
REV Journal on Electronics and Communications, Vol. 3, No. 1–2, January – June, 2013 21

Regular Article

Single-machine Scheduling with Splitable Jobs and Availability
Constraints
Van Huy Nguyen1, Nguyen Huynh Tuong1, Hua Phung Nguyen1, Thanh Hien Nguyen2

1 Faculty of Computer Science & Engineering, Ho Chi Minh city University of Technology, Vietnam
2 Faculty of Information Technology, Ton Duc Thang University, Vietnam

Correspondence: Nguyen Huynh Tuong, htnguyen@cse.hcmut.edu.vn
Manuscript communication: received 18 September 2012, accepted 24 June 2013

Abstract– This paper deals with a single machine scheduling problem with availability constraints. The jobs are splitable
and lower bound on the size of each sub-job is imposed. The objective is to find a feasible schedule that minimizes
the makespan. The proposed scheduling problem is proved to be NP-hard in the strong sense. Some effective heuristic
algorithms are then proposed. Additionally, computational results show that the proposed heuristic performs well.

Keywords– single machine scheduling, availability constraint, splitable jobs, makespan, NP-hard, heuristic.

1 Introduction

Scheduling is a decision process indicating how to allo-
cate resources over the time axis to optimally perform a
set of tasks while satisfying given constraints [1–5]. This
paper addresses on the problem of scheduling splitable
jobs on a single discontinuously-available machine. Ac-
cording to [6], splitting job property splitting figures
out a job can be split into a number of independently
processed sub-jobs. Since the size of such sub-job is
not so small, we recruit a supplementary min-split
constraint in this paper.

In current technology era, people have to perform
many tasks at the same time. This scheduling could be
utilized for each individual in dealing with a numerous
complicated tasks. According to experts in productivity,
we always have about 50 to 150 small tasks to process
at any moment [7]. This paper studies in the context of
real-life: “in order to perform individual tasks in the best,
it aims to schedule these tasks executed in some irregular
available time-windows. The time-windows are caused by
plenty of fixed appointments (meeting, lunch break, school
hours, . . .). Note that these jobs could be divided into several
splits (also called sub-jobs) but split must be larger than a
given value. They are actually greater than 20 or 30 minutes,
but the processing time of practical tasks are from 1 to 5
hours” [8].

Formally, this scheduling problem is defined as fol-
lows.

• A set N consists of n jobs needs to be processed
on a single machine.

• Machine can process only one job at a time and
is not always available every time. This constraint
is represented by m available time-windows Wk
with size denoted by wk, 1 ≤ k ≤ m. For sake
of simplicity, these windows could be also defined

by time-breaks bk with 1 ≤ k < m, i.e. that means
W1 = [0, b1), W2 = [b1, b2), . . ., Wm = [bm−1,+∞)).

• All the jobs are available at time t = 0; the process-
ing times are known in advance, deterministic and
integer, pi denotes the processing times of Ji, with
1 ≤ i ≤ n.

• Each job could be divided into several sub-jobs.
Each sub-job could be so small, but its size should
be greater than or equal to a given value, denoted
by splitmin; each sub-job has to be processed in an
available time-window under non-stopping mode,
without any preemption during execution process.
Let’s denote spi,j the j-th sub-job of job Ji.

Let Cmax be the maximum completion time of all jobs
(so called “makespan”). The objective function aims to
minimize makespan. According to classical scheduling
notation proposed by [9], the scheduling problem is
defined as:

1|splitable, splitmin, pi ≥
splitmin, available− windows, wk ≥ 2splitmin|Cmax.

In this paper, we will show that the makespan-
minimization problem of single machine scheduling in
available time windows with job splitting properties is
strongly-NP-hard. Then, some efficient heuristics based
on LPT (Longest Processing Time) rule are proposed
with analysis of experimental results.

The rest of this paper is organized as follows. Some
related works are presented in Section 2. Section 3, we
propose structural properties of an optimal schedule.
NP-completeness of problem will be presented in Sec-
tion 4. Then, a heuristic to solve the considered problem
is proposed in Section 5. Section 6 presents the compu-
tational experiments and analysis. Section 7 concludes
this study and and provides some discussions on future
work.

1859-378X–2013-1203 c© 2013 REV

22 REV Journal on Electronics and Communications, Vol. 3, No. 1–2, January – June, 2013

2 Related Works

Availability machine scheduling problems actually
present in some planning as production scheduling
and preventive maintenance [10], which are the most
common and significant problems faced by the manu-
facturing industry and have paid attention from sev-
eral researchers (for survey of scheduling problems
with availability constraints, refer to [11–13]). Here
we cite some interesting results concerning machine
scheduling relational to minimizing makespan. Yang et
al. [14] studied a single flexible maintenance activity.
The problem was proved to be NP-hard. The authors
provided an efficient heuristic algorithm with complex-
ity O(n log n). Liao and Chen [15] proposed to solve
scheduling problem with periodical maintenance and
non-resumable constraints. They gave a heuristic algo-
rithm for finding the near-optimal solution for large-
sized problems in order to minimize the maximum
tardiness. Yong et al. [16] approached the problem of
scheduling a set of jobs on a single machine on which
a rate-modifying activity could be performed. They
assumed that the rate-modifying activity can take place
only at certain pre-determined time points. One of the
objectives was to minimize makespan. The analysis
showed that the problems were NP-hard even for some
special cases, then the authors provided a pseudo-
polynomial time optimal algorithm for the problems.
Ji et al. [17] dealt with single-machine scheduling with
periodical maintenance to minimize makespan. They
proved that the worst-case ratio of the classical LPT
algorithm is 2, and there is no polynomial time approx-
imation algorithm with a worst-case ratio less than 2
unless P = NP, which implies that the LPT algorithm
is possibly the best as well. Chen [18] investigated in
a single machine scheduling problem with periodic
maintenance, where the machine was assumed to be
stopped periodically for maintenance for a constant
time during the scheduling period. Two mixed binary
integer programming models were provided for de-
riving the optimal solution. Additionally, an efficient
heuristic was proposed for finding the near-optimal
solution for large-sized problems. Xu et al. [19] showed
that there is no polynomial time approximation algo-
rithm with a worst-case performance bound less than
2 unless P = NP for the problem solved in [18]. The
result implied that Chen’s heuristic algorithm is the
best possible polynomial time approximation algorithm
for the considered scheduling problem.

Without availability machine constraints and min-
split constraint, the considered scheduling problem
becomes trivial and there is no interesting practical
application corresponding. That’s why there are a few
results on single machine scheduling with only job
splitting properties. But related to the parallel machine
scheduling problems, there are some results. Kim et
al. [20] showed that it can be applied in PCB manufac-
turing systems. Blocher and Chhajed [21] showed that
the problem with the objective of minimizing total com-
pletion time is NP-hard and proposed several heuristics
and lower bounds in order to minimize average com-

pletion time. Note that this objective is equivalent to
minimizing total completion time or minimizing total
Work in Progress (WIP [22]). In [22], Yang and Posner
developed heuristics and gave worst-case bounds for
these heuristics. With a more complicated objective to
optimize, unrelated parallel machine problems with a
job-splitting property for the objective of minimizing
maximum weighted tardiness were considered [23].
For identical parallel machine scheduling problem to
minimize a simpler objective- makespan, Xing and
Zhang [6] proposed a heuristic algorithm and analyze
the worst case performance 7/4− 1/m of the algorithm
with m ≥ 2, number of machines.

In [8], Tran et al. considered a personal schedul-
ing problem with splitable jobs for minimizing total
weighted tardiness. An application with simple natural
langague processing was implemented. Solutions were
found by using genetic algorithm when availability
machine constraints and min-split constraints.

3 Optimal Structure

Before determining structure of an optimal solution,
let’s show a numerical example which demonstrates
the constraint essential of the scheduling problem with
following input data.
• There are 4 jobs, J1, J2, J3 and J4.
• Let splitmin = 3.
• Processing time of each job is respectively defined:

p1 = 9, p2 = 6, p3 = 4 and p4 = 8.
• Available time-windows are [0,7], [7,15], [15,25]

and [25, +∞).
After calculating, an optimal decision is found and pre-
sented as follows (the corresponding solution described
by Gantt chart in Figure 1).

Figure 1. An optimal schedule of numerical example

• Job J1 has two sub-jobs which correspond to
sp1,2 = 4 (starts at t = 7) and sp1,3 = 5 (starts
at t = 15);

• Job J2 has two sub-jobs which correspond to
sp2,1 = 3 (starts at t = 0), sp2,2 = 3 (starts at
t = 11);

• Job J3 is not split, i.e., it has only one sub-job which
corresponds to sp3,1 = p3 = 4 (starts at t = 3);

• Job J4 has two sub-jobs which correspond to
sp4,3 = 5 (starts at t = 20) and sp4,4 = 3 (starts
at t = 25).

It is clear that optimal solution is not unique: sub-job
sp4,4 could interchange with a sub-jobs sp2,1. In other
words, we could determine another optimal solution
where:
• Job J1 has two sub-jobs which correspond to

sp1,2 = 4 (starts at t = 7) and sp1,3 = 5 (starts
at t = 15);

Van Huy Nguyen et al.: Single-machine Scheduling with Splitable Jobs and Availability Constraints 23

• Job J2 has two sub-jobs which correspond to
sp2,2 = 3 (starts at t = 11), sp2,4 = 3 (starts at
t = 25);

• Job J3 is not split, i.e. it has only one sub-job which
corresponds to sp3,1 = p3 = 4 (starts at t = 3);

• Job J4 has two sub-jobs which correspond to and
sp4,1 = 3 (starts at t = 0) and sp4,3 = 5 (starts at
t = 20).

In the following, we will determine some structural
properties of a particular optimal solution.

Proposition 1. There exits an optimal schedule such that
the jobs are scheduled without any idle time with size is
greater than or equal to 2× splitmin.

Proof: Suppose that there exists an optimal solution
S having an idle-time (called X) with size greater than
δ = 2× splitmin. Consider the last executed sub-job J(i,j)
of S:

• if the processing time of this sub-job less than δ
(i.e. p(i,j) < δ), we could create another solution
by moving this sub-job into the idle time with size
greater than δ. Then, the makespan value will be
decreased an amount equal to the processing time
of the considering sub-job.

• otherwise (p(i,j) ≥ δ), we divide the sub-job into
two splits: the first one with the size of splitmin
and the second one with the size p(i,j) − splitmin.
Then, the first sub-job could be move into the idle
time X and therefore the makespan is decreased
an amount of splitmin.

So, in both cases, we could construct another solution
that is better than S (which contradicts to the fact that
S is an optimal solution).

Proposition 2. There exists an optimal schedule such that
the sub-jobs in an available window are schedule in arbitrary
order.

Proof: Clearly, it is possible to interchange the po-
sitions of two consecutive sub-jobs in an available win-
dow. When the exchange occurs, the global objective
value doesn’t change. So, it could permute positions
between two arbitrary sub-jobs (which are executed in
the same time window), the makespan value does not
change.

Proposition 3. There exists an optimal schedule such that
each job has only zero or one sub-job in an available time
window.

Proof: If there exists an optimal solution S in which
a job Ji has more than two sub-jobs executed in a
time window, then some permutation operations are
performed in order to specify another solution S′ in
which two these sub-jobs executed sequentially. Since
two these sub-jobs belong to the same jobs, we could
form only one bigger sub-job instead of two these sub-
jobs in S′. Furthermore, Cmax(S′) = Cmax(S). So, we
could determine another optimal schedule that each job
has at most one sub-job executed in an available time
window.

Proposition 4. There exists an optimal schedule such that
there is at most one idle time in an available time window.

Proof: Suppose that there is an optimal solution
such that there are two idle times in an available time
window. It’s similar with the proof for Proposition 3
when we consider these idle times as two sub-jobs
of a dummy job. So, some permutations are operated
and it could determine another optimal solution so as
to possess at most one idle time in an available time
window.

Proposition 5. There exists an optimal schedule such that
if there exists an idle time in an available window, it should
be at the end of the time window.

Proof: Continuing with the proof in Prosition 4, the
sub-job of dummy job (representing idle-time) could be
permuted with other sub-jobs in order to be at the last
position of the time window. This action define another
optimal solution satisfying constraint in Proposition 5.

Based on these structural properties, the scheduling
problem should determine the following decision sets:

1) number of splits (or sub-jobs) of each job,
2) assignment of sub-jobs in available time-windows,
3) the size of each sub-job.
In the next section, we will show that the problem

with the above decision set is NP-complete.

4 NP-Completeness

Let’s consider the following theorem.

Theorem 1. Scheduling problem 1| splitable, splitmin,
availablewindows|Cmax is “strongly NP-hard”.

In order to prove the theorem, let’s consider the
corresponding decision problem as follows.

Decision problem SPLITSCHE
Data input: Consider single machine scheduling has n
splitable jobs to be executed with processing time p1,
p2,. . ., pn; m available window to execute these jobs
could be defined m − 1 time break b1, b2,. . ., bm−1;
processing time of each sub-job is greater than splitmin
time unit.
Question: Does there exist a schedule such that Cmax ≤
y, with y non-negative integer?

Proposition 6. Decision problem SPLITSCHE is NP-
complete.

Proof: First, we should prove SPLITSCHE belongs
to NP class. Given an“yes-instance” of SPLITSCHE, there
exists permutation of decision set (defined in Section 3)
that we construct a feasible solution to SPLITSCHE
and verify in polynomial time such that the objective
function gives rise to a solution with Cmax ≤ y.

We next prove that SPLITSCHE belongs to NP-
complete class by a reduction to 3− PARTITION which
is known to be is “strongly NP-complete” [24].

Recall that 3− PARTITION is defined as follows:
Decision problem 3− PARTITION

24 REV Journal on Electronics and Communications, Vol. 3, No. 1–2, January – June, 2013

Data Input: Given an non-negative integer B and a
multi-set A = {a1, . . . , a3r} of 3r positive integers with
B/4 < ak < B/2 (k = 1, . . . , 3r) and ∑3r

k=1 ak = rB.
Question: Is there a partition of A into r mutually
disjoint sub-set A1, . . . ,Ar such that the elements in Ak
sum up to B for each k = 1, . . . , r ?

Given an instance of 3− PARTITION, We construct
the following instance of the SPLITSCHE problem with
3r + 1 jobs and r + 1 breaks (r + 2 time-windows) as
follow:

• N = {1, 2, . . . , 3r, 3r + 1}
• Job Ji, i ∈ {1, . . . , 3r}: pi = ai
• Job J3r+1: p3r+1 = B/2
• splitmin = B/4
• Breaks bt, t ∈ {1, . . . , r}: bt = tB
• Breaks br+1 = (r + 1/4)B
• y = (r + 1/2)B.

The remainder must be proved such that
3− PARTITION is solvable if only if SPLITSCHE
is solvable.

(⇒) Suppose the answer of 3− PARTITION is ’yes’.
Then we determine solution of SPLITSCHE as follows:
construct r block jobs from jobs Ji, i ∈ {1, . . . , 3r} such
that block k (k = 1, . . . , r) contains jobs that have the
corresponding index with index of elements in sub-set
Ar. Job J3r+1 is split into two equal-size parts which
are executed on Wr+1 and Wr+2 respectively. Therefore,
Cmax is (r + 1/2)B = y. The answer for the question of
decision problem SPLITSCHE is also ’yes’.

(⇐) Suppose that there exists a solution σ which sat-
isfies constraints in problem SPLITSCHE with Cmax ≤
y. Since total processing time of jobs is equal to y, there
does not exist any idle time between two sub-jobs in
solution σ and without idle time in the r first time-
window.

Note that splitmin = B/4 and processing time of jobs
Ji (i ∈ {1, . . . , 3r}) is between B/4 and B/2 (but not
equal to one of two margins). So these jobs couldn’t be
split into two parts and couldn’t be executed in Wr+1
and Wr+2; job J3r+1 is not split or split into two parts
with the same size splitmin.

As there is no idle time in σ and wr+1 = B/4 =
splitmin, J3r+1 should be split into two parts: first part
sp3r+1,1 executed in time-window Wr+1 and another
part sp3r+1,2 executed in Wr+2.

Consequently, each remaining time windows Wt (t =
1, . . . , r) has the size of B and contains a sub-set of
jobs Ji (i ∈ {1, . . . , 3r}). The sub-set have exactly three
jobs, since processing time of jobs Ji (i ∈ {1, . . . , 3r})
is between B/4 and B/2 (but not equal to B/4 or
B/2). These jobs sub-sets help to determine r disjoint
partitions of the corresponding 3− PARTITION. Hence,
the answer of 3− PARTITION problem is also ’yes’.

5 Heuristic

The proposed heuristic is composed by three phases.
The first phase of heuristic is to construct a “traversing
list” of jobs according to the following conditions:

• splitable jobs are located at the beginning of the
list, and

• non-splitable jobs are located at the end of the list.
Note that LPT order (Longest Processing Time) could
answer the above conditions. The second and third
phases of heuristic are to make decision for the first
part and second part of the traversing list respectively.

5.1 Special case: pi < 2splitmin

In a special case where the traversing list contains
only non-splitable jobs (i.e. the third part). It means
that the second part is null.The problem becomes
1|available−windows|Cmax which is well-known in the
literature. We apply then LPT rule since according
to [17], this heuristic gives a 2-approximation and the
bound is tight.

5.2 General case
In the following, let’s consider the traversing list

composed by two parts (the first part contains initially
all splitable jobs; the second one contains non-splitable
sub-jobs). We consider now how to decide for the first
part of the list which contains entirely the splitable jobs.

Let rpi be remaining processing time of the consid-
ering job Ji, i.e. at the beginning, rpi = pi. Let rwk be
size of remaining available time of window Wk.

The available time windows are considered from left
to right respectively (i.e. we start with window W1). The
following procedure performing firstly on the first part
of the list (which contains all splitable jobs/sub-jobs)
is proposed to solve differently for each of following
cases concerning about relations between values of rpi,
splitmin and rwk.

1) rpi ≤ rwk − splitmin:
put Ji to be processed in window Wk

2) rpi > rwk − splitmin:
a) rpi ≤ rwk:

cut Ji into two sub-jobs with size respectively
(rpi − splitmin) and (splitmin),
then put the sub-job with the size rpi −
splitmin to execute in window Wk,
sub-job with the size splitmin of Ji is put at
the beginning of the traversing list.

b) rpi > rwk:
i) rpi ≥ rwk + splitmin:

cut Ji into two sub-jobs with size respec-
tively (rwk) and (rpi − rwk),
then put sub-job with size rwk to execute
in window Wk,
sub-job with size rpi − rwk of Ji is put at
the beginning of the traversing list.

ii) rpi < rwk + splitmin:
A) rwk ≥ 2splitmin:

cut Ji into two sub-jobs with size re-
spectively (rwk − splitmin) and (rpi −
rwk + splitmin),
then put sub-job with size rwk −
splitmin to execute in window Wk,
sub-job with size rpi − rwk + splitmin

Van Huy Nguyen et al.: Single-machine Scheduling with Splitable Jobs and Availability Constraints 25

of Ji is put at the beginning of the
traversing list.

B) rwk < 2splitmin:
push this sub-job at the end of the
traversing list (in second part).

When this phase is finished, the list contains only
second part which contains non-splitable jobs and non-
splitable sub-jobs (created from this phase). Then, we
apply LPT rule for schedule all jobs and sub-jobs in this
part. During last phase, in each iteration, considered job
(or sub-job) will start at the first available moment with
possible size in time axis. Remark that after finishing
the second phase of the proposed procedure, there
is no idle time between two jobs or sub-jobs. The
most difficult case in this phase is case (2.b.ii.B). If the
algorithm runs without encountering the case (2.b.ii.B),
the obtained solution will be an optimal solution.

Running time: Each behavior of the first part will
finish making decision of a job or a time window. So
the complexity of the above procedure is bound by
O(n + m). The jobs and sub-jobs in second part will
be scheduled in O(n log n) times (ordered according to
LPT rule). These non-splitable ones are decided when
executed in O(m × n). So, the overall complexity of
the proposed heuristic is upper-bounded by O(mn +
n log n).

6 Numerical Study

Remark that the total processing time of jobs is a lower
bound since if a solution without idle time is feasible,
this should be optimal. Let LB denote lower bound
which is defined by total processing time of jobs.

In the following, we will compare the performance
of the above heuristic proposed in Section 5 with some
improvement strategies derived from well-known LPT
rule:
• Heuristic 1: use LPT to schedule jobs without

splitting.
First, we put all jobs into a list and apply LPT rule.
Second, the available time windows are considered
from left to right respectively. For each available
time window, we traverse the list which starts from
first element. If the processing time of job is smaller
than the time window, then the job is allocated
to be executed in this window. This heuristic has
complexity of O(n×m).

• Heuristic 2: use LPT to schedule jobs and jobs is
splits if possible and needed.
The principal is improved from Heuristic 1 by
considering additionally some sub-jobs. These sub-
jobs is created in the case where the job processing
time is splitable and greater than the remaining
window size (this size is also greater than splitmin):
we cut the considering job into sub-job 1 and sub-
job 2; the sub-job 1 is allocated to be executed
the window and sub-job 2 is put to the list. The
complexity is bounded by O(n×m).

We have measured the performance of all the heuris-
tics on machine with the following configuration: Intel

Core i5 3.00GHz, 4GB memory under the Windows 7
professional operating system. In this experiment, there
are 3 instances for each combination of n = {10, 20, 30},
m = {5, 10, 20} and splitmin = {2, 3, 4}. Each instance is
generated as follows:
• Processing time is generated randomly by integer

uniform distributions in [splitmin, 20];
• Window time is generated randomly by integer

uniform distributions in [2splitmin, 30].
In order to evaluate the quality of solutions from a
heuristic, the solutions are compared with the lower
bound LB. Table I shows the summarized results in-
cluding percentage deviation and number of solutions
that obtained makespans achieve LB correspondingly.
In this table, Heuristic 1, Heuristic 2, Heuristic 3 (pro-
posed in Section 5) show the percentage gap between
the solution of the heuristics and the lower bound,
respectively. They are computed by following formula:

Percentage gap =
(Z# − LB)

LB
× 100,

where Z# obtained by the heuristics and lower bound
LB the total processing time of jobs. Note that each case
in Table I is the average results of 3 different instances.

Our numerical experiments indicate that the results
of the three heuristics are very close to the lower bound.
Especially, Heuristic 3 performs very well under all
parameter combinations setting: the percentage gap is
never exceeded 3%; the average optimality gap for all
setting remains fairly small (about 0.45%). This heuris-
tic, in addition, has an asymptotic optimality since
obtained solutions are confirmed to be optimal for 60
of 117 testing problems. This outperforms in comparing
with optimal results that could be found by Heuristic 1
and Heuristic 2.

Furthermore, average optimality gaps for all setting
of triplet (n,m,splitmin), presented on each line of Ta-
ble I, tend to decrease from left to right, i.e. the value
of the solution is obtained by Heuristic 3 is smaller
than the ones is obtained by Heuristic 1 or Heuristic 2.
Heuristic 3 is then the most efficient performance,
followed by Heuristic 2, and then Heuristic 1. In sum-
mary, the results which are derived from Heuristic 3,
are impressive in all cases. We could conclude that
the heuristic proposed in Section 5 is efficient to find
the good solution which is very close to the optimal
solution. Thus, it is possibly to apply in practical setting
as well.

7 Conclusions

In this paper, we have considered the problem of
personal scheduling in availability time windows with
splitable jobs and min-split constraint so as to minimize
the makespan. After presenting several basic properties
for an optimal solution to the problem, we proved that
the problem is strongly NP-hard for the general case.
An efficient heuristic is proposed then. Experimental re-
sults show that obtained solutions have never exceeded
3% and average deviation of about 0.45%.

26 REV Journal on Electronics and Communications, Vol. 3, No. 1–2, January – June, 2013

Table I
Average Percentage of Gaps

n m splitmin Heuristic 1 Heuristic 2 Heuristic 3
% # inst. % # inst. % # inst.

10 5 2 4.71 0 0.29 2 0.00 3
3 4.20 0 1.67 1 0.00 3
4 6.58 0 1.17 1 0.35 2

10 10 2 21.52 0 0.58 1 1.87 1
3 32.03 0 8.05 0 1.49 0
4 7.96 0 3.48 0 0.94 2

10 20 2 15.32 0 0.29 2 0.00 3
3 10.91 0 2.77 0 2.10 1
4 10.20 0 4.06 0 1.16 1

20 5 2 0.61 1 0.00 3 0.00 3
3 0.86 1 0.71 1 0.00 3
4 1.94 0 1.28 1 1.13 2

20 10 2 3.00 0 0.44 1 0.15 2
3 3.20 0 1.35 1 0.40 1
4 4.11 0 0.38 2 0.00 3

20 20 2 4.33 0 0.71 2 0.47 2
3 3.61 0 1.32 0 1.33 0
4 7.81 0 3.36 0 1.55 0

30 10 2 1.15 0 0.10 2 0.09 2
3 1.10 0 0.49 0 0.21 0
4 0.83 0 0.65 1 0.10 2

30 20 2 6.88 0 0.66 0 0.27 2
3 8.45 0 1.60 0 0.28 1
4 4.45 0 2.81 0 1.18 0

50 10 2 0.29 1 0.12 2 0 3
3 0.11 1 0.35 1 0 3
4 0.73 0 0.34 1 0.17 2

50 20 2 0.77 0 0.31 0 0.06 2
3 1.6 0 0.29 1 0.06 2
4 1.96 0 0.93 0 0.34 2

50 30 2 3.64 0 0.55 0 0.06 2
3 3.39 0 0.89 0 0.4 0
4 1.96 0 0.93 0 0.34 2

100 20 2 0.12 0 0.21 0 0.03 0
3 0.48 0 0.58 0 0.06 1
4 0.5 0 0.91 0 0.47 0

100 30 2 0.09 1 0.15 0 0.06 2
3 0.42 0 0.45 0 0.17 0
4 0.67 0 0.9 0 0.34 0

Average 4.67 - 1.18 - 0.45 -
Total - 5 - 26 - 60

Further research can be undertaken to construct
mathematical model based on properties of an optimal
solution established in section 3, to improve the pro-
posed heuristics and to test with larger-size instances.

Acknowledgement

This research is funded by Vietnam National Founda-
tion for Science and Technology Development (NAFOS-
TED) under grant number 102.01-2012.01.

References

[1] J. Y.-T. Leung, Handbook of scheduling : algorithms, models,
and performance analysis. Boca Raton, Florida: Computer

and information science series, Chapman and Hall/CRC,
2004.

[2] J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt, and
J. Weglarz, Handbook on scheduling : from theory to appli-
cations. Springer, 2007.

[3] P. Brucker, Scheduling algorithms, 4th ed. Berlin, Ger-
many: Springer-Verlag, 2004.

[4] M. Pinedo, Scheduling : theory, algorithms, and systems,
2nd ed. Upper Saddle River, New Jork, USA: Precentice
Hall, 2002.

[5] V. T’Kindt and J.-C. Billaut, Multicriteria scheduling :
theory, models and algorithms, 2nd ed. Springer, 2006.

[6] W. Xing and J. Zhang, “Parallel machine scheduling with
splitting jobs,” Discrete Applied Mathematics, vol. 103, pp.
259–269, 2000.

[7] D. Allen, Getting things done, the art of Stress-free produc-
tivity. Penguin Group, 2003.

[8] D. Q. Tran, N. H. Tuong, G. L. H. Ngoc, T. L. Mai,
T. L. Tran, Q. T. Mai, and T. T. Quan, “A personal
scheduling system using genetic algorithm and simple
natural language processing for usability,” in Proc. of
Multi-disciplinary International Workshop on Artificial In-
telligence (MIWAI’2010), Mahasarakham, Thailand, 2010.

[9] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. R.
Kan, “Optimization and approximation in deterministic
sequencing and scheduling: a survey,” Annals of Discrete
Mathematics, vol. 5, pp. 287–326, 1979.

[10] C. Low, M. Ji, C.-J. Hsu, and C.-T. Su, “Minimizing the
makespan in a single machine scheduling problems with
flexible and periodic maintenance,” Applied Mathematical
Modelling, vol. 34, pp. 334–342, 2010.

[11] E. Sanlaville and G. Schmidt, “Machine scheduling with
availability constraints,” Acta Informatica, vol. 9, pp. 795–
811, 1999.

[12] G. Schmidt, “Scheduling with limited machine availabil-
ity,” European Journal of Operational Research, vol. 121, pp.
1–15, 2000.

[13] Y. Ma, C. Chu, and C. Zuo, “A survey of scheduling with
deterministic machine availability constraints,” Computer
& Industrial Engineering, vol. 58, pp. 199–211, 2010.

[14] D. Yang, C. Hung, C. Hsu, and M. Chern, “Minimizing
the makespan in a single machine scheduling problem
with a flexible maintenance,” Journal of the Chinese Insti-
tute of Industrial Engineers, vol. 19, pp. 63–66, 2002.

[15] C. J. Liao and W. J. Chen, “Single-machine schedul-
ing with periodic maintenance and nonresemable jobs,”
Computers and Operations Research, vol. 30, pp. 1335–1347,
2003.

[16] H. Yong, M. Ji, and T. Cheng, “Single machine schedul-
ing with a restricted rate-modifying activity,” Naval Re-
search Logistics, vol. 52, pp. 361–369, 2005.

[17] M. Ji, Y. He, and T. Cheng, “Single-machine schedul-
ing with periodic maintenance to minimize makespan,”
Computers and Operations Research, vol. 34, pp. 1764–1770,
2007.

[18] J. S. Chen, “Scheduling of nonresumable jobs and flexible
maintenance activities on a single machine to minimize
makespan,” European Journal of Operations Research, vol.
190, pp. 90–102, 2008.

[19] K. S. D. Xu and H. Li, “A note on scheduling of non-
resumable jobs and flexible maintenance activities on a
single machine to minimize makespan,” European Journal
of Operations Research, vol. 197, pp. 825–827, 2009.

[20] Y. D. Kim, S. O. .Shim, S. B. Kim, Y. C. Choi, and
H. M. Yoon, “Parallel machine scheduling considering a
job splitting property,” International Journal of Production
Research, vol. 42, pp. 4531–4546, 2004.

[21] J. D. Blocher and D. Chhajed, “The customer order
lead-time problem on parallel machines,” Naval Research
Logistics, vol. 43, pp. 629–654, 1996.

[22] J. Yang and M. Posner, “Scheduling parallel machines
for the customer order problem,” Journal of Scheduling,
vol. 8, pp. 49–74, 2005.

Van Huy Nguyen et al.: Single-machine Scheduling with Splitable Jobs and Availability Constraints 27

[23] P. Serafini, “Scheduling jobs on several machines with
job splitting property,” Operations Research, vol. 44, pp.
617–628, 1996.

[24] M. R. Garey and D. S. Johnson, Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. San
Francisco: W.H. Freeman & Company, 1979.

Van Huy NGUYEN is now, a lecturer in the
Faculty of Information Technology, Ho Chi
Minh City University of Transport. He re-
ceived his B.Eng. degree in Information Tech-
nology from HCM University of Technical
Education in 2008 and received Master degree
in 2012 from Bordeaux 1, France. His research
interests include scheduling and embedded
systems.

Nguyen HUYNH TUONG is a senior lecturer
in the Faculty of Computer Science and En-
gineering, HCMC University of Technology,
Vietnam. He has received his Ph.D. (2009)
and M.Eng (2006) in Computer Science from
Tours University (France), and B.Eng (2001)
in Computer Engineering from HCMC Uni-
versity of Technology, Vietnam. His research
interests are in the areas of scheduling, high
performance computing and network security.

Hua Phung NGUYEN is a senior lecturer
in the Faculty of Computer Science and En-
gineering, HCMC University of Technology,
Vietnam. He has received his Ph.D. (2005) in
Computer Science from UNSW, and M.Eng
(1999) and B.Eng in Computer Engineering
from HCMC University of Technology, Viet-
nam. His research interests include schedul-
ing, data mining, program analysis and veri-
fication.

Thanh Hien NGUYEN has served as the
Dean, Faculty of Information Technology, Ton
Duc Thang University since 2012. His research
interests include Job Shop Scheduling, Infor-
mation Extraction, Machine Learning, Natu-
ral Language Processing, Web/Text Mining,
Semantic Web, and Networks Analysis. He
received Ph.D. in Computer Science, M.S. in
Computer Science, and B.Eng. in Computer
Engineering from Ho Chi Minh City Univer-
sity of Technology, in 2011, 2005, and 2002

respectively. Contact him at Faculty of Information Technology, Ton
Duc Thang University, Nguyen Huu Tho St., District 7, Ho Chi Minh
City, Vietnam.

