

L is quite obvious but without authors’comments in
Figure 7 of [3] for the sum of uncorrelated Suzuki RVs.

3.4 BER of QPSK in Diversity Reception in
Correlated Composite Nakagami-lognormal Fading
Channels

In this paper we use QPSK signaling for our anal-
ysis and simulation of mobile radio transmission us-
ing MRC diversity reception in a correlated composite
Nakagami-lognormal fading environment.

Using PDF of the estimated single lognormal RV:
The corresponding BER using QPSK signaling, M = 4
and without using Gray code:

BERAWGN,QPSK(γb) =
4
3

Q(
√

2γb),

where γb is the SNR per bit and (26), is given by (27).
In (27), γb(p) = Eb

N0
p and term power gain p = |h|2.

By setting

u =
10 log10 p− µ̂z

σ̂z
√

2
⇐⇒ p = exp

(
µ̂z

ζ
+

√
2σ̂z

ζ
u

)
(28)

Equation (27) can be reduced to

BERNG-LN,QPSK,MRC =

1√
π

∞∫
0

BERAWGN,QPSK (γb(u)) e−u2
du,

where γb(u) = Eb
N0

exp(µ̂z/ζ + uσ̂z
√

2/ζ) is the argu-
ment of BERAWGN,QPSK(γb) =

4
3 Q(
√

2γb).
The above expression for BER can then be accurately

approximated by an Np -order Gauss-Hermite polyno-
mial expansion as given below

BERNG-LN,QPSK,MRC =

1√
π

Np

∑
n=1

wnBERAWGN,QPSK (γb(an)) . (29)
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Table I
Results of the 2-point MGF matching of the MRC output to a single lognormal R

Matching
parameters

Shadowing correlation ρ = 0.2 Shadowing correlation ρ = 0.6
m=1.0 m=2.0 m=1.0 m=2.0

(s1, s2)
N=2 (0.0065, 0.0111) (0.001,1.500) (0.0178,0.0196) (0.0005,1.5000)
N=4 (0.001, 0.800) (0.001,1.700) (0.025, 0.800) (0.0140,2.3000)
N=6 (0.001, 1.100) (0.0015,1.4500) (0.042, 1.100) (0.0350, 1.5000)

(µ̂z, σ̂z) dB
N=2 (-4.3096,0.9917) (-3.1285,0.2993) (-4.5674, 8.1148) (-3.9369,0.7700)
N=4 (1.341, 6.374) (2.0638, 5.8660) (0.390, 6.994) (0.9599, 6.6376)
N=6 (4.310, 5.491) (4.8126, 5.0742) (3.395, 6.174) (3.8155, 5.8852)

BERNG-LN,QPSK,MRC =

∞∫
0

BERAWGN,QPSK (γb(p))
1
p

ζ

σ̂z
√

2π
exp

(
−
(10 log10 p− µ̂z)2

2σ̂z

2)
(27)

4 Monte Carlo Simulation of Diversity

MRC Reception in Correlated Composite

Nakagami-lognormal Fading Channels

4.1 Simulation of correlated L-variates lognormal
vector hLN

In this section, we simulate the correlated L-variates
lognormal vector hLN by first generating the L-variates
normal vector z = N(µZ, CZ) from Section 4.2.

• Step 1: Generate i.i.d unit L-variates U1, U2, ..., UL.
• Step 2: Generate correlated normal variates

Z1, Z2, ..., ZL. For each i = 1, 2, ..., L

Zi = µZi +
i

∑
j=1

cijUj, (30)

where cij is the (i, j) element of the lower trian-
gular C1/2 as in (17) obtained from matrix CZ =

C1/2
Z

(
C1/2

Z

)T
using Cholesky decomposition.

• Step 3: Calculate the correlated lognormal variates
Xi = eZi, for i=1,2,...,L. In which X is the channel
power gain, i.e.|hLN|2.

• Step 4: Then calculate the fading transfer function
of each lognormal diversity channels.

hLN = eZi/2. (31)

4.2 Simulation of Correlated L-variates Nakagami-m
Vector r

To date there is no known technique to directly gen-
erate correlated Nakagami-m vector r ∼ NG(m, CNG)
except first to generate the corresponding correlated
gamma vector y = pGM ∼ GM(m, CGM) then using the
fact that a scalar Nakagami RV is equal to the square
root of the corresponding gamma RV [17]. In [17], it
is shown that a gamma-distributed vector has a sim-
ple direct-sum decomposition of squares of independent
Gaussian vectors zk, i.e

y =
2m

∑
k=1

zo2
k , (32)

where the notation ‘o’ is to mean element–to–element
operation, i.e. the element of the L-variate vector y is

y(i) =
2m

∑
k=1

z2
k(i), i = 1, 2, ..., L. (33)

The element of the corresponding L-variate
Nagakami-m vector therefore can be generated
as

r(i) =

√√√√ 2m

∑
k=1

z2
k(i). (34)

The relationship between the covariance matrix CGM
of the gamma vector and the covariance matrix Cz of
the corresponding generating Gaussian vector is [17]

Cz =
1

2
√

m
Co1/2

GM . (35)

From (4) with E[pGM] = 1, we have Var[pGM] = 1/m,
and thus

CGM =
1
m


1 ρ ρ2 ... ρL−1

ρ 1 ρ2 ... ρL−2

ρ ρ2 1 ... ρL−3

...
ρL−1 ... ρ2 ρ 1

 , (36)

and

CZ =
1

2m


1
√

ρ
√

ρ2 ...
√

ρL−1
√

ρ 1
√

ρ2 ...
√

ρL−2
√

ρ
√

ρ2 1 ...
√

ρL−3

...√
ρL−1 ...

√
ρ2 √

ρ 1

 . (37)

We are now ready to generate the independent cor-
related Gaussian vector zk, k = 1, 2, ..., 2m required
for (31), where

zk(i) =
i

∑
j=1

cijUk(j), (38)

where cij is the (i, j) element of C1/2
Z obtained from

matrix CZ in (36) using Cholesky decomposition. Note
that C1/2

Z is a lower triangular matrix.
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4.3 Generation of the Correlated Nakagami-m
Channels hNG

The correlated L-variate vector r in (33) only gives us
the distribution of the scalar envelope of the signal in a
correlated Nakagami-m fading channel.

Case m = 1:
For the case m = 1, the Nakagam distribution reduces
to the Rayleigh distribution and the implementation
of a physical Rayleigh channel hR is well understood.
The gamma-distributed power gain in (33) becomes
exponentially distributed pR(i) = z2

i (i) + z2
2(i) and the

Rayleigh channel is implemented as

hR(i) = zi(i) + jz2(i), (39)

giving the composite (complex) Rayleigh-lognormal
channel as

hR-LN(i) = hR(i)hLN(i), i = 1, 2, ..., L.

Now we are ready to simulate MRC reception using
QPSK signalling in a composite Rayleigh-lognormal
fading environment.

Case m = 1.5, 2, 2.5, :
For m > 1, the implementation of a physical Nakagami-
m channel hNG requires a 2m-dimension signal space.
Therefore in the conventional 2-D space of an M-QAM
constellation, we have to be contented with the scalar,
i.e. envelope magnitude, channel gain given in (34),

hNG(i) = r(i), (40)

giving the composite (scalar) Nakagami-lognormal
channel as

hNG-LN(i) = hNG(i)hLN(i), i = 1, 2, ..., L. (41)

Note this means both in-phase and quad-phase compo-
nents of the QPSK signal has this same channel gain.

5 Comparison of Simulated and

Theoretical BER

In Figure 4, we compare the simulated BER result
using channel model in (32) with the theoretical BER
calculated from (28) for the case of correlated Rayleigh-
lognormal diversity channels when the output of the
MRC receiver is approximated by a single lognormal
RV. In both theory and simulation, we normalize the
power of each channel to 1. By comparing BER per-
formance QPSK modulation in correlated Nakagami-
lognormal fading channels with m = 1, 2 and L =
2, 4, 6 obtained by theoretical analysis and Monte-Calor
Simulation shown in Figures 4 and 5, the precision of
mathematical analysis has been shown.

6 Conclusion

We have successfully presented a MGF two-point
matching technique used to estimate the sum of several
correlated composite Nakagami-m-lognormal RVs at
the output of MRC to a single lognormal. The accurate
estimation has been demonstrated by choosing two

Figure 4. Comparison of theoretical BER in (28) against simulated
BER for the case of correlated Suzuki-fading environment

Figure 5. Comparison of theoretical BER in (28) against simulated
BER for the case of correlated Rayleigh-lognormal diversity channels
(m = 1 and m = 2)

matching points, and the value of the percentage error
power loss between the average power gain at the input
and output of the receiver. The higher m value means
the higher number of Rayleigh paths providing the
better SNR. As the result, it is found that the BER is
inversely proportional to the m. The accuracy of the
mathematical analysis is also backed by Monte Carlo
simulation of the BER of QPSK signal in Nakagami-
lognormal fading environment using MRC diversity
reception.
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