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Abstract– This paper proposes a non-stationary channel model in which real-time dynamics of the mobile station (MS) are
taken into account. We utilize Brownian motion (BM) processes to model targeted and non-targeted dynamics of the MS. The
proposed trajectory model consists of both drift and random components to capture both targeted and non-targeted motions
of the MS. The Brownian trajectory model is then employed to provide a non-stationary channel model, in which the
scattering effects of the propagation area are modelled by a non-centred one-ring geometric scattering model. The starting
point of the motion is a fixed point in the propagation environment, whereas its terminating point is a random point
along a predetermined drift. The drift component can be controlled by a so-called drift parameter. Tracking the MS on the
proposed Brownian path allows us to derive the local angles-of-arrival (AOAs) and local angles-of-motion (AOMs), which
are expressed by stochastic processes rather than random variables. We compute the first-order densities of the AOA and
AOM processes in closed form. The local power spectral density (PSD) of the Doppler frequencies and the autocorrelation
function (ACF) of the complex channel gain are also provided. Given a walking speed scenario, the analytical results are
demonstrated and explained in depth. It turns out that the proposed Brownian path model results in a non-stationary
non-isotropic channel model. The proposed geometry-based channel model is very useful for the performance analysis of
mobile communication systems under non-stationary conditions.

Keywords– Brownian motion processes, non-stationary channels, targeted motions, non-targeted motions, non-centred one-
ring scattering model.
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1 Introduction

Channel modelling is recognized as one of the fun-
damental tasks in the advancement of communication
systems. There exist three major approaches to chan-
nel modeling: deterministic, stochastic, and geometry-
based [1]. Among them, geometric channel models have
been found very suitable for modelling non-stationary
environments [1–3]. However, most of the geometric
channel models proposed in the literature have been
simplified under the assumption that the stochastic
radio channel is stationary in time. By considering a
very short observation time instant, the AOM and AOA
at the MS can be assumed as random variables such
that the stationarity assumption holds. The one-ring
scattering model [4–6] and the unified disk scattering
model (UDSM) [7] are two examples chosen from the
list of stationary channel models in [8] and [7].

Many empirical and analytical investigations, e.g., [9–
11], however, reveal that the stationarity of the chan-
nel is only valid for extremely short travelling dis-
tances [12]. The potential suitability of geometric
channel models for explaining non-stationary environ-
ments [1–3] on the one hand, and the results of real-

life measurement campaigns [9–11] on the other hand,
encourage us to study geometric channel models under
non-stationary conditions.

The number of analytical investigations [13–16] with
the focus on the statistical properties of non-stationary
channels is very limited. For instance, none of the
established geometric scattering models listed in [7, 8]
has been studied under non-stationary conditions. The
only exception is the non-stationary one-ring scattering
model studied in [17–19], in which it is assumed that
the MS travels along either a straight line [17], or a
semi-random path with drift [18], or a totally random
path [19]. Accordingly, considering the proposed paths
in a ring of scatterers allowed us to propose a non-
stationary channel model. A disadvantage of the model
in [18] is that the path model has been equipped
with a Brownian random component only along one
of the axes of the Cartesian coordinate system. This
randomness is then mapped to the other axis via the
slope of the drift. Therefore, the randomness might
disappear if the slope is too high (low).

In this paper, we allay the aforementioned drawback
by proposing a path model in which two independent
BM processes are assigned to model the random com-
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ponents of the path along each axis. In this regard,
the strength of the random components can be con-
trolled by a simple parameter. We also extend the path
model of [18] by equipping the model with a so-called
drift parameter. This parameter controls the presence
of the deterministic drift components along the axes.
Accordingly, the straight (line) path model in [17] is
obtained from the proposed model if only the drift
components exist, but not the random components; the
targeted path model (modified and generalized version
of the one in [18]) is attained if both the random and
drift components exist; the non-targeted path model
in [19] is achieved if the random components exist, but
the drift components do not. To capture the scattering
effects of the propagation environment, the proposed
path is supposed to be surrounded by a ring of uni-
formly distributed scatterers.

By tracking the MS along the proposed Brownian
path, we are able to derive the local AOAs and the local
AOMs. These quantities are modelled by stochastic
processes instead of random variables. We provide the
first-order density of the AOA and AOM processes in
closed form. In addition, the local PSD of the Doppler
frequencies and ACF of the complex channel gain are
computed. Considering the operating frequency of the
universal mobile telecommunications system (UMTS),
we perform numerical computations for a walking
speed scenario. The analytical results are displayed to
confirm the non-stationarity of the channel model. It is
proved that non-stationarity in time is not in line with
the common isotropic propagation assumption on the
channel. Furthermore, it is shown that the stationary
one-ring scattering model [4–6] can be obtained as a
special case of the proposed channel model.

The rest of this paper is organized as follows. BM
processes are reviewed briefly in Section 2, whereas
Section 3 employs BM processes to provide the Brown-
ian path model. Section 4 presents the propagation sce-
nario by means of the non-centred one-ring scattering
model. Section 5 derives the complex channel gain of
the proposed channel model. Its statistical properties
are investigated in Section 6. Numerical results are
provided in Section 7. Eventually, the summary of our
findings and the conclusions are drawn in Section 8.

2 Review of Brownian Motion Processes

A standard BM process {B(t) : t ∈ [0, T]} is a Wiener
process with normally and independently distributed
increments, satisfying the following conditions:

1) B(0) = 0.
2) ∀ 0 ≤ s < t ≤ T, the increment B(t) − B(s)

is a normally distributed random variable with
zero mean and variance t− s, i.e., B(t)− B(s) ∼
N(0, t− s).

3) ∀ 0 ≤ s < t < u < v ≤ T, the non-overlapping
increments B(t)− B(s) and B(v)− B(u) are statis-
tically independent.

BM processes have a broad range of applications in
different branches of science, such as in economy, med-

ical science, and engineering. Stock market analysis,
diagnosis imaging, and fractal theory [20] are some
examples, which benefit from BM processes in practice.
In mobile ad hoc networks, 2D BM processes known
as the random walk mobility model, are also used
to model atypical motions of mobile nodes [21]. The
mobility model is then used to perform network layer
analysis. In addition, three-dimensional BM processes
have been used to model fully random motions of
mobile users in the Euclidian space [22].

3 Path Modelling

In what follows, we utilize the spatial representation
of the BM process provided in [18]. This representation
enables us to introduce a spatial path model rather than
a temporal one. Notice that the spatial representation
of the path allows us to consider numerous speed
scenarios for the MS.

3.1 Spatial Representation of Brownian Motion
Processes

We assume that the MS starts its motion from a
predefined point with Cartesian coordinates (xs, ys) in
the two-dimensional (2D) plane. Moreover, let the point
(xd, yd) denote a reference point (the potential destina-
tion point) along the drift of the path. Following the
procedure described in [18], we introduce the spatial
stochastic process B(x) over the range [xs, xd], satisfying
the following conditions:

1) B(xs) = 0.
2) For all xs ≤ xp < x ≤ xd, the increment B(x)−

B(xp) is a normally distributed random variable
with zero mean and variance x − xp, i.e., B(x)−
B(xp) ∼ N(0, x− xp).

3) For all xs ≤ xp < x < xq < xm ≤ xd,
the non-overlapping increments B(x)− B(xp) and
B(xm)− B(xq) are statistically independent.

Computational reasons encourage us to consider the
spatial BM process at discrete values of x. Accordingly,
we define ∆x = (xd − xs)/L for some positive integer
L. We also let B(x)

l denote the BM process at xl = xs +
l∆x (l = 0, 1, ..., L). Referring to the last two conditions
of the spatial stochastic process B(x), one can conclude
that B(x)

l = B(x)
l−1 + ∆B(x)

l , where the increment ∆B(x)
l

is a normally distributed random variable of the form
N(0, ∆x).

The same procedure can be followed to obtain the
spatial stochastic process B(y) over the range [ys, yd].
Analogously, let ∆y = (yd − ys)/L stand for the de-
terministic increment along the y-axis. In addition,
let the spatial stochastic process B(y)

l denote the BM
process at yl = ys + l∆y. A direct consequence is the
equality B(y)

l = B(y)
l−1 + ∆B(y)

l in which ∆B(y)
l follows

the Gaussian distribution of the form N(0, ∆y).

3.2 The Brownian Path Model
To model motions of the MS in the 2D plane, we

propose a path with deterministic drift components
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along each axis. The fluctuations of the path are mod-
eled by two independent spatial BM processes B(x)

l and
B(y)

l associated with the x− and y−axis, respectively.
Accordingly, the path P of the MS is modelled by
means of

P :

{
(xl , yl)

∣∣∣∣∣ xl = xs + kdl∆x + σxB(x)
l

yl = ys + kdl∆y + σyB(y)
l

}
(1)

where l = 0, 1, ..., L is the position index, and the
drift parameter kd is to manage the behaviour of the
deterministic drift components along each axis. Fur-
thermore, the variable σx (σy) controls the randomness
of the path along the x−axis (y−axis). Notice that the
randomness of the path P originates inherently from
the randomness of the BM process Bl . Therefore, the
parameters σx and σy provide additional degrees of
freedom to magnify (attenuate) the randomness.

In what follows, we study several important special
cases, which simplify the model in (1) to the path
models proposed in [17–19]. We also remark some
potential applications of the proposed path model.

3.3 Special Cases
A very simple path model can be obtained from (1) if

we set σx = σy = 0, which ignores the random compo-
nents of the path. In this case, if the drift components
exist, i.e., kd = 1, then the straight-line path model
proposed in [17] can be attained as a special case. This
model is useful to explain very smooth paths, beginning
from a starting point and ending at a terminating point
in the 2D plane.

The path model of [18] can also be obtained as a
special case of the model in (1) if we set σx = 0 and
kd = 1. In this case, the only random component of
the path is along the y−axis. The drawback of such
a model is that by increasing the slope of the drift,
the random component will be faded. Nevertheless, the
targeted Brownian path model in (1) has been equipped
with two independent random components, i.e., B(x)

l
and B(y)

l , describing the fluctuations of the path along
each axis. In mobile communications, the proposed
path model can be used to explain typical dynamics
of users in motion, such as pedestrians walking along
a street, but not necessarily along a very smooth path.
In vehicular communications, the model can be utilized
to describe jittery motions of the vehicle antenna, while
the vehicle is moving along a road.

Another important special case is obtained by ignor-
ing the drift components, i.e., kd = 0. By doing so, the
path model in (1) reduces to the non-targeted Brownian
path model proposed in [19]. This model is known as
the random walk mobility model, which is very useful
to explain irregular dynamics of mobile users.

4 The Propagation Scenario

We use the non-centred one-ring scattering model [18]
to capture the scattering effect caused by randomly
distributed scatterers in a propagation area. Figure 1
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Figure 1. The non-centred one-ring scattering model for a single-
bounce scattering scenario.

presents the considered model with the uniform dis-
tribution of the local scatterers Sn (n = 1, 2, ..., N) on
a ring of radius R centered on the origin, but not
necessarily on the MS. Referring to this figure, αS

n
denotes the angle-of-scatterer (AOS) pertinent to the
nth scatterer Sn. At a reference point in time t0, the
MS starts its motion from (x0, y0) and moves along
the path P to reach the terminating point (xL, yL) at
time tL. Subsequently, the position of the MS at time
tl ∈ [t0, tL] is represented by Cartesian coordinates
(xl , yl). We assume single-bounce scattering, meaning
that a wave emitted from the BS arrives at the MS
with the AOA αR

n (l) after only one bounce due to the
nth scatterer Sn. Concerning the velocity scenario, we
assume that the MS is in motion with a constant speed
of vR in the direction indicated by the AOM αv(l),
which is determined by the Brownian path P .

Two realizations of the proposed Brownian path P
in such a geometric scattering model are shown in
Figures 2 and 3. It is assumed that the starting point
of the path is the origin of the Cartesian system, while
the destination point (xd, yd) is located at (100,100). The
radius of the ring has also been set to R = 300 m.
Figure 2 displays a realization of the targeted Brownian
path in (1) with the parameters kd = 1, L = 100, and
σx = σy = 3. The drift of the path has also been shown
by the dotted line. The illustrated path P varies from
realization to realization. However, the general drift of
the path does not change. Notice that averaging over
different realizations of the targeted path results in a
straight line (drift line) from (0,0) to (100,100). Figure 3
exhibits a realization of the non-targeted path P in (1),
where kd = 0, L = 100, and σx = σy = 6. As it can
be observed from this figure, the path exhibits random
walk behaviour.

The illustrated propagation scenarios in Figures 1–3
differ completely from the stationary one-ring channel
model [4–6], in which the MS is located at the center of
the ring of scatterers, while the AOM is a fixed value.
Therein, assuming a very short observation time inter-
val justifies a stationary and isotropic channel model,
while herein, the proposed path P results in a non-
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Figure 2. Realization of a targeted Brownian path P in the ring of
scatterers. The model parameters are kd = 1, L = 100, σx = σy = 3,
and R = 300 m.
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Figure 3. Realization of a non-targeted Brownian path P in the ring
of scatterers. The model parameters are kd = 0, L = 100, σx = σy = 6,
and R = 300 m.

stationary non-isotropic channel model.
In what follows, we first provide an expression for

the complex channel gain, and then we study the
statistical characteristics of the proposed non-stationary
channel model.

5 The Complex Channel Gain

For a typical fixed-to-mobile (F2M) scenario, the com-
plex channel gain µ(tl) of frequency-nonselective F2M
channels is modeled by a complex stochastic process,
representing the sum of all scattered components as
follows [18]:

µ(tl) = lim
N→∞

N

∑
n=1

cnej(2π f n(tl)tl+θn). (2)

Note that µ(tl) accounts for the effect of non-
stationarity by the time-variant Doppler frequencies1

f n(tl) rather than the time-invariant one, i.e., f n
(see [24, p. 59]). In this equation, cn stands for the
attenuation factor caused by the physical interaction of
the emitted wave with the nth scatterer Sn. In addition,
the random variable θn represents the phase shift of the
nth path. It is assumed that θns are independently and
identically distributed random variables, each of which
is uniformly distributed between −π and π [24, p. 59].

6 Statistical Characteristics of the

Channel Model

We start investigating the statistical properties of the
complex channel gain in (2) by deriving the local AOA
at the MS, which affects strongly other statistical quan-
tities. In addition, we study the AOM process in detail.
The AOA and AOM processes will then be used to
extract the PSD of the Doppler frequencies. Finally, the
ACF of the complex channel gain is derived from the
provided PSD. We remark that the illustration of the
analytical results is deferred to Section 7.

6.1 The Local Angles-of-Arrival

According to Figure 1, the AOA αR
n (l) at the point

(xl , yl) is computed as

αR
n (l) = arctan

(
R sin(αS

n)− yl

R cos(αS
n)− xl

)
. (3)

For a given position index l, the only random variable
on the right-hand side of (3) is the AOS αS

n, which
is assumed to be uniformly distributed between −π
and π (see Section 4). As the number N of local
scatterers tends to infinity in the reference model, it is
mathematically convenient to assume that the discrete
AOS αS

n is a continues random variable denoted by αS.
Referring to [18, 19], the first-order density pαR(αR; l)
of the stochastic process αR(l) in (3) is given by the
following expression

pαR(αR; l)=
1

2π

1− xl cos(αR) + yl sin(αR)√
R2−(xl sin(αR)−yl cos(αR))

2

 (4)

where −π ≤ αR < π. It is worth mentioning that
pαR(αR; l) in (4) depends heavily on the position (xl , yl)
of the MS. This means that the AOA αR(l) is first-
order non-stationary. As a special case, if the path P
crosses the ring’s center (0, 0), then pαR(αR; l) in (4)
reduces to 1/(2π), which is the AOA probability den-
sity function (PDF) of the stationary one-ring scattering
model [4–6].

1The frequency shift caused by the Doppler effect is given by f =
fmax cos(α), where fmax = f0v/c0 is the maximum Doppler frequency,
f0 denotes the carrier frequency, c0 stands for the speed of light, and
α equals the difference between the AOA and the AOM [23].
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6.2 The Local Angles-of-Motion

The path P can be changed to a continues and piece-
wise differentiable path after applying simple linear
interpolation techniques. Accordingly, the AOM αv(l)
at the point (xl , yl) can be written in the following form

αv(l) = arctan
(

yl+1 − yl
xl+1 − xl

)

= arctan

 kd∆y + σy(B(y)
l+1 − B(y)

l )

kd∆x + σx(B(x)
l+1 − B(x)

l )

 , (5)

where the terms B(x)
l+1− B(x)

l and B(y)
l+1− B(y)

l are two in-
dependent random variables of the forms N(0, ∆x) and
N(0, ∆y), respectively (see Section 3.1). Therefore, the
AOM αv(l) process can be considered as the phase of a
complex Gaussian process given by sl = (xl+1 − xl) +
j(yl+1 − yl), in which xl+1 − xl ∼ N(kd∆x, σ2

x ∆x) and
yl+1 − yl ∼ N(kd∆y, σ2

y ∆y). The phase of the complex
Gaussian distribution with non-identical means and
variances has been studied in [25] and [26]. Herein, we
avoid representing the first-order density of the AOM
(the phase distribution), as it can readily be obtained
by substituting the means and the variances of the
underlying complex Gaussian process in [26, Eq. (2)].
As a special case, if the drift component does not exist,
i.e., kd = 0, and σ2

x ∆x = σ2
y ∆y, then the AOM follows

the uniform distribution defined over the range (−π, π]
(see [19]). For this special case, the AOM is first-order
stationary.

6.3 The Local Power Spectral Density

The local Doppler frequency f (l) is defined by a non-
linear transformation of the local AOA αR(l) and the
local AOM αv(l) of the MS. It follows

f (l) = fmax cos
(

αR(l)− αv(l)
)

, (6)

where αR(l) is described statistically by the first-order
density pαR(αR; l) in (4). Furthermore, αv(l) describes
the AOM at the point (xl , yl) after realizing the path
P (see (5)). Therefore, the only random variable on the
right-hand side of (6) is the AOA. This is in contrast
with the procedure used in [18], where the AOM is
also assumed to be a random variable. To obtain the
first-order density p f ( f ; l) of the Doppler frequencies
f (l), we fix the position index l, and then we apply
the concept of transformation of random variables. The
result is shown in (7) (see next page), where

A±( f ; l) = arctan
(

yl+1 − yl
xl+1 − xl

)
± arccos

(
f

fmax

)
(8)

for − fmax ≤ f ≤ fmax.
With reference to [24, p. 85], the first-order density

p f ( f ; l) of the Doppler frequencies is proportional to
the local PSD Sµµ( f ; l) of the complex channel gain
µ(tl). This allows us to present Sµµ( f ; l) by the follow-
ing expression

Sµµ( f ; l) = 2σ2
0 p f ( f ; l). (9)

In the equation above, 2σ2
0 is the mean power of µ(tl),

and p f ( f ; l) is given by (7). For the special case that the
path P crosses the ring’s center (0, 0), the first-order
density p f ( f ; l) in (7) reduces to

p f ( f ; l) =
1

π fmax
√

1− ( f / fmax)2
(10)

which, after its multiplication by the mean power 2σ2
0 ,

results in the Jakes PSD [23]. Notice that the Jakes
PSD is not only associated with the stationary one-ring
scattering model [4–6], but also with any other scatter-
ing model that is circularly symmetric with respect to
the MS [7].

6.4 The Local Autocorrelation Function
The local ACF rµµ(τ; l) of the non-stationary complex

channel gain µ(tl) is obtained by taking the inverse
Fourier transform of the local PSD Sµµ( f ; l) in (9)
(see [27, pp. 282-285]). Accordingly, one can write

rµµ(τ; l) =

fmax∫
− fmax

Sµµ( f ; l)ej2π f τd f . (11)

For the special case that the path P goes across the
ring’s center, the local PSD Sµµ( f ; l) in (10) can be
employed to compute the inverse Fourier transform
in (11). In this case, the local ACF rµµ(τ; l) in (11)
reduces to 2σ2

0 J0(2π fmaxτ), where J0(·) stands for the
zeroth-order Bessel function of the first kind [28, Eq.
(8.411.1)].

7 Numerical Results

We use the operating frequency f0 = 2.1 GHz of UMTS
in our numerical computations. To study the effect of
targeted and non-targeted travelling paths of the MS,
the paths P shown in Figures 2 and 3 have been used,
respectively. Besides these two, we consider the path
represented by a straight line from the starting point
(0,0) to the terminating point (100,100). This path can be
obtained either by averaging over different realizations
of the targeted path shown in Figure 2, or by setting
σx = σy = 0 in (1). Given these three different paths, we
illustrate the statistical properties of the channel model
in terms of the AOA at the MS, PSD of the Doppler fre-
quencies, and the ACF of the complex channel gain. It
is also assumed that the MS is moving with a speed vR
of 5 km/h, which equals an average walking speed. For
the considered operating frequency, this speed allows a
maximum Doppler frequency fmax of about 10 Hz. The
mean power 2σ2

0 has been set to unity.
Figures 4–6 depict the first-order density pαR(αR; l) of

the AOA process αR(l) given in (4). In this regard, Fig-
ure 4 shows pαR(αR; l) of the AOA at the MS travelling
along the targeted path P shown in Figure 2, while
Figure 5 demonstrates that along the straight path.
Furthermore, the non-targeted path shown in Figure 3
is used to display pαR(αR; l) in Figure 6. A common
observation in the three figures is the uniform distribu-
tion of the AOA at l = 0, which can be attributed to the
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p f ( f ; l) =
1

2π fmax
√

1− ( f / fmax)2

2− xl cos(A+( f ; l)) + yl sin(A+( f ; l))√
R2 − (xl sin(A+( f ; l))− yl cos(A+( f ; l)))2

− xl cos(A−( f ; l)) + yl sin(A−( f ; l))√
R2 − (xl sin(A−( f ; l))− yl cos(A−( f ; l)))2

 (7)

Figure 4. The behavior of the first-order density pαR (αR; l) in (4) for
the targeted path illustrated in Figure 2.

Figure 5. The behavior of the first-order density pαR (αR; l) in (4) for
the straight path (averaged targeted path).

circularly symmetric starting point of the three paths.
For the two targeted paths, the probability of receiving
signals from the scatterers ahead (behind) decreases
(increases) if the MS continues its motion along the
path P . However, this behaviour does not hold for the
non-targeted path, in which the heading destination
point is not subject to any drift. The irregular behaviour
of pαR(αR; l) shown in Figure 6 is indeed due to the
irregular behaviour of the path shown in Figure 3.
In addition, as can be observed in Figures 4 and 5,
the lowest probability of receiving signals belongs to
the average direction of the motion, i.e., the angle
corresponds to the slope of the drift.

Figures 7–9 exhibit the local PSD Sµµ( f ; l) presented
in (9). The classical Jakes PSD (resembling a U-shape)
can be observed for the stationary case (l = 0) in all
these three figures. This is again due to the circularly
symmetric position of the MS at the beginning of
the motion. At this position, Sµµ( f , 0) is a symmetric
function with respect to f , justifying that the channel
is isotropic at the origin. This property, however, does

Figure 6. The behavior of the first-order density pαR (αR; l) in (4) for
the non-targeted path illustrated in Figure 3.

Figure 7. The behavior of the local PSD Sµµ( f ; l) in (9) for the
targeted path illustrated in Figure 2.

not hold if the MS moves along any of the paths P .
The variations of the PSD in the three figures can be
explained as follows. If the MS faces a lower number of
scatterers ahead and a higher number of them behind,
a higher probability of negative Doppler shifts can be
expected. Otherwise, positive Doppler shifts occur with
a higher probability. Given the two targeted paths, a
higher and a lower probability of negative and positive
Doppler shifts in Figures 7 and 8 can be explained by
the radial drift of these paths. Nevertheless, owing to
the randomness of the path, some exceptions might be
observed (see Figure 7).

Figures 10–12 demonstrate the absolute value of the
local ACF rµµ(τ; l) provided in (11). Recalling that the
PSD Sµµ( f ; l) is in general asymmetric (see Figures 7–
9), its inverse Fourier transform, i.e., the ACF rµµ(τ; l)
in (11), is in general complex. Nonetheless, at the
starting point l = 0, the three figures display ACFs
|rµµ(τ; l)| of the form 2σ2

0 |J0(2π fmaxτ)|. With reference
to Figures 10–12, the ACF varies in position (time),
justifying that the proposed channel model is non-
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Figure 8. The behavior of the local PSD Sµµ( f ; l) in (9) for straight
path (averaged targeted path).

Figure 9. The behavior of the local PSD Sµµ( f ; l) in (9) for the non-
targeted path illustrated in Figure 3.

stationary. Referring to Figures 10 and 11, the corre-
lation grows by increasing l for a given value of τ 6= 0.
This growth, however, occurs with some fluctuations
(see Figure 10), which are due to the randomness of
the corresponding path (see Figure 2). We finish this
part by remarking that herein, the effect of changing
motion patterns (path models) can better be observed
(described) by plotting the PSD rather than the ACF.

8 Conclusion

This paper has proposed a Brownian path model to
generate realistic trajectories of the MS. Particularity,
the proposed path model unifies both targeted and non-
targeted motions of the MS. We have employed the
proposed path model to provide a non-stationary chan-
nel model. To cope with the scattering effect, we have
utilized the non-centred one-ring scattering model, in
which the MS is surrounded by a ring of scatterers
centred not necessarily on the MS. By tracking the MS
on the proposed Brownian path, we have derived ana-
lytical expressions for the time-varying AOA and AOM.
The first-order densities of AOA and AOM processes
have been computed. These processes have then been
used to compute the PSD of the Doppler frequencies
and the ACF of the complex channel gain. It has been
shown that the proposed path model results in a non-
stationary non-isotropic channel model. Nevertheless,
the stationary isotropic one-ring scattering model can
be obtained as a special case. Considering a walking

Figure 10. The behavior of the absolute value of the local ACF
|rµµ(τ; l)| (see (11)) for the targeted path illustrated in Figure 2.

Figure 11. The behavior of the absolute value of the local ACF
|rµµ(τ; l)| (see (11)) for the straight path (averaged targeted path).

Figure 12. The behavior of the absolute value of the local ACF
|rµµ(τ; l)| (see (11)) for the non-targeted path illustrated in Figure 3.

speed scenario, we have illustrated the statistical char-
acteristics of the proposed channel model. It has been
shown that the AOA and AOM processes are in general
first-order non-stationary, which implies that the PSD
and ACF depend on time. We have also shown that the
effect of changing mobility pattern can better be seen
in the PSD as compared to the ACF of the complex
channel gain. In future works, the analytical results will
be verified by means of empirical data.
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