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Abstract– This paper is concerned with the detrimental effect of phase noise on the performance of orthogonal frequency
division multiplexing (OFDM) transmissions over time-selective channels. In the literature, most of the existing papers
analyze the performance of OFDM systems in the presence of either time-selective channels or phase noise. Unlike the
existing studies, this paper formulates an approximate expression of signal-to-interference-plus-noise ratio (SINR) at an
OFDM receiver in the presence of both phase noise and time-selective channel response. The formulated SINR expression
can be used as a guideline in determining appropriate OFDM transmission settings under a given quality-of-service (QoS)
requirement. To illustrate the tightness of the approximate SINR formulation, empirical and theoretical values of SINR
under different OFDM system settings are presented in this paper.

Keywords– Time-selective channel, phase noise, approximate signal-to-interference-plus-noise ratio (SINR) expression,
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1 Introduction

Using the principle of subcarrier orthogonality, orthog-
onal frequency division multiplexing (OFDM) has of-
fered several superior advantages as compared to the
conventional frequency division multiplexing (FDM)
technique. As a result, OFDM has been widely rec-
ognized as a potential technique for emerging and fu-
ture mobile broadband communications [1]. Besides its
well-known benefits of high spectral-efficiency and ro-
bustness against multipath fading propagation, OFDM
system performance is, however, vulnerable to time-
varying channels (in the presence of moving users) [2]
and phase noise (due to phase perturbation in oscilla-
tors at transmitter and receiver) [3–8]. In particular, the
presence of those channel impairments destroys the or-
thogonality among subcarriers in OFDM transmissions.
The loss of orthogonality would incur significant inter-
carrier interference (ICI), causing performance degra-
dation in OFDM receivers.

To alleviate the aforementioned detrimental effects, a
quantitative relationship between those channel impair-
ments and the resulting ICI power is needed in finding
appropriate OFDM transmission settings (that reduce
the ICI power). In the literature, several papers [3–10]
have derived SINR expressions at an OFDM receiver
in the presence of either phase noise or time-varying
channels. Specifically, the effect of phase noise has been
intensively studied in OFDM transmissions [3–8]. How-
ever, the studies have assumed multipath channels to
be block-fading (i.e., channel responses are unchanged
within one burst duration). Addressing the problem of

time-selective channels, [9, 10] have formulated closed-
form expressions of SINR at OFDM receivers by ne-
glecting the effect of phase noise. As a result, the
presence of both phase noise and time-varying channel
would decrease the accuracy of these existing SINR
expressions.

In emerging 4G mobile broadband networks (e.g.,
LTE-A, WiMAX), there are a large number of high-
speed moving nodes (e.g., mobile users in cars and/or
trains) communicating with base stations under dif-
ferent quality-of-service (QoS) requirements [11]. For
a given QoS level (e.g., SINR values must be greater
than a related threshold), the network should deter-
mine OFDM transmission parameters to satisfy the QoS
level. For instance, by using a theoretical expression
of SINR, one can determine the ranges of allowable
mobile speeds and/or supported data rates to meet a
given QoS level and other system constraints. Hence,
an accurate expression of SINR is of importance in de-
termining appropriate OFDM system settings for QoS-
guaranteed transmissions of broadband data services
with high-mobility.

Unlike the aforementioned papers [3–10] considering
either high-mobility channel or phase noise in ICI
analysis, [12] has included the joint effect of both high-
mobility channel and phase noise in formulating an ex-
act SINR expression. However, the exact, but complex,
SINR formula in [12] is not a closed-form expression.
Different from [12], this paper considers the joint effect
of both time-varying fading and phase noise in deriv-
ing an approximate closed-form expression of SINR by
using Taylor series expansion. Under different OFDM
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system settings, this paper provides several numerical
results to illustrate the tightness between empirical and
analytical values of the approximate SINR expression.

The remaining of this paper is organized as follows.
Section 2 describes the formulation of the considered
OFDM system in the presence of phase noise and time-
varying channels. The detailed steps of approximate
SINR formulation are presented in Section 3. Simu-
lation results and relevant discussions are located in
Section 4. Finally, Section 5 provides some concluding
remarks.

2 OFDM System Formulation

2.1 Transmitted Signal

This paper considers an uncoded OFDM system
where an N-point fast Fourier transform (FFT) is em-
ployed for the multicarrier transmission as shown in
Fig. 1. After inverse FFT (IFFT) and cyclic prefix (CP)
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Figure 1. System model

insertion, the transmitted baseband signal of an OFDM
symbol can be written as

xn =
1√
N

N−1

∑
k=0

Xk exp
(

j2πkn
N

)
, (1)

where n ∈ {−Ng, ..., 0, ..., N − 1}, Ng denotes the CP
length, Xk is the kth data-modulated subcarrier in the
considered OFDM symbol.

In the considered channels, the transmitted baseband
signal xn in (1) goes through a time-selective channel
with phase noise as mathematically described in the
next subsection.

2.2 Doubly Selective Channel and Phase Noise

For the channel between the transmit antenna and
receive antenna, the lth (time-varying) channel tap gain
that includes the effect of transmit-receive filters and
time-selective propagation is denoted by hl,n where n
stands for the index of a time-domain sample. In the
considered time-selective channels, possible correlation

between channel taps in the spatial dimension is omit-
ted for the sake of simplicity.

As shown in [13], the autocorrelation of the time-
varying channel response can be determined by

Rh(τ) = J0(2π fdτ), (2)

where J0(.) is the zeroth-order Bessel function of the
first kind, fd is the maximum Doppler frequency, τ =
nTs/N, and Ts is the useful OFDM symbol length.

Besides time-selective channel propagation, we also
consider the effect of phase noise due to the presence
of the oscillators’ phase perturbation. In the literature,
phase noise φ(n) can be treated as a time-variant mul-
tiplicative disturbance [14]

φ(n) = ejθ(n). (3)

In OFDM systems, phase noise appears in free-
running oscillators at both transmitter and receiver. The
phase noise process can be modeled as a continuous-
path Brownian motion or Wiener process with infinite
power [14] which can be formulated as follows:

θ(n) = θ(n− 1) + ε(n), (4)

where θ(0) = 0 and ε(n) denotes Gaussian distributed
random variables with zero-mean and variance of σ2 =
2πβTs, β stands for the phase noise linewidth (i.e,.
frequency spacing between 3 dB points in its Lorentzian
power spectral density of the local oscillator). The phase
noise processes under different values of βTs are de-
picted in Fig. 2. As we can see, the larger value of βTs,
the more adverse effect of phase noise.
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Figure 2. Illustration of phase noise process

As shown in [15], the autocorrelation function of φ(t)
can be computed by

Rφ(τ) = e−πβ|τ|. (5)

2.3 Received Signal Model

In the presence of both time-selective channel and
phase noise, the nth received sample in an OFDM
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symbol (after CP removal) can be represented by

yn = ejθ(n)
L−1

∑
l=0

hl,nxn−l + zn, (6)

where n = 0, ..., N − 1 and zn is the additive white
Gaussian noise (AWGN) with variance No. In this pa-
per, the powers of both the transmitted signals and
channel impulse response (CIR) are normalized to one
and the resulting signal-to-noise ratio (SNR) can be
determined by SNR = 1

No
.

As observed in (6), the presence of phase noise intro-
duces a time-domain phase rotation that will translate
into ICI in the frequency domain as presented by the
next formulations. In addition, the time-variation of the
multipath channels also induces ICI in the frequency
domain [16]. Consequently, the presence of both phase
noise and time-selective channels would incur signifi-
cant ICI power at an OFDM receiver, giving rise to a
an irreducible error floor in the receiver performance.

After performing FFT at the receiver, the frequency-
domain signals can be determined by

Yk = C0HkXk + Ik + Zk, (7)

where Ik =
N−1
∑

p=1
Cp Hk−pXk−p denotes inter-carrier-

interference (ICI), Cp = 1
N

N
∑

n=0
e−

j2πnp
N ejθ(n), and Hk =

1
N

N−1
∑

n=0

L−1
∑

l=0
hl,ne−j2πkl/N .

Based on (7), the formulation of an approximate SINR
expression is derived in the next section.

3 Interference Analysis

3.1 SINR Formulation
In (7), the power of the kth subcarrier at the receiver

can be expressed by

Pr = Pdes + PICI + N0, (8)

where Pr = E
[
|Yk|2

]
, Pdes = E

[
|C0HkXk|2

]
, PICI =

E
[
|Ik|2

]
, and N0 = E

[
|Zk|2

]
.

Hence, the value of signal-to-interference-plus-noise
ratio SINR can be determined by

SINR =
Pdes

PICI + N0
. (9)

In (9), the ICI power can be computed by

PICI =
∫ 1

−1
(1− | x |) (1− R(Tsx)) dx, (10)

where R(Tsx) denotes the autocorrelation function of
the effective channel response [10].

It is assumed that the power of phase noise and fad-

ing have been normalized to one, i.e. E

[
N−1
∑

p=0
|Cp|2

]
= 1,

and E

[
N−1
∑

p=0
|Hk−p|2

]
= 1, respectively. In (9), the power

of the desired signal can be calculated by

Pdes = E
[
|C0|2|Hk|2

]
= (1− PICIpn)(1− PICIch) (11)

where

PICIpn = E

[
N−1

∑
p=1
|Cp|2

]
,

and

PICIch = E

[
N−1

∑
p=1
|Hk−p|2

]
.

By using (2), (5), and (10), one can obtain

PICIpn =
∫ 1

−1
(1− | x |)(1− Rφ(Tsx))dx

=
2− 2e−πTs β − 2πβTs + π2β2T2

s
π2β2T2

s
, (12)

and

PICIch =
∫ 1

−1
(1− | x |) (1− Rh(Tsx)) dx

≈ 0F1
[
2,−(π fdTs)2]

Γ(2)

− 2pFq

[{
1
2

}
,
{

1,
3
2

}
,−( fdπTs)

2
]

, (13)

where 0F1(a, z), Γ(a), and pFq(a; b; z) are the regularized
confluent hypergeometric function, gamma function,
and generalized hypergeometric function, respectively.

From (10), (12), and (13), we obtain

Pdes =

(
1 +

2− 2e−πTs β − 2πβTs + π2β2T2
s

π2β2T2
s

)
×
(

1− 0F1
[
2,−(π fdTs)2]

Γ(2)

− 2pFq

[{
1
2

}
,
{

1,
3
2

}
,−(π fdTs)

2
] )

. (14)

By assuming fading channel response and phase
noise are statistically independent, one can deduce

R(Tsx) = Rφ(Tsx)Rh(Tsx). (15)

Based on (2), (5), (10) and (15), we can obtain

PICI =
1
3

(
3 + 3 0F1[2,−(π fdTs)2]

Γ(2)

+ 3πβTs
0F1[2,− f 2

d π2T2
s ]

Γ(2)

− 6pFq[
1
2

, 1,
3
2

,−(π fdTs)
2]

− 2πβTs pFq

[
3
2

, 1,
5
2

,−(π fdTs)
2
] )

. (16)

Substituting (14), (16) into (9), we can obtain a close-
form expression of SINR that considers the joint effect
of time-varying channel and phase noise. However, the
closed-form SINR expression is relatively complicated.
In this paper, we explore Taylor series expansion to
obtain an approximate expression of SINR as presented
in the next subsection.
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3.2 Approximate SINR Formulation
In order to separate the signal and noise terms, ap-

plying the third-order Taylor series expansion of e−πβTs ,
we obtain

e−πβTs ≈ 1− πβTs +
(πβTs)2

2
− (πβTs)3

6
. (17)

From (12), we have

PICIpn ≈
πβTs

3
. (18)

Applying Taylor series expansion for (13) to third-order
terms, we get

PICIch ≈
(π fdTs)2

6
− (π fdTs)4

60
+

(π fdTs)6

1008
. (19)

Similarly, one can rewrite (14) by

Pdes ≈ (1− πβTs

3
)

(
1− (π fdTs)2

6
−

− (π fdTs)4

60
+

(π fdTs)6

1008

)
. (20)

Hence, the approximate ICI power can be calculated as

PICIapprox ≈ πβTs

3
+

(π fdTs)2

3
(

1
2
− 3πβTs

10
) +

+
(π fdTs)4

3
(− 1

20
+

πβTs

28
) +

+
(π fdTs)6

3
(

1
336
− πβTs

432
). (21)

Using (9), (21), (19), and (21) and first-order terms
in Taylor series, we can obtain a SINR expression as
a function of the normalized Doppler shift fdTs, and
the product of the 3dB two-side phase noise linewidth
β and the data symbol period Ts. In particular, the
approximate expression of SINR can be expressed by

SINRapprox ≈
(1− ψ

3 )(1−
ϑ2

6 )
ψ
3 + ϑ2

3 ( 1
2 −

3ψ
10 ) + N0

, (22)

where ψ = πβTs, and ϑ = π fdTs.
In particular, for BPSK, 16-QAM, and 64-QAM modu-

lations with coherent detection and Gray encoding, the
BER performance over Rayleigh fading channels can be
given by [17]

BERRay
BPSK =

1
2

1− 1√
1 + 1

SINR

 , (23)

BERRay
16−QAM =

3
8

1− 1√
1 + 5

2SINR

 , (24)

BERRay
64−QAM =

7
24

1− 1√
1 + 7

SINR

 , (25)

where BERRay
BPSK, BERRay

16−QAM, and BERRay
64−QAM are the

BER performance for BPSK, 16-QAM, and 64-QAM
modulations, respectively.

Based on the above approximate SINR expres-
sion (22), one can deduce the approximate expressions
of bit error rate (BER) values of the considered OFDM
system by using related BER formulations in (23)-(25).

4 Simulation Results and Discussions

Following the WiMAX system settings [18], computer
simulation was conducted to evaluate the tightness of
the derived approximate SINR expression for OFDM
systems over time-selective channels with phase noise.
The time-varying multipath fading channel with the
number of channel tap gains L = 10 and the ex-
ponentially decaying power-delay profile [19] is gen-
erated by using Jakes’ model [13]. Unless otherwise
stated, the considered mobile terminal has a speed
v = 100 km/h and operating at fc = 3.5 GHz. Each
OFDM symbol uses a 512-point FFT with sampling
frequency fs = 5.6 MHz and a CP length of 40 samples
(Ng = 40) [18]. For each transmission burst (of each
simulation trial), the phase noise is a random process
following a continuous-path Brownian motion [14].
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Figure 3. BER analysis for BPSK and 64-QAM signal versus SNR for
the mobile terminal speed of 100 km/h and 300 km/h with βTs=0.01
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To investigate BER performance of OFDM transmis-
sions under different scenarios, Figs. 3 and 4 shows
the simulated and theoretical BER values versus mo-
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Figure 5. The numerical results of SINR versus mobile speeds

bile speed and SNR, under different modulations. In
particular, the theoretical BER values were obtained by
using approximate BER expressions in Section 3.2. As
observed, the theoretical BER values are close to the
simulated ones (as shown by dash and solid curves).
In addition, the numerical results illustrate that the
presence of phase noise and time-varying channels
induces significant BER performance degradation as
mobile speed and phase noise level βTs increase.

To verify the accuracy of the derived approximate
SINR expression, Fig. 5 shows the simulated and theo-
retical SINR values versus mobile user speed under the
phase noise level of βTs = 0.01. In [5], the theoretical
SINR expressions have been derived by ignoring the
effect of time-varying channels. Therefore, the theoret-
ical SINR values of [5] are very close to the simulated
SINR values under the condition of low mobile speeds
(e.g., < 100 km/h). As the mobile speed increases
(e.g., > 100 km/h), the gap between the simulated
and theoretical SINR values (of [5]) increase. Taking
into account the effect of time-varying channels, [9] has
derived the theoretical SINR expression by neglecting
the effect of phase noise. As a result, the theoretical
SINR values of [9] are very close to the simulated
ones under the condition of high-mobility (e.g., > 300
km/h). However, the gap between the simulated and
theoretical SINR values (of [9]) increase as the mobile
speed reduces (e.g., < 300 km/h) due to the dominant
ICI power induced by phase noise (that has been ig-
nored in [9]). As observed, the derived approximate
SINR value in (22) and exact SINR in [12] are very
close together under any mobile user speed. For low
computational complexity, one can use the approximate
SINR (22) with a closed-form expression.

Unlike [5] and [9], this paper formulates an approx-
imate SINR expression by taking into account the joint
effect of both phase noise and time-varying channels.
As a results, the simulated SINR values and (approxi-
mate) theoretical ones of (22) are in good agreement for
any value of mobile speed and phase noise as showed
in Fig. 6.
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Figure 6. The analytical and empirical results of SINR versus phase
noise for the differential mobile speeds.

In addition, the numerical results of the derived ap-
proximate SINR expression (22) can be used as guide-
lines in determining the maximum allowable mobile
speed under a given QoS requirement (i.e., SINR values
must be greater than a related threshold). Figs. 7 the
SINR versus SNR is plotted for different mobile speeds.
To achieve the SINR > 20 dB, the SNR should be more
than 22 dB with a mobile speed of 100 km/h and the
SINR requirement can not be satisfied if SNR is less
than 30 dB for mobile speeds of 300 km/h and 500
km/h.
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Figure 7. SINR versus SNR when βTs = 0.001, v = 100, 300, 500km/h

The SINR curves at mobile speeds of 100 km/h and
350 km/h under radio carrier frequencies of 3.5 GHz,
5 GHz, and 10 GHz are show in Fig. 9. As can be seen
from this figure, the degradation increases as the carrier
frequency increase. It can also be seen that the carrier
frequency of 10 GHz is inappropriate with high speed
applications.

For a given QoS requirement, the approximate SINR
expression also helps to determine allowable data rates
of provided services. In particular, Fig. 8 shows nu-
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Figure 8. SINR versus Ts when βTs=0.01, speed of 100 km/h

merical SINR results of (22) versus the OFDM symbol
length Ts. Specifically, by using the approximate SINR
expression (22), one can determine that the values of Ts
should be smaller than a certain threshold so that the
actual SINR values are greater than a required value
(corresponding to the required QoS level).
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Table I
LTE and WiMAX band 5

LTE [20] WiMAX [18]
System channel bandwidth (MHz) 5 5
Sampling frequency Fs (MHz) 7.68 5.6
FFT size N f f t 512 512
Subcarrier frequency spacing (kHz) 15 10.94
Useful symbol duration Ts (µs) 66.7 91.4

In Fig. 10, SINRs are plotted versus SNR under LTE
and WiMAX system settings as shown in Table 1. The
SINR values of the considered LTE system are higher
than those of the considered WiMAX system under the
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Figure 10. SINR comparison between the LTE and WiMAX system
settings

same β and mobile speed values since Ts of the LTE
setting is greater than that of the WiMAX one.

5 Conclusion

This paper developed an approximate SINR expression
for OFDM transmissions in the presence of both phase
noise and time-varying channels. Unlike other existing
SINR formulations, the closed-form expression of ap-
proximate SINR in this paper offers a better agreement
with empirical SINR values over a wide range of mobile
speeds. The derived SINR formulation can be used as
theoretical guidelines in choosing appropriate OFDM
transmission settings under a given QoS requirement
and related system constraints.
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