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Abstract– This paper presents a new factorization technique for hyperspectral signal processing based on a constrained
singular value decomposition (SVD) approach. Hyperpectral images typically have a large number of contiguous bands that
are highly correlated. Likewise the field of view typically contains a limited number of materials and the spectra are also
correlated. Only a selected number of bands, the extreme bands that include the dominant materials spectral signatures,
are needed to express the data. Factorization can provide a means for interpretation and compression of the spectral data.
Hyperspectral images are represented as non-negative matrices by graphic concatenation, with the pixels arranged into
columns and each row corresponding to a spectral band. SVD and principal component analysis enjoy a broad range of
applications, including, rank estimation, noise reduction, classification and compression, with the resulting singular vectors
forming orthogonal basis sets for subspace projection techniques. A key property of non-negative matrices is that their
columns/rows form non-negative cones, with any non-negative linear combination of the columns/rows belonging to the
cone. Data sets of spectral images and time series reside in non-negative orthants and while subspaces spanned by SVD
include all orthants, SVD projections can be constrained to the non-negative orthants. In this paper we utilize constraint
sets that confine projections of SVD singular vectors to lie within the cones formed by the spectral data. The extreme
vectors of the cone are found and these vectors form a basis for the factorization of the data. The approach is illustrated
in an application to hyperspectral data of a mining area collected by an airborne sensor.
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1 Introduction

Hyperspectral data consist of images collected at many
spectral channels (or bands). Hyperspectral images can
be converted into data matrices by lexigraphic concate-
nation, assigning each channel into a row and each
pixel spectrum to a column. These data matrices are
non-negative, i.e., all matrix elements are positive or
zero. The singular value decomposition (SVD) provides
the best rank approximation to a data matrix in the
Frobenius norm, making it ideal for both noise reduc-
tion and for data compression. This feature often has
been exploited to estimate the number of dominate
material components present in spectral data. A data
matrix, A, of L rows, M columns and a rank or pseudo-
rank of N is represented by its SVD as

A = UΛVT =
N

∑
k=1

ukλkvT
k , (1)

where U is an L by N matrix of orthonormal vectors,
uk the left singular vectors. V is an M by N matrix of
orthonormal vectors and vk the right singular vectors.
The matrix Λ is an N by N diagonal matrix of singular
values, λk. Here the singular values are assumed to be
in descending order, λ1 ≥ λ2 ≥ · · · ≥ λN .

1.1 Pseudo-Rank
If all singular values beyond the Nth are zero the

matrix is of rank N. More commonly a criterion is

used to decide where to truncate the expansion under
the assumption that the remaining terms correspond
to noise. The truncated number N is then called the
pseudo-rank. In this way the SVD is used for noise
reduction, with the assumption that the remaining sin-
gular vectors only contain noise. The pseudo-rank has
also been used as an estimate of the number of unique
bands and the number of unique materials represented
in a spectral data set, making it an important number
to obtain for interpretation. Assuming that there are N
linear independent vectors implies there are N unique
materials and N unique bands, thus interpretation can
be achieved via a linear mixing model where a basis
of material spectral or band images can be used in a
constrained least squared process to factor the spectral
matrix.

Perhaps the most challenging aspect of the problem
is the determination of the most appropriate value for
the pseudo-rank. The divide between singular vectors
containing useful information and those containing
noise is grey. Variations in illumination and material
reflectance at a minimum affect the intensity of a
materials spectrum. Together with multiple scattering
of light from the ground surface and the atmosphere,
materials may need to be modeled with more than one
spectrum. Most of the energy of an SVD expansion
results from the dominate materials in an image while
the spectral variations of materials or additional rare
materials can contribute at levels within the noise [1].
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1.2 Non-Negative Rank
Recently additional approaches to estimating [2, 3]

the pseudo-rank have been developed that utilize the
non-negativity of the column mean of a non-negative
matrix. These “virtual” dimension methods are being
used regularly as a basis for estimating the appropriate
pseudo-rank.

All of the efforts have been based on the assumption
that in the absence of noise, there is a one to one
correspondence between true rank and the number
of abundant and rare components, that is, all of the
components form a linearly independent set. While
linear independence of a set of vectors requires that
no vector of the set be represented as a linear combina-
tion of the remaining vectors of the set, non-negative
linear independence of a set of non-negative vectors
requires that no vector of the set can be represented
as a non-negative linear combination of the remaining
vectors. The appropriate useful quantity is thus the
non-negative rank. The non-negative rank does not
necessarily coincide with the rank. The concept and
determination of non-negative rank is still an active
subject of research [4, 5]. Its value is bounded by
the rank of the matrix, N, and the smaller of the
row/column dimensions of the matrix. Unfortunately
there are no algorithms that predict its value [6].

We introduce in this paper a cone model for non-
negative row or column vectors of a spectral matrix
and use it to place constraints on projections of the
singular vectors [7]. The resulting projections can be
processed to extract extreme vectors of the cone, the
number of which can exceed the rank of the constraint
matrix and the data matrix. Once the extreme vectors
have been identified in the data, their contributions can
be determined by a constrained least squares fitting
procedure, or by an oblique projection technique. The
approach is outlined in Section 2 and demonstrated in
Section 3. Conclusions are drawn in Section 4.

2 Approach

2.1 Non-Redundant Constraints and Extreme Vectors
It is useful to introduce the cone concept for identi-

fying extreme vectors in spectral matrices. Spectral ma-
trices are non-negative. In the following, an approach
is to determine extreme vectors in spectral matrices
is presented, based on identifying non-redundant con-
straints that appear in enforcing non-negative linear
combination requirements for cone vectors. The column
cone (rows) of a non-negative matrix A is formed from
all non-negative combinations of its columns (rows). By
definition, all vectors, a, of the column cone satisfy

a = Ap, for all p ≥ 0. (2)

Extreme vectors (rows) cannot be represented by a
positive linear combination of other vectors (rows) in
the data. Non-extreme vectors (rows) can be modeled
by a positive linear combination of extreme vectors
(rows). The extreme vectors of the column cone will
have all components of p equal to zero except for its

own component which will be unity. This constraint
condition can be applied directly to the singular vec-
tors.

The approach is to find appropriate projections of
the singular vectors determined by singular value de-
composition. We work directly with SVD together with
constraints that confine the singular vector projections
to the cones formed the columns and rows of the ma-
trix. The constraint that singular vector projections, be
restricted to the cone are formed by using Equations (1)
and (2) as

a = Uz = AVΛ−1z = Ap, (3)

and thus the vectors a can be projected from the left
singular vectors and the constraint relation for the
projection coefficients, z, is

Gz ≥ 0, (4)

with
G = GΛ−1. (5)

In a totally analogous way row cones can be defined
via the transpose AT . The row cone is defined as all
vectors, b satisfying

b = ATf, for all f ≥ 0, (6)

and in terms of the right singular vectors as

b = Vw = ATUΛ−1w = ATf. (7)

The constraint relation for right singular projection
coefficients w is thus

Hw ≥ 0, (8)

with
H = UΛ−1. (9)

In the above, G and H are the constraint matrices
(for column and row, respectively). We concentrate
here on the row cone and row inequality constraints
(Equation (8)), as the processing of the column cone is
totally analogous. We first recall that dimension of H
is L × N, where L is the number of spectral channels
(bands) and N is the matrix rank. The length of the
column vector w is N, which is in general much smaller
than L. The system of inequalities in Equation (8),
formed by the rows of H, therefore contains many
redundancies, that need to be reduced to a set of non-
redundant equations. The removal procedure will allow
identification of extreme vectors.

From the products in Equations (7) and (8), we note
that the constraint matrix H has one row for each
column of AT , a band of the spectral matrix while the
elements of each column of H are associated with a
left singular vector (uk) of A in order of decreasing
singular value. The rows of H form a set of linear
homogeneous inequalities, Hw ≥ 0. The determination
of the extreme vectors of AT can then be accomplished by
the reduction of the inequalities to a set of non-redundant
inequalities. Redundant inequalities are those that can
be removed from the set without changing the feasible
region [8], and hence without changing the cone of AT .
The removal of redundant constraints is an important
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process in linear and non-linear programming and
there is continuing research in this field [9]. Reducing
the inequalities redundancies amounts to finding the
extreme (non-redundant) rows of H. Once the non-
redundant rows of H have been identified, the corresponding
columns of AT now identify the extreme band images of A.

2.2 Determining the Non-Redundant Constraints
Our approach in this paper relies on elementary prop-
erties of inequalities. First, an inequality multiplied
by a positive constant remains an inequality of the
same sign, and second, a positive linear combination
of inequalities also leads to an inequality of the same
sign. Spectral images with many pixels containing the
same material will have nearly identical spectra and
nearly identical constraints. Thus the first property
can be used to cluster rows of the constraint matrix,
H, into groups. All but one row of each group will
be redundant. However, a more general approach is
needed for rows that are far from group centers, those
that correspond to spectrally mixed images.

We use a step-wise oblique projection technique to
determine the non-redundant constraints. There are
two tasks performed in each step. First a constraint row
is identified as an extreme, second this row is projected
from all remaining rows that are not identified as
extreme. Our selection process of extremes is based on
the particular features of the constraint matrix H. There
is a direct correspondence between the column indices
and the singular vectors (see Equations (1) and (8)).
The first column of H is proportional to the first left
singular vector, u1 of A, the second column to the
second, u2 and finally the Nth column and the Nth

uN . We can thus identify extreme vectors as those with
small first coefficient relative to the remaining ones.
We select the first extreme row as the row with the
smallest relative contribution of the first coefficient. The
remaining extreme rows are selected using a projection
procedure decribed next.

2.3 Oblique Projections
The projection procedure removes the current iden-

tified extreme from the remaining rows by oblique
projections. An oblique projection [10] is defined as

P = x(yTx)−1yT . (10)

An oblique projection differs from an orthogonal pro-
jection

O = x(xTx)−1xT . (11)

in that the vector y is not necessarily parallel with
vector x. The oblique projection chosen is as close to an
orthogonal projection as possible while constraining the
resulting current and previous projection coefficients to
be non-negative. All previous projection coefficients are
updated during the projection and either the projection
is orthogonal or a previous coefficient is driven to
zero and the projection is constrained to be oblique.
After the projection we select the row with the largest
residual in the `∞ norm. The choice of the `∞ norm

results in the selection of the vector with the largest
magnitude error in a coefficient associated with one of
the singular vectors. Whenever the projection is oblique
the active constraint removes a previous projection from
the particular model [11].

The processing is illustrated by a simple example. Let
the ith row of H, hi be the first extreme vector selected.
Its projection is removed from all the remaining unse-
lected kth rows hk yielding

h(1)
k = hk − hici,k (12)

where ci,k are the projection coefficients, which are re-
quired to be positive. The projection will be orthogonal
if ci,k ≥ 0, otherwise, ci,k is set to zero. Let the jth row
be selected as the second extreme vector. It’s removal
from all the remaining kth rows is,

h(2)
k = h(1)

k − h(1)
j cj,k (13)

h(2)
k = hk − hici,k −

(
hj − hici,j

)
cj,k (14)

The projection coefficient cj,k must satisfy

0 ≤ cj,k ≤
ci,k

ci,j
(15)

If the constraint is satified, the orthogonal projection
is removed. If the orthogonal projection coefficient is
larger than ci,k/ci,j, it must be replaced by ci,k/ci,j,
that is an oblique projection is applied. The oblique
projection leads to the removal of the 1st extreme from
the kth row model, yielding,

h(2)
k = hk − hj

ci,k

ci,j
(16)

Replacement is based on the fact that an oblique pro-
jection will decrease the residual, provided that the
coefficient is bound by zero and twice the orthogonal
projection coefficient. If a coefficient of a previous ex-
treme can be driven to zero with a oblique projection
with coefficient less than twice the orthogonal projec-
tion coefficient, a replacement takes place otherwise
the row is not changed, as no reduction in residual is
possible.

The number of extreme, non-redundant, rows will
typically exceed the rank of H. We restrict the total
number of modeling vectors to this rank; once this rank is
reached, a new vector is added only if the coefficient of
a previous vector can be driven to zero [12]. Either the
current extreme vector replaces a previous one or the
row is not updated by the current vector. The selected
option is the one that yields the smallest residual.
The stopping criteria for the algorithm can be based
on either the magnitude or the residual or an input
maximum number of non-redundant inequalities to
select. As the number of non-redundant inequalities
will in general exceed N, and can be much larger, the
maximum number criteria should be chosen large. If
chosen too large, a number of the “non-redundant”
inequalities will be nearly identical and so the output
can be post-processed via clustering to further remove
some redundancies. The end result is a set of extreme
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Figure 1. Representative pixel reflectance spectra selected from the
Cuprite Nevada data collection, shown in the high signal to noise
bands selected for processing.

rows and a set of non-negative projection coefficients
that model the redundant rows as non-negative linear
combinations of the extremes rows.

2.4 Non-Negative Factorization of the Matrix

Once rows of A have been identified as extreme, there
remains the process of finding the non-negative expan-
sion coefficients to complete the factorization. This is a
constrained linear mixing problem. However a standard
constrained least squares algorithm that requires the
inverse or pseudo-inverse will not be appropriate as the
number of extremes will in general exceed the pseudo-
rank N of A. The matrix of the extremes will then be
exceedingly ill-conditioned and the inverse may not
exist. One approach to this problem is to select the
N extremes that are the most abundant, those with
the most resulting non-zero projection coefficients, and
perform a constrained least squares with these. The
resulting residual and expansion coefficient arrays can
then be further processed with the remaining extremes
using the replacement procedure described above. Al-
ternatively, the oblique projection technique [11, 12]
used for the inequality constraints can be applied di-
rectly. The latter option was chosen for this work with
the restriction of end-member selection to the list of
columns identified as extreme by the linear inequality
constraints problem. Residuals were calculated in the
`2 norm.

3 Application

The approach is applied to a spectral reflectance image
data set [13] of the Cuprite Nevada mining area that
was collected by the NASA Airborne Visual and Infra-
Red Imaging Spectrometer (AVIRIS) [14]. The AVIRIS
sensor collects images in 224 contiguous bands from
400 nm to 2450 nm wavelengths. A (200× 200) pixel sub-
array from the upper right hand corner of the fourth
data set was selected for processing, a total of 40, 000
pixel spectra. The data are expressed as reflectance
times 10, 000.

We preprocessed the data removing bands 1-4, 104-
113, 148-167 and 221-224 due to low signal to noise
and/or strong atmospheric absorption. Sample pixel
spectra are illustrated in Figure 2 and sample band
images are illustrated in Figure 1. Each spectrum con-
tained 186 high signal to noise bands. Prior estimates
of the number of components from two popular new
techniques [2, 3] lead to a range of predictions [3, 15]
of between 14 and 25 components, even though most
of SVD energy is in the 1st eight to ten singular
vectors [3]. Given the wide range of estimates, we
arbitrarily selected 16 as the SVD expansion length of
the Cuprite array and processed the resulting linear
homogeneous constraints as described above. A cut-
off number of non-redundant inequalities was chosen
as 40, a number expected to exceed the number of
unique band images. Many of the 40 band images were
very similar. These were grouped using a simple leader
clustering algorithm, QUICK [16]. The algorithm does
not require the number of clusters as input, only a
Euclidian distance threshold that was selected as 0.001.
The process leads to an estimate of 20 non-redundant
inequalities, and 20 unique band images. The Cuprite
spectral image matrix was factored using the oblique
projection technique with the 20 band images. The
standard deviation for the reflectance residual ranges
from 0-1% of the band reflectances. The expansion co-
efficients are the fractional contributions of the extreme
bands. These are illustrated in Figures 3, 4 and 5.
Some band-passes are modeled as scaled copies of
an extreme. Examples include band-pass 5-17 (409.2-
527.5 nm) that is modeled by band 16 and the band-
pass 132-147 (1602.8-1752.2 nm) that are modeled by
band 138 as illustrated in Figures 3 and 4, respectively.
Most of the bands are modeled by adjacent extremes
with small contributions from more distant extremes.
An exception is the band-pass 80-103 (1115.2-1314.1 nm)
where the major contributions come from the local
band 81 and the distant band 138, with small contri-
butions from band 33. Regions where strong spectral
features of the minerals present [17–19] are most pro-
nounced require several more closely spaced extreme
bands, as illustrated in Figure 5.

4 Conclusions

The interpretation of spectral images and time series
based on matrix factorization is a challenging area of
research. Confounding the interpretation is the identifi-
cation of the number of components present. The well
known property of matrix rank provides the number
of linearly independent components (rows/columns)
present in the data but noise obscures the estimate
of rank. The more relevant non-negative rank that
provides the number of non-negative independent com-
ponents present in the data is an elusive quantity that is
bounded by the rank and the smaller of the number of
rows/columns of the matrix. The number of extreme
points in a cone also typically exceeds the rank and
may provide a useful approach. The current approach,
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Figure 2. Four of the 224 band images of the selected upper right (200 × 200) corner of Cuprite Nevada the data collection: (Upper Left) Band
33, (664.1 nm), (Upper Right) band 138 (1662.6 nm), (Lower Left) band 189 (2158.7 nm), and (Lower Right) band 218 (2447.3 nm).

illustrated here for spectral band selection, is being
extended to factorization by pixel spectra in addition
to bands. The major difference is in the number of
constraints. For bands the constraints number in the
hundreds; for the Cuprite data, there are 224 bands; for
pixel spectra however, the number of constrains range
from tens of thousands to several hundred thousand;
for the Cuprite data used here, there are (200 × 200)
pixels and 40, 000 constraints.
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Figure 3. The fractional contributions, of the extreme band images
to bands 5 to 103, (409.2-1314.1 nm). Extreme bands 16 (517.6 nm), 33
(664.1 nm), 60 (923.0 nm) and 81 (1124.8 nm) are illustrated.
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Figure 4. The fractional contributions, of the extreme band images
to the high signal to noise bands 80 to 103 (1115.2-1314.1 nm) and
bands 114 to 147 (1423.6-1752.2 nm). Extreme bands 116 (1443.5 nm),
119 (1447.4 nm) and 138 (1662.6 nm) are illustrated.
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Figure 5. The fractional contributions, of the extreme band images
to the high signal to noise bands 168 to 220 (1948.6 nm to 2467.2 nm).
Extreme bands 170 (1968.6 nm), 174 (2008.7 nm), 176 (2028.7 nm), 186
(2128.7 nm), 189 (2158.7 nm), 194 (2208.6 nm), 201 (2278.4 nm), 205
(2318.2 nm), 209 (2357.9 nm), 215 (2417.6 nm), 217 (2437.4 nm), 218
(2447.3 nm) and 219 (2457.2 nm) are illustrated.
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