REV Journal on Electronics and Communications, Vol. 3, No. 1-2, January - June, 2013 77

Brief Article

NetFPGA Based OpenFlow Switch Extension for Energy Saving
in Data Centers

Tran Hoang Vu, Tran Thanh, Vu Quang Trong, Pham Ngoc Nam, Nguyen Huu Thanh

School of Electronics and Telecommunications, Hanoi University of Science and Technology, Hanoi,
Vietnam

Correspondence: Tran Hoang Vu, vu.tranhoang@hust.edu.vn
Manuscript communication: received 12 February 2013, accepted 3 June 2013

Abstract- The increasing demand for data centers in both scale and size has led to huge energy consumption. The cost and
environmental impact of data centers increases due to large amounts of carbon emissions. One solution to this problem is to
intelligently control the power consumption of switches used in data centers. This paper proposes an extension to OpenFlow
switches to support different power saving modes. The extension includes defining new messages in the OpenFlow protocol
stack and designing an OpenFlow Switch Controller (OSC) that is able to turn on/off switches and disable/enable ports.
To prove the soundness of the proposed extension, the functions of an OSC has been integrated in a NetFPGA based
OpenFlow switch used in the ECODANE framework. The results presented in this paper can also be used by the OpenFlow

compliant switches manufacturer or by power aware research community.

Keywords— Openflow switch, energy-aware networking, data center, NetFPGA.

1 INTRODUCTION

So far, researchers have made a number of remarkable
researches in the field of energy efficiency in data
centers. However, most of the achievements in the field
of energy efficiency in data centers focus on two main
components that are servers and cooling systems [1, 2].
Improving the energy efficiency of other existing net-
work devices has not gained much attention. In [3, 4]
we proposed a framework called ECODANE (Reducing
Energy Consumption in Data Center Networks based
on Traffic Engineering) which focuses on optimizing
power consumption of network components by de-
signing an intelligent network control system that dy-
namically adapts the set of active network components
corresponding to the total traffic going through the data
center. The experimental results in [3, 4] have shown
that by disabling unused links (i.e. ports) and switches,
an energy saving of 25% to 40% can be achieved. Such
a framework, however, requires the use of a more
flexible and configurable network architecture such
as Software-Defined Networking (SDN), in which the
OpenFlow is one of the technologies widely used. There
have been attempts to extend the current commercial
switches to support OpenFlow protocols [5, 6] or to
build a complete OpenFlow switch for research pur-
poses [7]. However, these switches do not have power
aware functionalities.

In this paper, we propose an extension to OpenFlow
switches to support different power saving modes. The
main contributions of our work are the following:

o We extend the OpenFlow protocols to include new
messages which enable the OpenFlow controller

to control switches and links to work at different
power saving modes.

e We design an OpenFlow Switch Controller (OSC)
which receives control messages from the Open-
Flow controller and controls switches and links.
The design of OSC can be used as a block in Open-
Flow compliant switches. Our prototype OSC can
be used together with a NetFPGA based OpenFlow
switch [7] for power aware networking research.
We present how to integrate an OSC block in a
NetFPGA based OpenFlow switch.

The rest of the paper is organized as follows. Sec-
tion 2 presents the related work. Section 3 describes
new messages which we propose to add to OpenFlow
standard to support power management functionali-
ties. The design of an OSC is described in Section 4.
Section 5 presents the integration of an OSC block in
a NetFPGA based OpenFlow switch. Conclusions are
drawn in Section 6.

2 RELATED WORK

This Section presents an overview of related technology,
standard and framework used in the next Sections.

2.1 OpenFlow

The design of energy-aware high performance data
centers requires a new network architecture that is more
reconfigurable so that several new functionalities can
flexibly be added within the network, such as traffic
and energy monitoring; new routing and forwarding

1859-378X-2013-1210 (© 2013 REV

78 REV Journal on Electronics and Communications, Vol. 3, No. 1-2, January — June, 2013

OpenFlow
b, Switch _of

Secure
Channe| -------

| Controller
OpenFlow i

Sw

Flow
Table

Figure 1. OpenFlow switch.

schemes, integrated smart sleep, power scaling mecha-
nisms and so forth. Software-Defined Networking tech-
nologies such as OpenFlow are increasing deployed
recently for these purposes. The OpenFlow protocol is
an open and standardized protocol for the network con-
troller communicating with the switch [8]. In a classical
router or switch, the fast packet forwarding (data path)
and the high level routing decisions (control path) take
place on the same device. An OpenFlow Switch sep-
arates these two functions. The data path portion still
resides on the switch, while high-level routing decisions
are moved to a separate OpenFlow controller (Figure 1).
The OpenFlow switch and Controller communicate
via the OpenFlow protocol, which defines messages,
such as packet-received, send-packet-out,
modify-forwarding-table, and get-stats.

2.2 NetFPGA-based OpenFlow switch

NetFPGA is an FPGA (Field Programmable Gate Ar-
ray) board designed and developed at Stanford, which
has 4 Gigabit Ethernet ports. It can be connected to a
host PC using PCI interface as shown in Figure 2. NetF-
PGA has been used to implement a number of network
devices such as switches, routers and traffic generators
for network related researches [7]. The most common
use of NetFPGA is the implementation of an OpenFlow
switch. In this implementation, a NetFPGA board is
connected to a host PC (Personal Computer) via a PCI
(Peripheral Component Interconnect) interface. The PC
is used to implement the software part of the switch
which is responsible for transferring information be-
tween the switch and the controller using the Openflow
Protocol, while the NetFPGA is used to implement
the hardware part which contains flow-table to route
packets at line-rate. The NetFPGA based OpenFlow
switch has four 1Gbps bi-directional Ethernet ports
working at 125 MHz.

The detailed block diagram of the component of the
NetFPGA board is shown in Figure 3. As can be seen
in Figure 3, the heart of the NetFPGA board is a Xilinx
Virtex II-Pro 50 FPGA. A detailed description of the
implementation of NetFPGA based OpenFlow switch
can be found in [9].

PCI

poe e
A Board

NetFPG

Figure 2. NetFPGA board [9].

A |
NetFPGA platform

FPGA w/provided infrastructure [
o3 =3 e—ts! D =
8 {fER s
== 7
‘—'—'.' HE O = User-defined 3 8 2
% &"{I" logic AN ; 23

Ry

|
=
1
o)/ |
391

Xilinx o=
| e ()
='_{: Virtex II-Pro 50 -~ g g
— 2 o § ol —1 FPGA
< m om .-l (S

|

FIFO - 1N\
packet Control, PCI
buffers Interface
1

\.I

vivs
L] ao¢

12
Hosti] Linux OS - NetFPGA Kernel driver
3 User-defined software networking applications |
Figure 3. The detailed block diagram of the component of the

NetFPGA board [7].

2.3 The ECODANE framework

The ECODANE framework bases on the Elastic
Treemodel [10], which is a flexible system to dynam-
ically adapt the network topology of a data center and
the corresponding energy consumption to the traffic
requirements. As illustrated in Figure 4, the framework
consists of several components as the followings: (1) the
OpenFlow controller that gives the full control on data
and management parts of the network; (2) the data center
network that consists of both physical NetFPGA gigabit
switches and emulated network devices; and (3) the
traffic generator that is able to generate traffic following
mathematical models such as lognormal ; it can also
reproduce real traffic traces measured from data centers
as described in [4].

The OpenFlow controller, which is the main intel-
ligence of the system, contains four futher functional
blocks: the monitoring, optimizer, routing and power
control (Figure 4). These components are built on NOX,
an open source OpenFlow controller [11].

e Monitoring: the monitoring component collects
all needed statistics from OpenFlow switches
via OpenFlow messages, such as link utilization,
power consumption of links in a switch, total
power consumption of a switch and so forth.

o Optimizer: This is the most important component
determining the ability to save energy in the entire
network. The block optimizes the network topol-

Tran Hoang Vu, et al: NetFPGA Based OpenFlow Switch Extension for Energy Saving in Data Centers 79

Routing
Calculate optimal topology based on Concentrate trafficon a
current traffic and energy conditions minimum number of link

Monitoring
Power

Power Control

Adjustlink, port, switch
state

Port & switch
power
consump-
tion

1
1
v NOX

1
1
1
1
'
1
1
!
1

Y

Data Center Network
(switches, links)

Mininet OpenFlow Node

Realistic energy model

Traffic Generators

lognormal IAT and pkt. length with
based on real traces

Virtual thed.

Real data Traffic modeling Energy Hardware

center & measurement [~ testbed based

network characterization and modeling on NetFPGA

Figure 4. ECODANE architecture [4].

ogy based on measured traffic statistics of each
interface on the switch. We implement the Rate-
Adaptive Topology-Aware Heuristic (RA-TAH) op-
timization algorithm that has also been integrated
into the switch. RA-TAH builds an Elastic Tree by
calculating the number of active switches and links
based on the current traffic utilization. Further-
more, RA-TAH applies the power scaling concept,
which dynamically reduces the working rate of
processing engines or of link interfaces to adapt
their capacity to the actual traffic utilization by
controlling the clock frequencies of the switches
to save the energy. The rest of the Fat-Tree topol-
ogy can be removed from the graph [10]. Then it
sends information on new graph to the routing
and power control components. The optimizer runs
continuously and updates new graph with a fixed
cycle.

e Routing: this component receives information from
the optimizer and route the traffic on the actual
elastic tree topology. In our testbed, different rout-
ing algorithms can be applied, such as the Equal
Cost Multipath routing (ECMP).

o Power Control: This block receives information from
the optimizer, and then sends the message to the
OpenFlow Switch Controller (OSC) for turning on
and off switches and/or ports or for changing the
working mode of the switches to save energy.

3 EXTENDING THE OPENFLOW STANDARD

OpenFlow messages are sent between the OpenFlow
Controller and switches to exchange statistics and mon-
itoring as well as managing, controlling information.
Each Openflow message begins with the OpenFlow
header [12]:
struct ofp_header {

uint_8 wversion;

uint_8 type;

uint_16 length;

uint_32 xid;

Table I
OFPT_PORT_MOD MESSAGE
Openflow Port no MAC Config Mask Link Advertise Pad
header address state

8bytes 2bytes | 6bytes | 4bytes | 4bytes | lbytes 4bytes 3bytes

It is while worthy to note that the current version
1.04 of the OpenFlow protocol specifies only limited
number of fields, thus it can hardly support energy-
aware functionalities. On the other hand, as mentioned
in the previous section, the OSC should receive in-
structions from the OpenFlow controller to control the
working mode of switches and ports. These instructions
include:

« Instructions to turn on or off switches.

« Instructions to enable/disable links or ports.

o Instructions to adjust link rates by changing the
clock frequencies corresponding to different power
saving modes.

The above instructions need to be conveyed in
the messages exchanged between the OpenFlow
controller and the OSC. For this purpose, we propose
three types of new messages:OFPT_PORT_MOD,
OFPT_LINECARD_MOD and OFPT_SWITCH_MOD
which are used to control the operating mode of ports,
line cards and switch, respectively.

e OFPT_PORT_MOD message:

Type of message: Controller to Switch
Length: 32 Bytes
Functions:
Configure ports state
including ON, OFF and
LINK_RATE
Structure:
struct ofp_port_mod{
struct ofp_header header;
uintl6_t port_no;
uint8_t hw_addr [OFP_ETH_ALEN];
uint32_t config;
uint32_t mask;
uint8_t link_state ;
uint32_t advertise;
uint8_t pad[3];
}i
The Link state field stores the information to configure
the port as shown in Figure 5. A value "1’ in the flag
bit will instruct the OSC to change port state. The Mod
field indicates the working mode of the port such as
ON, OFF, LINK_RATE...
When Mod is LINK_RATE, the link rate will be adjusted
according to the field Link Rate. Currently, only 10
Mbps, 100 Mbps and 1 Gbps link rates are defined.

e OFPT_SWITCH_MOD message:

Type of message: Controller to Switch
Length: 24 Bytes
Functions: Configure switch state
Structure:

struct ofp_switch_mod{

80 REV Journal on Electronics and Communications, Vol. 3, No. 1-2, January — June, 2013

——\C J
A g
Flag Link Rate Mod

Figure 5. Link state field.

AN \ S—

Y
Flag Reserved Mod

Figure 6. Switch state field.

N VT N
Flag Reserved Mod

Figure 7. Line Card state field.

struct ofp_header header;
uint64_t datapath_id;
uint8_t state ;
uint32_t option;
uint8_t pad[3];
Vi
The Switch State field stores the information to con-
figure the switch as shown in Figure 6. The Mod field
indicates the working modes of the switch such as ON,
OFF, IDLE, SLEEP etc.

e OFPT_LINECARD_MOD message:

Type of message: Controller to Switch
Length: 20 Bytes
Functions: Configure line card state
Structure:
struct ofp_linecard_mod{
struct ofp_header header;
uint64_t datapath_id;
uintlé6_t line_card_no ;
uint8_t state;
uint32_t option;
bi
The Line card state field stores the information to
configure the switch as shown in Figure 7. The Mod
field indicates the working modes of the line card such
as ON, OFF, IDLE, SLEEP etc.
Figure 8 illustrates the communication flow chart be-
tween the NOX and the OSC. The type of the message,
i.e. PORT_MOD, LINECARD_MOD or SWITCH_MOD,

Table II
OFPT_SWITCH_MOD MESSAGE

Opflow header | Datapath ID Switch State | Option Pad
8bytes 8bytes 1bytes 4bytes 3bytes

Table III
OFPT_LINECARD_MOD MESSAGE

[Opflow header { Datapath ID { Line Card no { Line Card State { Option \
[8bytes { 8bytes { 1bytes { 1bytes { 2bytes \

Begin
7

Handshake with
NOX

v

OK?

+V

< n
—— Receive message

{

Is N Is
PORT_MOD —»< LINE_CARD
2 MOD?

<
<
<
<

+V +Y

Change

Qarespor> lincicarc Switch state? "
state? state? N
v v v
Change Change line card Change switch

port state state state

End

A

Figure 8. Communicating flow chart between the NOX and the OSC.

Openflow switch Controller NOX

Hello

%

Feature Reply

[Vendor—

Error

Flow Mod

(Openflow packets exchanged)

Figure 9. Handshaking between the NOX and the OSC.

is defined in the type field of the OpenFlow header.

Before establishing a communication session, the
NOX and the OSC have to perform a handshaking
protocol as shown in Figure 9.

4 HARDWARE DEesiGgN orF OSC

In this Section, we describe the design of a stand-alone
prototype OSC. The purpose of this design is threefold:
the first is to test the proposed protocol presented in
Figure 8 and Figure 9; the second is to extend the
NetFPGA-based OpenFlow switches with power saving
functionalities to be used in power aware networking
research; and the third is to provide a reference design
of a power management block which can readily be
used in an OpenFlow compliant switch.

4.1 Requirements

The OSC that needs to be designed should meet the
following requirements:

Tran Hoang Vu, et al: NetFPGA Based OpenFlow Switch Extension for Energy Saving in Data Centers 81

s A ON/OFF
~| Switch Circuit
Main controller
:} ON/OEE
Ports Circuit

LM3S6965
Figure 10. The block diagram of the prototype OSC.

Instructlons

from NOX D

e r —— Y

ON/OFF SWITCH
CIRCUIT

MAINBOARD CONTROLLER

Figure 11. OSC’s hardware.

o It should be able to receive OpenFlow messages
from the OpenFlow Controller as described in
Figure 8 and Figure 9

e It should be able to control the working mode of
switches, line cards and ports. For the prototype
OSC, it should be able to turn on/off a NetFPGA
based switch and the 4 ports of the switch. Since
the line rate of the NetFPGA is fixed to 1Gbps, line
rate adaptation is not required.

o It should have low power consumption in order
not to incur significant power overhead.

4.2 Block Diagram of the Prototype OSC

The block diagram of the OSC is shown in Figure 10.
The main controller is in charge of receiving instruc-
tions from the NOX and performs the corresponding
control actions. The on/off switch circuit is responsi-
ble for turning on or off the whole switch while the
function of the on/off port circuit is turning on or off
ports.

4.3 Detailed Design of the OSC

The main controller is implemented using a low
power ARM cortex-M based microcontroller LM356965
from Texas Instrument [13]. The protocol presented in
Figure 9 and Figure 10 are implemented in C and
compiled for LM356965. The PCB of the OSC is shown
in Figure 11.

For the on/off port circuit, we use 4 low power SRD-
05vdc-sl-c relays to connect/disconnect the Ethernet
signal number 1 of the Ethernet ports of the NetFPGA.
It has been reported that when a port of the NetFPGA
or of a commercial switch is disconnected, 1W of power
consumption can be saved [14, 15]. The power saving
level is more significant as the number of ports increase.
For example, as reported in [14], a typical enterprise
switch has the chassis power consumption of 70W and
approximately 1W per port power consumption. So the
total power consumption of a switch with 24 ports will
be 94W. If we can disconnect 20 ports out of 24 ports of

‘

Figure 12. Testbed setup

the switch we can save 20W which is about 21% of the
total power consumption. In the best case, if the whole
switch can be switched off we can save 94W.

The on/off switch circuit uses a high current, low
power relay to connect/disconnect the power supply
of the switch.

4.4 Implementation and Result Analysis

In order to test the design and implementation of
the OSC, we have built a hardware testbed includ-
ing a NOX Controller, an OSC and a NetFPGA-based
OpenFlow switch (Figure 12). The NOX controller is
implemented on a host PC running Ubuntu version
10.10. The OSC is connected to the NOX via an Ethernet
connection. The four ports of the NetFPGA are con-
nected to the 4 output Ethernet ports of the OSC. The
four input Ethernet ports of the OSC are connected to
a commercial switch. Experimental results have shown
that we can send commands from the NOX to the OSC
to turn on/ off the switch and to turn on/off the ports of
the NetFPGA card. We have also measured the power
consumption of the OSC. The total power consumption
of the OSC is 1900mW including 700mW consumed by
the main controller circuit and approximately 300mW
consumed by each relay. The power consumption of
each relay can be reduced to 50mW by using state-
of-the-art NEC/TOKIN ED2/EF2 relays [16]. From the
results reported in [14] and from our measurement
result of the power consumption of the OSC, we can
derive the power model of a typical commercial switch
with OSC functionalities added as follows:

PSW:Pchussis+NPp+Pr+Pctrl (1)

Where:

e Pgyy is the total power consumption of the switch
with OSC functionalities.

e Passis is the power consumption of the original
switch excluding the power consumption of the
ports, which is typically 70W.

o P, is the power consumption of each port, which
is typically 1W.

e N is the number of ports.

82 REV Journal on Electronics and Communications, Vol. 3, No. 1-2, January — June, 2013

Table IV

Power CoNSUMPTION OVERHEAD OF THE OSC FUNCTIONALITIES
N PoverheadW) | Powiten (W) Overhead(%)

4 0.9 74 1.2

8 1.1 78 14

16 15 86 1.7

32 2.3 102 2.3

64 3.9 134 29
128 7.1 198 3.6

Power Saving (%)
20
i

[
w

T

——
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Inactive Ports

—
o

Power Saving (%)
o
wv

(=]
o

—>— Power Saving (%)

Figure 13. Power saving (%) in function of number of port off for
N=16

Table V
POWER SAVING FOR DIFFERENT CASES
N Number of Power saved Number of Power
port off (min) (%) port off (max) | saved(%)

4 1 14 3 3.6

8 1 1.3 7 9

16 1 1.2 15 174
32 1 1 31 30.4
64 1 0.7 63 47
128 1 0.5 127 64.1

e P, is the power consumption of each relay, which
can be as low as 50mW.

e Py, is the power consumption of the main con-
troller circuit of the OSC, which is 0.7W in our
design.

The last two components in (1) is the power con-
sumption overhead incurring by the OSC functional-
ities. Table IV shows the ratio between the overhead
(Pyperhead) and the original power consumption of the
switch (Pgyite,) for different N with typical values of
the parameters in (1).

It can be seen from Table IV that the overhead increases
very slowly with the number of ports.

The power saving when the number of ports is off
for N=16 is depicted in Figure 13. The same trend is
applied for all other N.

Table V shows the power saving in percentage when a
port is turned off and when maximum possible number
of ports are turned off for different number of ports N.

From Table V we can see that the maximum possible
power saving increases with the number of ports. For
switches with many ports (e.g., 32, 64 etc.), when the
number of ports that can be switched off is small, the
overhead is slightly larger than the power saving. How-
ever, when the number of ports which can be switched
off is large, the power saving level is significant and the

nf2_top

PCl (&

Clock
controller

CORE_CLOCK
o

Core
DCM
GTX_CLOCK @ nf2_core

CPCI_CLOCK
o

Figure 14.
switch.

Integrating a CC block in NetFPGA based OpenFlow

overhead can be negligible.

5 INTEGRATING OSC Brock 1N THE NETFPGA
Basep OPENFLOW SwiTCH

In this section, we describe how the functionalities of an
OSC block in a NetFPGA-based OpenFlow switch are
integrated to control its state. As presented in Section II,
a NetFPGA switch consists of a software part running
on the host PC and the hardware part running on the
NetFPGA. We also divide the functions of the OSC
into two components; these are the software component
running on the PC and the hardware Clock Controller
residing in the user data path as shown in Figure 14.
The software component performs the handshaking
with the NOX, receives the control message sent by the
NOX and then forwards it to the clock controller. The
clock controller parses the message and sends the cor-
responding commands to turn on/off ports. The four
Ethernet ports of the NetFPGA board are controlled by
a Broadcom BCM5464SR PHY IC. Therefore, in order to
turn one of the ports on/off, the clock controller needs
to access the control register of the BCM5464SR PHY IC
and change its value. Once a port is turned off, its clock
signal needs to be disabled. This is done by controlling
the buffer block as shown in Figure 14. This buffer is a
generic Xilinx BUFGMUX component.

In order to test the switch after integrating OSC
functionalities, we have run a number of experiments in
which the NOX sent messages to the switch to request
the clock controller to turn one, two, three and all ports
off, respectively.

We used a PCI extension board PCI-EXT64U [17] to
measure the power consumption of the NetFPGA part
of the switch (i.e. excluding the power of the host PC)
in the following cases: 1) no port is turned off; 2) 1 port
is turned off; 3) 2 ports are turned off; 4) 3 ports are
turned off; 5) 4 ports are turned off. The measurement
results are shown in Table VI.

As can be seen in Table VI, the measurement results

Tran Hoang Vu, et al: NetFPGA Based OpenFlow Switch Extension for Energy Saving in Data Centers 83

Table VI
PowEeR CONSUMPTION OF A SWITCH IN DIFFERENT CASES

No | Measurement | Power of Switch Power saved
P(mW) P(mW)
1 No port is off 11519 0
2 | Turn off 1 port 10409 1110
3 Turn off 2 port 9306 2213
4 | Turn off 3 port 8200 3319
5 Turn off 4 port 7092 4427

obtained by using an integrated OSC block are similar
to the results obtained by using an external OSC, i.e.
about 1W is saved when a port is turned off.

In the case of integrated OSC, for turning on/off
ports we do not need to use relays as in the external
OSC presented in Section IV, which helps to reduce the
power consumption overhead and the size of the circuit.
However, we need to use some extra resource on FPGA
chip for clock controlling function.

6 CoNcLUSIONS AND FUTURE WORK

In this paper, we have proposed a power aware Open-
Flow switch extension which enables energy saving
in data centers. We have defined and implemented
successfully new OpenFlow messages and protocols.
A prototype OSC board has been designed to add
power management functionalities to NetFPGA based
OpenFlow switches for research purpose. Moreover, the
design of the OSC board can be used as a reference
design for power management block in commercial
OpenFlow compliant switches. We have also success-
fully integrated an OSC block in the NetFPGA based
OpenFlow switch.

In the future, we will add more power management
features in the OSC such as link rate adaptation.

ACKNOWLEDGEMENTS

Part of the work in this paper is done within the
scope of the ECODANE research project which is co-
sponsored by the Ministry of Science and Technology
(Vietnam) and the Federal Ministry of Education and
Research (Germany)

REFERENCES

[1] “Emerson network power white paper: Energy efficient
cooling solutions for data centers.”

[2] “The cern openlabs white paper: Reducing data center
energy consumption.”

[3] T. Huong, D. Schlosser, P. Nam, M. Jarschel, N. Thanh,
and R. Pries, “Ecodane—reducing energy consumption
in data center networks based on traffic engineering,”
in 11th Wiirzburg Workshop on IP: Joint ITG and Euro-
NF Workshop Visions of Future Generation Networks (Eu-
roView2011), 2011.

[4] N. H. Thanh, P. N. Nam, T.-H. Truong, N. T. Hung,
L. K. Doanh, and R. Pries, “Enabling experiments for
energy-efficient data center networks on openflow-based
platform,” in Communications and Electronics (ICCE), 2012
Fourth International Conference on. 1EEE, 2012, pp. 239-
244.

[5] [Online]. Available: http:/ /www.hp.com/networking

[6] [Online]. Available: http:/ /www-03.ibm.com/ systems/

networking/switches/rack/g8264

[7] Netfpga gigabit router. [Online].

www.netfpga.org

[8] [Online]. Available: http://www.openflow.org

[9] J. Naous, D. Erickson, G. A. Covington, G. Appen-

zeller, and N. McKeown, “Implementing an openflow
switch on the netfpga platform,” in Proceedings of the 4th
ACM/IEEE Symposium on Architectures for Networking and
Communications Systems. ACM, 2008, pp. 1-9.

[10] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis,
P. Sharma, S. Banerjee, and N. McKeown, “Elastictree:
Saving energy in data center networks.” in NSDI, vol. 3,
2010, pp. 19-21.

[11] [Online]. Available: http:/ /www.noxrepo.org

[12] B. Pfaff et al., “Openflow specification,” Version 1.1.

[13] [Online]. Available: http:/ /www.ti.com/product/
Im3s6965

[14] W. Xiaodong, “Carpo: Correlation-aware power opti-
mization in data center networks,” 2012.

[15] V. Sivaraman, A. Vishwanath, Z. Zhao, and C. Russell,
“Profiling per-packet and per-byte energy consumption
in the netfpga gigabit router,” in Computer Communica-
tions Workshops (INFOCOM WKSHPS), 2011 IEEE Confer-
ence on. 1EEE, 2011, pp. 331-336.

[16] [Online]. Available: http://www.worldproducts.com/
pdfs/ed2ef2.pdf

[17] [Online]. Available: http://ultraviewcorp.com/ dis-
playproduct.php?part id=4&sub id=1

Available:

