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Abstract– Effective detectors with low-complexity are considered for the Alamouti’s multiuser space-time block coded (STBC)
systems. Viewing the noiseless received signals from Q users as a lattice with basis vectors being the columns of the total
channel matrix H, we apply lattice reduction to transform the original basis into a nearly orthogonal one which improves
the decision regions against noise. Then, linear detection using zero-forcing (ZF) and minimum-mean-square-error (MMSE)
methods is performed on the transformed basis to detect transmitted signals from the Q users. These lattice-reduction-aided
(LRA) linear detectors significantly improve BER of the linear detectors and, more importantly, allow us to achieve full
diversity at high Eb/N0 regions.
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1 Introduction

In multiuser wireless communication systems, besides
the effects of channel fading and local noise, the re-
ceived signal is also interfered by signals from other co-
channel users known as co-channel interference (CCI).
The objective of detection methods is to detect trans-
mitted signals from individual users in presence of
CCI [1]. In terms of minimizing detection error, the
maximum likelihood detector (MLD) is optimal, but
its excessive complexity prevents it from practical im-
plementation. The linear detectors such as zero-forcing
(ZF) or minimum mean square error (MMSE) detectors
require less complexity but suffer from BER degra-
dation due to residual interference when the number
of users increases [1]. Hence, the goal of multiuser
detection problem is to design a reliable detector with
reasonable complexity cost. To this direction, recently
introduced lattice-reduction-aided (LRA) linear detec-
tors [2, 3] are a promising candidate as they can achieve
near maximum-likelihood BER at low cost of complex-
ity. Spatial diversity by means of multiple antennas
is well-known as an effective way to mitigate channel
fading without requiring bandwidth extension. Among
spatial diversity techniques, the space-time block code
(STBC), introduced by Alamouti [4], is of the most
attractive one as it can provide full rate and full di-
versity with very simple encoding and decoding algo-
rithm. Multiuser detection for the Alamouti’s STBC has
been recently considered in [5] using MMSE method
and improved in [6] using the combined MMSE-ML
method. Although the proposed combined MMSE-ML
detector of [6] can help to improve the BER of the linear

MMSE detector, its complexity is largely dependent on
modulation schemes, thus may not be applied to high-
order modulation schemes such as M-QAM or M-
PSK for large constellation size M. In order to apply
the LRA detection to the multiuser STBC system, in a
recent work [7] we proposed two LRA detectors based
on the linear ZF and MMSE detection. It was shown
in the paper that using the LR helps to improve the
BER performance of the detectors significantly. In [8]
the authors proposed two LRA detection algorithms
based on QR detection, namely, SQRD and AQRD, and
presented an implementation of the LRA detectors on
programmable device for multiuser STBC systems. The
authors of [9], however, proposed a method to reduce
the complexity of the LRA detectors for multiuser STBC
systems. Unfortunately, this proposal is applicable to a
multiuser system with only two users.

In this paper, we generalize our previous work in [7]
to the case of multiuser detection with interference
successive cancelation (SIC). We will consider both ZF
and MMSE in the LRA detection. Our work will serve
as a comprehensive case of LRA multiuser detection for
STBC systems. The proposed LRA multiuser detectors
can work with a system with an arbitrary number
of users as long as the number of users does not
exceed the number of receive antennas. The proposal
of combining SIC with LRA linear detection exhibits
significant BER improvement for those systems with
large number of users.

The remainder of this paper is organized as fol-
lows. In Section 2, system model of a multiuser STBC
system is introduced. Section 3 explains fundamentals
of LR methods followed by the proposed LRA-ZF,
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Figure 1. Configuration of Multiuser Detection for STBC transmission

LRA-MMSE and LRA-SIC multiuser detectors for STBC
systems. Simulation results are given in Section 6 and
conclusion is made in Section 7.

2 System Model

We consider a wireless system with Q users using STBC
to communicate with the receiver over a flat fading
channel as shown in Fig. 1. Although the Q users have
been isolated in the figure as in a multiuser system, they
can also be considered Q groups of NT = 2 transmit
antennas in a combined array processing and space-
time coding scheme in [10] or those in a double space-
time transmit diversity (DSTTD) system in [11]. Each
user uses the Alamouti’s STBC [4] for transmission
in order to achieve full-rate and full-diversity. The
transmit signal of user q, q ∈ {1, 2, ...Q}, is encoded
and transmitted across two antennas and two time slots
using the following encoding matrix

S(k) =

[
b(q)1,1 (k) b(q)2,1 (k)

b(q)1,2 (k) b(q)2,2 (k)

]
=

[
s(q)1 (k) s(q)2 (k)
−s(q)∗2 (k) s(q)∗1 (k)

]
,

(1)
where the superscript (·)∗ denotes the complex con-
jugation operator, b(q)n,t (k) ∈ C is the transmit symbol
from antenna n ∈ {1, 2} of user q at time slot t ∈ {1, 2}
during the kth block, and C is the signal constellation.
During the kth block transmission, at the first time slot
t = 1, the first antenna of user q transmits s(q)1 (k) while
the second antenna transmits s(q)2 (k). At the next time
slot t = 2, the first antenna transmits −s(q)∗2 (k) while
the second antenna transmits s(q)∗1 (k). The receiver is
assumed to have an MR-element array antenna. Chan-
nels between all users and the receivers are quasi-static
over a block of some length such that h(q)mn,t(k) = h(q)mn(k).

Here h(q)mn,t(k) denotes channel complex gains between
transmit antenna n ∈ {1, 2} of user q and the receiver
antenna m during the tth time slot of the kth transmis-
sion block. The received signal at time slot t and the

receive antenna m from all Q users is then given by

rm,t(k) =
Q

∑
q=1

NT=2

∑
n=1

bn,t,(q) (k)h
(q)
mn(k) + zm,t(k), (2)

with the superscript (.)(q) indicates the expression
corresponding to the qth user. Following the method
presented in [5] and [6], we build the vector channel
model for this multiuser STBC system by defining the
following vectors

s(q)(k) ,
[
s(q)1 (k), s(q)2 (k)

]T
, (3)

h(q)
n (k) ,

[
h(q)1n (k), h(q)2n (k), . . . , h(q)Mn(k)

]T
, (4)

rt(k) , [r1,t(k), r2,t(k), . . . , rM,t(k)]
T , (5)

zt(k) , [z1,t(k), z2,t(k), . . . , zM,t(k)]
T , (6)

where the superscript (.)T denotes the vector transpose
operator. Next, stacking rt(k), zt(k) and h(q)

n (k), we have

r(k) ,
[
rT

1 (k), rH
2 (k)

]T
, (7)

z(k) ,
[
zT

1 (k), zH
2 (k)

]T
, (8)

H(q)(k) ,

[
h(q)

1 (k) h(q)
2 (k)

h(q)∗
2 (k) −h(q)∗

1 (k)

]
. (9)

Further, let us construct the input signal vector s(k)
and the total channel matrix for the multiuser system
as H(k) as

s(k) ,
[
s(1)T(k), s(2)T(k), . . . , s(Q)T(k)

]T
, (10)

H(k) ,
[

H(1)(k), H(2)(k), . . . , H(Q)(k)
]

, (11)

where the the superscript (.)T denotes the Hermitian
transpose operator. Ignoring the block index k for no-
tational simplification and using (7)–(11), we have the
vector channel model of the considered multiuser STBC
system as

r = Hs + z. (12)

In order to obtain a lattice representation of the con-
sidered system, we shall transform the above complex
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channel vector model into a real-valued model. It is
also expected that using the real-valued model would
improve BER performance of the non-linear SIC de-
tectors [12]. We begin by constructing the real-valued
channel matrix

H =

[
<{H} −={H}
={H} <{H}

]
(13)

where the notations <{.} and ={.} represent the real-
part and the complex-part operation, respectively. In a
similar manner, we convert the transmit signal vector
s, the receive signal vector r, and the noise vector z
respectively into the real-valued vectors

s =
[
<{sT}, ={sT}

]T , (14)

r =
[
<{rT}, ={rT}

]T , (15)

z =
[
<{zT}, ={zT}

]T . (16)

The complex channel vector model in (12) now can
be converted into a real-valued vector model using
equations (13) to (16) as

r = Hs + z. (17)

Note that the real-valued matrix H has size N×M with
N = 2NTMR and M = 2QNT, and all the real vectors
x, s, z are of an M× 1 column vector.

Equation (17) can be considered a lattice representa-
tion where each noiseless received component in Hs is
interpreted as a point of the lattice generated by the
generator matrix H while each column of H represent-
ing a basis vector. Using this lattice representation we
shall apply the idea of lattice basis reduction in [13]
to improve decision regions of linear detectors so that
their BER performance is enhanced at a cost of very
small additional complexity.

In the next section, we shall briefly introduce the
idea of lattice basis reduction and its application to the
multiuser detection problem of the considered STBC
system.

3 Lattice Basis Reduction

In order to explain the idea of lattice basis reduction,
let us denote columns of the real-valued channel matrix
H as h1, h2, . . . , hN . Since channels between all users’
antennas and the receiver’s antennas are independent,
all the vectors hi, i = 1, ..., N, are linearly independent
with one another. Therefore, the following combination

Λ = c1h1 + c2h2 + ... + cNhN ∈ RM,

with N ≤ M and ci ∈ Z, can be considered a lattice
spanned by the generator matrix H. The set of vectors
{h1, h2, ..., hN} is called a basis of Λ. Since the transmit
vector s contains real elements, we can consider ci as
elements of s. Then, using the above definition we can
view the noiseless component of the receive signal as
the lattice, i.e., Λ = Hs. Note that if H generates Λ, then
any matrix Ĥ = HT , where T is an integer orthogonal
matrix with determinant det(T) = ±1, is another
generator matrix of the same lattice Λ [14]. Ĥ can be

seen as a transformed generator matrix resulted from
a series of operations which do not change the lattice
but only its basis. Such operations can be obtained
by swapping vectors, subtracting components of one
basis vector hj from another hi, similar to the Gram-
Schmidt orthogonalization. The orthogonal matrix T
is also called a unimodular matrix. It is clear that
the inverse of unimodular matrices always exists and
contains also only integer values, i.e. T−1 ∈ ZN . Thus, it
is followed that the inverse operation H = ĤT−1 holds.

The aim of lattice basis reduction, or sometimes simply
referred to as lattice reduction (LR), is to transform a
given basis H into a new basis Ĥ with vectors of
the shortest length and close to mutually orthogonal.
Equivalently, this reduces to find a unimodular matrix
T which can make the basis vectors of H nearly or-
thogonal to one another. There are several lattice basis
reduction algorithms available in the literature, among
which the algorithm introduced by Lenstra-Lenstra-
Lovász [13], abbreviated as the LLL algorithm, is the
most popular one because it requires only polynomial
complexity. Throughout this paper we shall make use of
this algorithm in our lattice-reduction aided (LRA) re-
ceivers. The principle of the LLL lattice basis reduction
algorithm is briefly introduced below. Readers are re-
ferred to [13] for more details on the LLL algorithm. The
conventional Gram-Schmidt orthogonalization forms
an orthogonal basis Ĥ =

[
ĥ1, ĥ2, . . . , ĥN

]
from the

basis H = [h1, h2, . . . , hN ] by recursively doing for i
from 1 to N as

ĥi = hi −
i−1

∑
j=1

µijĥj, (18)

where

µij =
ĥ

T
j hi

‖ĥj‖2
(19)

represents the length of projection of hi onto ĥj. The
operation in the right side of (18) means removing com-
ponents of ĥ1, ..., ĥi−1 from hi, making ĥi orthogonal to
other basis vectors.

The basis Ĥ =
[
ĥ1, ĥ2, . . . , ĥN

]
is called LLL-

reduced if its Gram-Schmidt decomposition satisfies

|µij| ≤
1
2

for 1 ≤ j < i ≤ N, (20)

and
δ‖ĥi−1‖2 ≤ ‖ĥi + µi,i−1ĥi−1‖2 (21)

for any i ∈ {2, ..., N} and 0 < δ ≤ 1. A common choice
of δ by the LLL algorithm is δ = 3/4 [3], [13].

One important note from the conventional Gram-
Schmidt orthogonalization is that it changes the lattice,
therefore cannot be applied to the lattice reduction.
An alternative way is to replace the Gram-Schmidt
coefficient µ by its nearest integer, i.e., dµi,jc, where
d.c denotes rounding operation. This results in weak
basis reduction which fortunately does not change the
lattice. Using a weak basis reduction, the Gram-Schmidt
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Figure 2. Example of weak reduction in 2D of two vectors h1 and h2

orthogonalization in (18) becomes

ĥi = hi −
i−1

∑
j=1
dµijcĥj, (22)

which satisfies (20). However, only a weak reduction
in (22) does not ensure that all the basis vectors have
the shortest length as those basis vectors in the front
of the sequence

{
ĥ1, ĥ2, . . . , ĥN

}
may have a longer

length than the others. To avoid this situation the LLL
lattice basis reduction algorithm checks condition (21)
for every i. If there is such an i that violates the test
condition in (21), the algorithm swaps ĥi and ĥj. After
swapping the weak reduction is performed again to
make sure the two vectors have the shortest length with
respect to each other. The algorithm repeats this test
and weak reduction process until no more reduction
is possible. The modified LLL algorithm which also
returns the transform matrix T used in the LRA detec-
tors presented in the next section is shown in Table 3.
Note that in the algorithm the notation IM denotes an
identity matrix of size M×M.

An illustration of the weak reduction using the LLL
algorithm for two two-dimensional (2D) basis vectors
is shown in Fig. 2. Note from Fig. 2(b) that the vector
h′1 represents the Gram-Schmidt orthogonalized vector
of h1 with respect to h2. Using the weak reduction,
µ is rounded to the nearest integer and, as a result,
h′1 is shifted to ĥ1. A second note from the Fig. 2(c)
that after the first iteration, the two vector ĥ1 and h2
already formed a weakly reduced basis, thus the second
iteration does not help to reduce h2 further with respect
to ĥ1. The resulted two vectors ĥ1 and ĥ2 become closely
orthogonal to each other.

4 LRA Linear Multiuser Detectors

In this section, we first briefly introduce two common
conventional linear detectors, namely, zero forcing (ZF)
and minimum mean square error (MMSE), then apply
the application of the lattice reduction to these detec-
tors.

Table I
The Modified LLL-latticed Basis Reduction Algorithm

(1) Begin: Input H, set i := 2, β = 3/4, and T = IM
(2) while i ≤ N
(4) for j := i− 1, ..., 1
(5) calculate µij as in (19)
(6) hi := hi − dµijchj
(7) T i := T i − dµijcT j
(8) end
(9) Update ĥi , µi1, ..., µij−1 using (18), (19)
(7) if δ‖ĥi−1‖2 ≤ ‖ĥi + µi,i−1ĥi−1‖2

(10) Swap columns i− 1 and i in H and T .
(11) i:= max{i− 1, 2}
(12) else
(13) i := i + 1
(14) end
(15) end
(16) End: Return Ĥ = H and T .

4.1 Linear Multiuser Detectors

Using the linear multiuser detector, the estimated
vector s̃ of the transmit vector s is given via linear
combining the received signal vector r with the weight
matrix W as

s̃ = Wr. (23)

The estimated vector is then quantized to make final
decision on the detected signals

s̄ = Q{s̃} = Q{Wr}, (24)

where Q{.} denotes the quantization operation.
4.1.1 ZF Detector: In ZF detectors the linear com-

bining weight matrix is given by the Moore-Penrose
pseudo-inverse of the matrix H, i.e.

WZF , H† =
(

HT H
)−1HT (25)

where (·)† represents the pseudo-inverse operation.
The estimated vector is thus given by

s̃ZF = WZFr = s + (HT H)−1HTz. (26)

Although it is very simple, one problem associated with
ZF detectors is that it suffers from noise amplification
which can be seen in the second term of (26).
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4.1.2 MMSE Detector: Different from the ZF detector,
the MMSE detector takes into consideration the effect
of noise to avoid the problem of noise amplification.
The weight matrix of MMSE detector is given by [15]

WMMSE = (HT HP + σ2 IN)
−1PHT (27)

where σ2 is the noise variance and P = E{ssT} =
diag(ζ2

1, ζ2
2, ...ζ2

N) is the diagonal power matrix. The
notation E{.} denotes expectation operator and diag(.)
denotes a diagonal matrix with diagonal elements in-
side the argument. With a simple manipulation, equa-
tion (27) can be rewritten as

WMMSE = (HT H + Υ)−1HT (28)

where Υ = diag( σ2

ζ2
1

, . . . , σ2

ζ2
N
).

In order to simplify our presentation later for both
ZF and MMSE detectors, we shall convert the MMSE
weight matrix in (27) into a similar form of the ZF
in (25) using method presented [16]. For notational
simplicity, we shall assume that the average transmit
power of all users is the same and equal to ζ2. The
MMSE estimated vector s̃ is then given by a new form
of weight matrix as

s̃MMSE =

[
HT H +

σ2

ζ2 IN

]−1

HTr

=

[
HT H +

σ2

ζ2 IN

]−1 [ H
σ

ζ
IN

]T [
r
0N

]
=
(

H̄T H̄
)−1

H̄T r̄ = H̄† r̄ (29)

where 0N is a N-length zero column vector, H̄ =
[H, σ

ζ IN ]
T, r̄ = [r, 0N ]

T, where (·)T represents the block
matrix transposition. The MMSE weight matrix can be
now written in a similar form of the ZF as

W̄MMSE = H̄† =
(

H̄T H̄
)−1H̄T . (30)

The original MMSE weight matrix in (27) can be now
rewritten as

WMMSE =
(

H̄T H̄
)−1HT . (31)

4.2 LRA Linear Detectors

The principle of LRA linear detectors is first to find
a lattice reduced basis Ĥ of the original basis (channel
matrix) H and then apply the linear detection methods
on the obtained reduced basis. Let us rewrite the system
model vector in (17) as

r = Hs + z = HTT−1s + z = Ĥu + z (32)

where u = T−1s. Since T contains integer elements, for
s ∈ ZN we also have u ∈ ZN . Moreover, as both Ĥu
and Hs describe the same point in the lattice, the object
of the LRA linear detection is to detect u instead of s.
If we denote ũ the estimates of u, then we obtain the
estimates of s using the transform matrix T as s̃ = Tũ.

The proposed LRA-ZF and LRA-MMSE detectors are
presented below.

4.2.1 LRA-ZF Detector: Similar to (25), the ZF weight
matrix used to detect u is given by

WLRA−ZF = Ĥ†. (33)

The decision statics (estimates) of u are given by

ũLRA−ZF = WLRA−ZFr = Ĥ†r = u + Ĥ†z. (34)

Since u ∈ ZN , it is intuitive to perform an un-
constrained elementwise quantization, ūLRA−ZF =
Q{ũLRA−ZF}, then calculate s̃LRA−ZF = TũLRA−ZF, and
finally restrict this result to the signal constellation.
Note that before applying the quantization we need
to properly shift and scale ũLRA−ZF such that it really
contains integer value. Depending on the specific con-
stellation, the shifting and scaling step can be different.
With 4-QAM, for example, if the transmitted signal is
from the constellation A : {± 1√

2
± 1√

2
j} then the vector

s will contain elements with value of {± 1√
2
}. And s

presents for the integer vector ŝ, whose each element
ŝ ∈ {0, 1} is shifted by 1

2 and scaled by
√

2 as below

s =
√

2(ŝ−
[ 1

2 , · · · , 1
2

]T
). (35)

Thus,

u = T−1s =
√

2T−1ŝ− T−1
[

1√
2

, · · · , 1√
2

]T
. (36)

Now, the quantization step consists of shifting and
scaling u in order to allow simple element-rounding
for vector (T−1ŝ) whose elements are expected to be
integer, and then, shifting and scaling the rounded
vector back to get the estimate ũ of u as

ũ =
√

2Q
{

1√
2
(u + T−1

[
1√
2
, · · · , 1√

2

]T
)

}
− T−1

[
1√
2
, · · · , 1√

2

]T
. (37)

For LRA-ZF detector, the quantization step is given as

ũLRA−ZF =
√

2Q
{

1√
2
(uLRA−ZF + T−1

[
1√
2
, · · · , 1√

2

]T
)

}
− T−1

[
1√
2
, · · · , 1√

2

]T
. (38)

When we get the estimate ũ the transmitted signal is
estimate by s̃LRA−ZF = TũLRA−ZF, Due to the error
detection the estimated elements of s̃LRA−ZF, which are
not in the set points of {± 1

2}, have to be snapped to
one point by comparing to zero decision boundary.

4.2.2 LRA-MMSE Detector: Although a suboptimal
MMSE receiver can reduce the noise enhancement by
allowing some residual spatial interference, the overall
improvement is incremental. A straight forward way
to improve performance of the MMSE detector is to
replace H by Ĥ in (28) to get the improved weight
matrix. However, doing that will not give the weight
matrix the full benefit from lattice reduction since the
LR application to H does not take the noise term
into account. However, if we assume the LLL-reduced
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ˆ̄H = H̄T̄ , which means H̄ = T̄−1 ˆ̄H, from the MMSE
weight matrix in (30) we have

s̃MMSE =
(

H̄T H̄
)−1H̄T r̄

=
[(

T̄−1 ˆ̄H
)T(T̄−1 ˆ̄H

)]−1(T̄−1 ˆ̄H
)T r̄

= T̄
(
( ˆ̄H)T ˆ̄H

)−1
( ˆ̄H)T r̄ = T̄( ˆ̄H)† r̄. (39)

From this expression, we get uLRA−MMSE = T̄−1s̃MMSE,
which is similar to the LRA-ZF detection but for the
MMSE. Since ˆ̄H is LLL-reduced matrix of H̄, multiply-
ing the noisy receive vector with ˆ̄H† causes much less
noise amplification compared to that of Ĥ†. Moreover,
since the estimate is calculated according to the MMSE
detection, uLRA−MMSE will exploit the benefit from both
LR and noise amplification avoidance to improve the
MMSE detection performance.

Note that the expression of the MMSE detector in (29)
is similar to that of the ZF detector and, thus, that
the orthogonality of H̄, not that of H, will decide the
noise amplification level. Therefore, we should apply
the method for LRA-ZF to the pseudo-channel matrix
H̄ to have the LRA-MMSE detector and to allow LLL-
reduced matrix ˆ̄H to fully exploit both advantages from
the MMSE detection and lattice reduction, therefore,
achieve improved performance. This means that we will
first perform the LR for the matrix H̄, i.e. ˆ̄H = H̄T̄ , then
compute uLRA−MMSE = ˆ̄H† r̄. The quantization step is
similar to that for LRA-ZF detector as

ũLRA−MMSE

=
√

2Q
{ 1√

2
(uLRA−MMSE + T̄−1

[
1√
2

, · · · , 1√
2

]T
)
}

− T̄−1
[

1√
2

, · · · , 1√
2

]T
. (40)

5 Combined LRA Linear Detectors and

Successive Interference Cancellation

This section will focus on the principle of the standard
nonlinear multiuser detection technique, namely Suc-
cessive Interference Cancellation (SIC), as well as the
more recent advances in reduced complexity version
SIC by using QR decomposition. We then develop LRA-
SIC detection for the multiuser STBC systems.

5.1 Principle of SIC

The SIC detection algorithm is based on the solution
of linear ZF- or MMSE detection, but the principle is
to detect one user at a time and not in parallel. The
user with the highest post detection signal-to-noise-
ratio (SNR) or smallest error covariance is detected first.
Once this user has been detected, his signal is sub-
tracted from the received signals of all users, following
which the user with the next highest SNR is detected.
This process is repeated until all the users have been
detected.

Recall from previous sections, using (26) and (31) the
covariance matrix for the estimation error of ZF- and

MMSE detection is given by

E
{
(s− s̃ZF)(s− s̃ZF)

T
}
= σ2(HT H)−1 (41)

and

E
{
(s− s̃MMSE)(s− s̃MMSE)

T
}
= σ2

[
HT H +

σ2

ζ2 In

]−1

or = σ2
(

H̄T H̄
)−1

. (42)

It is clear that the estimation error of each element of
s will be proportional to the diagonal element of the
matrix. Therefore, the first detected signal among the
entries of s will be the one with the smallest diagonal
element of the covariance matrix, i.e., the one with the
smallest error covariance. It is not difficult to see that
if the first detected element is the ith entry of s then
the norm of the columns hi of H will be maximum
compared to the other columns. After estimation of s̃i,
considering s̃i as a known quantity, we obtain the can-
celed signal vector r − hi s̃i and reduced order channel
matrix H(n−1), which is the remaining n− 1 columns.
Then, the whole procedure has to be repeated again
to detect each element one by one. Due to the effect
of error propagation it is very important to detect in
optimal order direction. Thus two main steps of SIC
detection are:

1) Determine the optimal detection order and the
weight vector/matrix.

2) Obtain the linear estimate of the signal with the
highest post-detection SNR, quantize the estimate
and cancel the effect of the sliced estimate signal.

Since step 1 contains the major complexity of SIC
detection with inverting and squaring the matrix H or
H̄, as well as the requirement of pseudo-inversion of
the deflated channel matrix in each stage, it is necessary
to investigate the advanced method to achieve optimal
detection order and weight matrix with reduced com-
plexity.

5.2 ZF-SIC with Optimal Ordering
In order to avoid inverting and squaring matrix

operation in the order sorting step, the usage of QR
decomposition was introduced in [16] and [17] with
significant complexity reduction. In this section, we re-
consider the ZF-SIC and the post optimal sort algorithm
in detail and try to improve it. Let us start with the QR
decomposition of the extended channel matrix

H = QR (43)

where Q is an n× n orthonormal matrix and R is an
n× n upper triangular matrix. From this decomposition
the error covariance matrix in (41) can be rewritten as

ΦZF = σ2
(

HT H
)−1

= σ2
[
(QR)T(QR)

]−1
(44)

= σ2R−1R−T (45)

and the ZF solution in (26) can be rewritten as

s̃ZF =
[
(QR)T(QR)

]−1
(QR)Tr = R−1R−T RTQTr

= R−1QTr. (46)
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Because R−1 has an upper triangular form (46) is given
by 

s̃ZF
1
.
.
.

s̃ZF
n

 =


R−1

1,1 . . . .
0 . . . .
0 0 R−1

i,i . .
0 0 0 . .
0 0 0 0 R−1

n,n




qT
1 r
.

qT
i r
.

qT
n r

 (47)

where R−1
i,i is the (i, i)th element of R−1 and Ri,iis

the (i, i)th element of R; qi is the ith column of Q.
Thus, from two equation (44) and (47) we can have the
following two important observations:
• The estimate error is proportional to the row norm

of R−1 and thus, to minimize estimate error at
each SIC-stage, the corresponding entry associated
with the minimum norm row of R−1, or maximum
norm column of R, should be detected first.

• To avoid pseudoinverse operation at every SIC-
stage the ZF solution can be detected from the last
layer to the first layer as

s̃ZF
n =

1
R̄n,n

qT
n r (48)

and canceled from received signal vector as

r = r− hn s̃ZF
n . (49)

Therefore, by permuting entries of s or equivalent
exchanging column of H should guarantee an optimum
ordered matrix Hordered such that the R−1

ordered with
the minimum row norm will be the last row of any
submatrix K × K of R−1

ordered, K = n, ..., 2. That is, in
the optimal sorting algorithm, instead of inverting and
squaring H, it reduces to find the minimum norm row
of R−1 and its submatrix and reorder the entry to
the last row together with exchanging corresponding
column of H. Note that exchanging columns of H is
done together with exchanging corresponding rows in
R−1, keeping the relation H = QR still holds but
exchanging operation will output a matrix R−1

ex with-
out the triangular structure. To recover the triangular
structure one can use a unitary Householder matrix Θ
as suggested in [17]. It comes from the our observation
that

Hex = QexRex = QexΘΘ−1Rex

= (QexΘ)(R−1
ex Θ)−1 = Qnew(R−1

new)
−1.

Due to the multiplication with Θ the matrix R−1
new has

the last row with only one element similar as in (47)
and can be used for the next step. Once the last row
is properly sorted, the procedure is repeated for the
near last row n− 1 of the (n− 1)× (n− 1) submatrix
of R−1

new and so on to get the Hordered. Improvement
can be made by observing that the relation Hordered =
QorderedRordered holds, thus, it is unnecessary to update
Q for every exchanging step as in [17]. We can obtain
Qordered in the end by

Qordered = HorderedR−1
ordered (50)

where, Hordered and R−1
ordered are certainly known.

We can now summarize the ZF-SIC algorithm as
follows

1) Compute Q and R−1 by QR decomposition of H.
2) Find the minimum norm row of R−1 and permute

it to be the last nth row. Permute s and columns
of H in H.

3) Calculate the Householder matrix Θ to make
R−1

ex Θ become block upper triangular.
4) Go back to step 2 but now calculate with (n− 1)×

(n− 1) submatrix of R−1. Repeat step 2, 3, 4 until
submatrix reduces to 1× 1.

5) From here, we get Horder, calculate Q as in (50).
6) Apply ZF-detection for each entry and cancel the

signal effect with order from nth to 1st as in (48)
and (49).

More details on how to calculate Θ can be found in [17].

5.3 LRA-ZF-SIC Detector
Similar to the linear detection, we can consider the

lattice-reduced version of the system model with the
equivalent channel matrix Ĥ = Q̂R̂ and the transmitted
signal u = T−1s, leading to LRA-ZF-SIC detection with
the decision variables given by

s̃LRA−ZF−SIC = R̂−1Q̂T
1 r. (51)

Note that the quantization step is applied for each
detected element. The properly scaling and shifting is
described in [18]. The LRA-ZF-SIC algorithm is then
rewritten from ZF-SIC algorithm as

1) Apply lattice-reduction to get Ĥ = HT .
2) Apply the optimal sorting algorithm for Ĥ as

described from step 1 to 4 of ZF-SIC algorithm.
3) From here, we obtain Ĥorder, calculate Q̂ as in (50).
4) Apply LRA-ZF-detection and quantization for

each entry as in (51) and then cancel the signal
effect with order from nth to 1st as in (49), but in
terms of z instead of s.

5) Calculate the original s̃ = Q{Tz̃}. The trans-
mitted signal from each user can be then recon-
structed by doing inversion of (15) and (10).

5.4 MMSE-SIC with Optimal Ordering
It is interesting to note that there is a difference

between the sorting algorithm above from the algorithm
in [16] and [17] in that the one we introduce can be used
for either ZF-SIC or MMSE-SIC with only replacing
H̄ for H and vice versa, thanks to the ZF-detection
similar form of MMSE-detection in (29). Indeed, similar
to ZF-SIC let us start with the QR decomposition of the
extended channel matrix

H̄ =

[
H

σIn

]
= Q̄R̄ =

[
Q1
Q2

]
R̄ (52)

where Q̄ is an (n+m)× n orthonormal matrix and R̄ is
an n× n upper triangular matrix. From this decomposi-
tion the error covariance matrix in (42) can be rewritten
as

ΦMMSE = σ2[H̄T H̄
]−1

= σ2[(Q̄R̄)T(Q̄R̄)
]−1 (53)

= σ2R̄−1R̄−T (54)
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and the MMSE solution in (31) can be rewritten as

s̃MMSE =
[
(Q̄R̄)T(Q̄R̄)

]−1
(Q1R̄)Tr

= R̄−1R̄−T R̄TQT
1 r

= R̄−1QT
1 r. (55)

Because R̄−1 has an upper triangular form (55) is given
by 

s̃MMSE
1

.

.

.
s̃MMSE

n

 =


R̄−1

1,1 . . . .
0 . . . .
0 0 R̄−1

i,i . .
0 0 0 . .
0 0 0 0 R̄−1

n,n




qT
1 r
.

qT
i r
.

qT
n r

 (56)

where R̄−1
i,i is the (i, i)th element of R̄−1 and equal 1

R̄i,i
;

qi is the ith column of Q1.
Thus, from two equation (53) and (56) we can have

similar observations for ZF-SIC. Like ZF-SIC, the cor-
responding entry associated with the minimum norm
row of R̄−1 should be detected first and the MMSE
solution should be detected in the direction from the
last layer to the first layer as

s̃MMSE
n =

1
R̄n,n

qT
n r (57)

and canceled from received signal vector as

r = r− h̄n s̃MMSE
n . (58)

Therefore, by permuting entries of s or equivalent
exchanging column of H should guarantee an optimum
ordered matrix H̄ordered such that the R̄−1

ordered with
the minimum row norm will be the last row of any
submatrix K × K of R̄−1

ordered, K = n, ..., 2. That is, in
the optimal sorting algorithm, instead of inverting and
squaring H̄, it reduces to find the minimum norm row
of R̄−1 and its sub matrix and then reorders the entry
to the last row together with exchanging corresponding
column of H.

Note that as mentioned before, due to the fact that
the relation H̄ordered = Q̄orderedR̄ordered holds for every
steps, it is unnecessary to update Q1 for every exchang-
ing step as in [17]. Finally, we can obtain Q1 as

Q1 = HorderedR̄−1
ordered (59)

where, Hordered and R̄−1
ordered are certainly known.

We can now summarize the MMSE-SIC algorithm as
follows

1) Compute Q̄ and R̄−1 by QR decomposition of H̄.
2) Find the minimum norm row of R̄−1 and permute

it to be the last nth row. Permute s and columns
of H in H̄ also.

3) Calculate the Householder matrix Θ to make
R̄−1

ex Θ become block upper triangular.
4) Go back to step 2 but now calculate with (n− 1)×

(n− 1) submatrix of R̄−1. Repeat step 2, 3, 4 until
the submatrix reduces to 1× 1.

5) From here, we get H̄order, calculate Q1 as in (59).
6) Apply MMSE-detection for each entry and cancel

the signal effect with order from nth to 1st as
in (57) and (58).

5.5 LRA-MMSE-SIC

Similar to the linear detection, we can consider the
lattice-reduced version of the extended system model
with the equivalent channel matrix ˆ̄H = ˆ̄Q ˆ̄R and
transmitted signal u = T−1s, leading to LRA-MMSE-
SIC detection with the decision variables given by

s̃LRA−MMSE−SIC = ˆ̄R−1Q̂T
1 r. (60)

Note that the quantization step is applied for each
detected element. The properly scaling and shifting is
described in [18]. Similar to the LRA-ZF-SIC, the LRA-
MMSE-SIC algorithm is then rewritten from MMSE-SIC
algorithm as

1) Apply lattice-reduction to get ˆ̄H = H̄T .
2) Apply the optimal sorting algorithm for ˆ̄H.
3) From here, we obtain ˆ̄Horder, calculate Q̂1 as in

(59).
4) Apply LRA-MMSE-detection and quantization for

each entry as in (60) and then cancels the signal
effect with order from nth to 1st as in (58), but in
term of z instead of s.

5) Calculate the original s̃ = Q{Tz̃}. The trans-
mitted signal from each user can be then recon-
structed by doing inversion of (14) and (10).

6 Simulation and Results

We simulate a multiuser Alamouti’s STBC system with
K = 4 users and a 4-antenna receiver. The transmit
data are 4-QAM modulated with the average transmit
power per bit equal to Eb. The elements of channel
matrix H and noise z is Gaussian distributed with
variance equal to one and σ2, respectively. At each
antenna of the receiver, the SNR per bit of each user
is SNR = Eb/σ2 = 2ζ2/σ2. Using this relation, we can
calculate the noise variance and simulate the noise for
different SNR at each Rx antenna.

Figures 3 and 4 illustrate the BER performance of
the linear ZF and MMSE detector for the case with and
without using LR with different multiuser scenarios. It
is clear that for all scenarios the use of the LR helps to
improve the BER performance dignificantly for both the
ZF and MMSE detection. Comparing the slopes of the
BER curves we can also see that with the assistance of
LR, the linear detectors can achieve the same diversity
order of the single detector.

Figure 5 compares BER performance of the ZF and
MMSE linear detectors. We can realize from the figure
is that the MMSE detectors outperform the ZF for all
cases of simulation. This is clear by using the fact
that the MMSE detection can avoid the problem of
noise amplification of the ZF detection. However, the
difference is smaller for case with smaller number of
users. For example, for the case of 4 users, the difference
is about 2 dB but this reduces to less than 1 dB for
the case of 3 or 2 users. This can be explained using
the LR characteristics. It is easy to understand that for
the case with less users, after LR the channel matrix
will be easier to be reduced, i.e. the channel matrix will
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Figure 3. BER performance of linear ZF detection.
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Figure 4. BER performance of linear MMSE detection.

become closer to orthogonal. As a result the detection
boundary will be improved and thus we can have better
BER performance.

Finally, we illustrate the efficacy of the SIC detectors
by showing the BER performance of the MMSE detector
in Fig. 6. It can be seen from the figure that we can
have significant BER performance improvement thanks
to use of SIC with the LRA-MMSE detection, however,
only for the case with more users. For the case with
less users, the LRA-MMSE is almost optimal and thus
the use of SIC does not achieve further improvement.

7 Conclusions

In this paper, we have applied the lattice reduction
method to the multiuser detection of the Alamouti’s
STBC systems and proposed two LRA linear detectors
based on ZF and MMSE detection with successive
interference cancelation. We have showed that with the
help of lattice reduction, both the LRA-linear detectors
can achieve more diversity, and thus provide better BER
performance.
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Figure 5. BER performance comparison of LRA ZF and MMSE
detection.
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