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Abstract– Research in asynchronous circuit approach has been carried out recently when asynchronous circuits are presented
more widely in electronic systems. As they are more important in human life, their correctness should be considered carefully.
Although there are some EDA tools for design and synthesis of asynchronous circuits, they are lack of methods for verifying
the correctness of the produced circuits. In this work, we are about to propose a verification method and apply it in making a
new version of the PAiD tool that can enable engineers to design, synthesize and verify asynchronous circuits. Experiments
in verifying circuits have been also provided in this work.
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1 Introduction

Asynchronous circuits have been proposed for decades
to introduce circuits of unsynchronized components
communicated by handshake protocols [1–4]. They are
ideal for contemporary systems such as system-on-
chip and network-on-chip as they get rid of the clock
distribution problem of synchronous circuits that can
lead to many critical issues such as clock skew, jitter,
noise, and high power consumption. However, as the
asynchronous circuit technology becomes more inter-
esting recently both in academia and industry, some
intriguing issues could be raised up both in research
and in practice, including description languages, syn-
thesis, verification and simulation.

Researches in high-level description languages have
been carried out for a few decades. This approach
allows designers to focus on the behaviors of the cir-
cuits instead of their actual physical implementation.
Many such languages have been proposed, including
CSP [5], CHP [6] and ADL (Asynchronous Descrip-
tion Language) [7]. The last one is created especially
for asynchronous circuits to simplify the design stage.
Thus, it encourages engineers to use asynchronous
circuit methodology in hardware design.

Unfortunately, EDA tools for the development pro-
cess of asynchronous circuits are still outnumbered by
those for synchronous circuits. One of the EDA tools,
named TAST [8], is developed at TIMA Lab, France for
designing many asynchronous systems. Another EDA
tool named PAiD [9] is developed at the Computer
Engineering laboratory, Ho Chi Minh City University
of Technology for research and teaching at the univer-
sity. The kernel of the tool is a synthesis process that
transforms the circuits described in ADL into logic-gate
netlists by utilizing multiple transformation stages to
ensure that the circuits can be optimized, verified and
simulated.

One of the intermediate languages used in the trans-
formation stages is a combination of Petri net and
Data Flow Graph (PN-DFG) [10]. This approach takes
the advantages of Petri net in representing the control
flows and the advantages of DFG in representing the
data flows in an asynchronous environment. Researches
recently have shown that engineers can easily repre-
sent [10], simulate [11], synthesize, place&route [12]
asynchronous circuits at high level of abstraction.

When asynchronous systems are used more widely
in human life, their correctness should be considered
carefully. A circuit can be proved to be corrected using
mathematical approach such as theorem proving – a
formal verification approach that focuses on concrete
mathematic foundations. Interestingly, model checking,
another formal verification approach, is a more prefer-
able way to verify the circuit when it takes advantage
of the diligence of computers and thus, it is able
to automate verifying process. Researches on model
checking, especially on hardware design, have been
carried out for a while [13–19]. In general, studies
on model checking are to reduce the impact of the
“state space explosion” problem to the field. Research
recently [20] shows that, the use of BDD (Binary De-
cision Diagram) can increase the number of explored
states in the memory dramatically [21]. A famous open-
source model checking tool based mostly on BDD is
NuSMV [22]. More recently, a new approach that uses
random walks and an abstraction heuristic guidance
has been proposed [23]. As it is based on NuSMV,
it takes the advantages of the symbolic approach in
dealing with complex systems.

In this paper, a method for verifying asynchronous
circuits will be proposed. It is combined into the PAiD
tool to extend the power of the tool in making re-
liable circuits. It is a model checking method based
on NuSMV tool using PN-DFG intermediate model to
represent circuits and symbolic technique to reduce the
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computational complexity.
The rest of this paper is constructed as follows:

Section 2 represents related works and background
knowledge, including asynchronous circuit description
and representation, PN-DFG, model checking and the
transformation from PN-DFG for model checking. The
new architecture of PAiD tool is introduced in Section 3.
Section 4 represents the developed experimentation.
The last section is for discussion and the future work.

2 Technical Background

2.1 Related Works

Research on verifying asynchronous circuits has been
focused recently [15, 16, 18, 24–29] and covered sev-
eral approaches, including verification method anal-
ysis [18, 24, 25, 29], low-level design analysis [16],
and high-/intermediate-level analysis. In verification
method analysis for asynchronous circuits, the applica-
tion of model checking [18, 24, 25] is used more widely
than theorem proving [29], probably because model
checking is advanced in verifying circuits represented
as state-transition systems [18].

In [27, 30, 31], the authors have proposed research
directions in verifying asynchronous circuit designs
and defined transformation rules to represent PN-DFG
in NuSMV tool to verify. This work makes another
step in that direction by studying more about the
representation and verification using NuSMV and the
application of it into a design and synthesis tool.

In a similar research direction, [28] transformed the
input models in CSP-like language CHP to PN-DFG
and then to a model checking tool to be verified. It
differs from our approach when we focus on PN-DFG
only and transform into NuSMV. We also analyze the
effectiveness of different representation and encoding
approaches.

In symbolic approach, related works in [18, 32] en-
coded the system-under-check and properties directly
into BDDs before checking them. They work with Petri
nets while we use PN-DFG.

In reducing the impact of the state space explosion
problem, another work [26] takes advantages of the
abstraction refinement [33] in checking asynchronous
designs. Of course, it still faces the same problem as
in [33] that the refinement-chain process may waste our
time [34]. Actually, its contribution in partitioning the
system into components is considered in our approach
as “system-as-component” [31].

Nevertheless, research on EDA tools for designing
and synthesizing hardware, especially asynchronous
circuits, has been carried out for decades [35]. For
asynchronous circuits, an EDA tool named TAST [8] has
been developed at TIMA Lab, France. Our tool named
PAiD is influent by TAST as it is a design environment
and synthesis tool. Some synthesis techniques and the
application of formal verification into the PAiD tool
make it different from TAST.

2.2 Asynchronous Description Language (ADL)
ADL is implemented as a part of the integrated devel-

opment and design environment PAiD. As an extension
of CHP, ADL is the language based on concurrent
processes communicating by the mean of exchanging
information via communication channels. It allows us
to specify the circuit at a high-level abstraction. Re-
gardless of the underlying implementations (commu-
nication protocols, structures, ...), designers can easily
describe both the structure and behavior of the circuit.
There are some other structures and constraints have
been provided for facilitating the simulation, verifica-
tion and synthesis process.

A high-level design of an asynchronous multiplexer
and its behavior described in ADL language are illus-
trated in Figure 1 and Figure 2, respectively.

Buf_1_Bit_2

Buf_1_Bit_1

Inter2

Mux2_1

Sel

Inter1

Output

Input1

Input2

Channel

Figure 1. An asynchronous multiplexer

Module Buffer_1_Bit ( in input: bit,
out output: bit )

Variable internal : bit;
input » internal ;
output « internal

End Module

Module Mux2_1 (in inp1, inp2:
bit; in sel: bit; out outp: bit)

Variable x: bit;
sel » x ;
if (x = 0) then
inp1 » y ; outp « y

elseif (x = 1) then
inp2 » y ; outp « y

end if
End Module

Main (in inp1, inp2: bit;
in sel: bit; out outp: bit)

Channel inter1, inter2: bit;
Buf_1_Bit(inp1, inter1) ||
Buf_1_Bit(inp2, inter2) ||
Mux2_1(inter1, inter2, sel, outp)

End Main

Figure 2. ADL description of multiplexer in Figure 1

2.3 Petri Net + Data Flow Graph (PN-DFG)
The emergence of PN-DFG model is an important

turning point in modeling asynchronous circuits as
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it overcomes obstacles in representing some concepts
which cannot be dealt in original Petri Net.

Definition 2.1 A PN-DFG is a 3-tupple model PD =
(P, T, L) where P is a finite set of places, T is a finite set
of transitions in the original Petri Net and L is a set of
mappings that associate each place or transition with a DFG.

The important difference between PN-DFG and a
general Petri Net is the existence of DFG which takes a
key role in modeling asynchronous circuits. Moreover,
various responsibilities of DFG are mentioned depend-
ing on where it is attached. When attached to place, the
DFG describes operations that will be executed when
the place holds token. For a transition, the DFG is a
guard for firing the transition.

TRUE P2P1

Input1 >> Internal Inter1 << Internal

TRUE

TRUE

P0

T0 T1

T2

Figure 3. PN-DFG of Buf_1_Bit module

It is imaginable that an asynchronous circuit is usu-
ally constructed from a number of smaller components.
In this approach, each component can be represented
efficiently by an appropriate PN-DFG model [10]. Fig-
ure 3 represents the appropriate PN-DFG of module
Buf_1_Bit (Figure 2).

2.4 Model Checking

Model checking is an automated technique that,
given a finite-state model of a system and a formal
property, systematically checks whether this property
holds (for a given state) in that model [17]. Besides,
in this technique, systems and properties are modeled
as transition systems and temporal logic expressions,
respectively.

Definition 2.2 (Transition system) A transition system
is a 4-tuple M = (S, S0, T, F), where S is the finite set
of states, S0 ⊆ S is the set of initial states, T ⊆ S × S is the
set of transitions, and F ⊆ S is the set of final states.

Temporal logic is the logic of time which is a combi-
nation of logical operators such as: ∧, ∨, ¬ and modal
operators such as ⃝ (Next), ♢ (Eventually), � (Glob-
ally), U (Until), ∀ (All) and ∃ (Exists). The first four
modal operators are state operators, while the others
are path operators (or path quantifiers). There are two
commonly used temporal logic systems: LTL (Linear
Temporal Logic) and CTL (Computational Tree Logic).
In LTL, there is no path operators (∀, ∃). Contrary to
LTL, in CTL, a path operator should be followed by

a state operator. For instance, the requirement “This
is a deadlock-free system” can be presented in a CTL
expression as (∀�¬ deadlock).

2.5 PN-DFG to NuSMV

It is imaginable that a system is a big module that
may consist of a number of smaller components or
just a module consists of everything. Therefore, there
are two main representation approaches in NuSMV: (1)
system-as-a-whole, where all components are merged
into one without any boundary among them, (2)
system-as-components, where all components are rep-
resented separated and connections among them are
represented explicitly. Of course, there is maybe a hy-
brid approach that takes advantages from the above
two. In representing asynchronous systems, which nat-
urally are combined of asynchronous components, the
second approach is seemly the reasonable one [31].

Theorem 2.3 There is a corresponding NuSMV model for
each PN-DFG system.

Proof: Given a PN-DFG system, one can easily fol-
low PN-DFG to NuSMV transformation rules [31] to
construct a NuSMV model.

Figure 4 represents the transformed NuSMV model
of the system in Figure 3.

3 PAiD Architecture

This section will provide an overview of PAiD – a tool
for design and synthesis of asynchronous circuits. A
formal verification tool is added, increasing the power
of PAiD.

3.1 Overview of PAiD tool

The key objective of PAiD tool is to facilitate the de-
sign of asynchronous circuits. It takes the specification
of circuit written either in CHP language or in ADL
language as the input and produces desired circuit at
gate-level as the output. The general design flow of
PAiD can be summarized as following steps:

1) Expression of the asynchronous circuit in ADL
2) PN-DFG representation of the circuit specification
3) Synthesis of circuit
4) Optimization and generation of gate netlist
In addition to the design flow, the PAiD tool is

constructed as a shell application relating to a set of
tools or commands. These commands can be invoked
either from command line mode (CLI) or graphic mode
(GUI) (Figure 5).

3.2 The new generation of PAiD tool

Regarding to the lack of checking whether the tar-
geted circuit matches the specification, a new version of
PAiD tool is introduced with a method for verification.
Its new architecture is represented in Figure 6, in which
a verification module is attached.
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MODULE BUF1

(SMV_INPUT1, SMV_INPUT1_REQ, SMV_INTER1_ACK)

VAR

SMV_INPUT1_ACK: 0..1;

SMV_INTER1_REQ: 0..1;

SMV_INTER1: 0..1;

SMV_MULTIPLEXER_BUF1_X: 0..1;

P: array 0..8 of boolean;

DEFINE

T0 := (TRUE) & P[4] & P[1];

T1 := (TRUE) & P[1] & P[8];

T2 := (TRUE) & P[7] & P[0];

...

INIT

P[8] & P[0] & P[1] & P[2] & P[3] & P[4]

& P[5] & P[6] & P[7]

& (SMV_INTER1_REQ = 0)

& (SMV_INPUT1_ACK = 0)

TRANS

(T0

& next(P[4]) = P[4] & next(P[3]) = P[3]

& next(P[2]) = P[2]

& next(P[0]) = P[0] & next(P[7]) = P[7]

& next(P[6]) = P[6] & next(P[5]) = P[5]

& next(P[1]) = P[1] & next(P[8]) = P[8]

& (TRUE)

& next(SMV_MULTIPLEXER_BUF1_X)

= SMV_MULTIPLEXER_BUF1_X

& next(SMV_INTER1) = SMV_INTER1

& next(SMV_INTER1_REQ) = SMV_INTER1_REQ

& next(SMV_INPUT1_ACK) = SMV_INPUT1_ACK)

| (T5

& next(P[4]) = P[4] & next(P[3]) = P[3]

...

Figure 4. A partial NuSMV description of Buf_1_Bit Module

Figure 5. PAiD tool in GUI mode

Figure 7 illustrates the proposed verification flow.
Actually, in order to be independent of lower level
implementation, the PN-DFG model generated by orig-
inal PAiD tool is described at high level abstraction.
In our verification module, we already examined and
then chose 4-phase handshaking protocol to expand the

HDL/CHP ADL

PN-DFG

Capture

Netlist

Capture

C/SystemC

Petri-Network

&

DFG

DTL Petri-Net

Netlist

Verification

Behavioral

Simulation

Post-Synthesis

Simulation

Behavioral

Optimization

Asynchronous

Standard-Cell

Library

kPPetri

Transform

Logic Synthesis

Physical Design

Logic Optimization

Technology Mapping

Figure 6. The new architecture of PAiD

Circuit correct?

4−phase handshaking
protocol

PN−DFG to SMV
transformation rules

SMV
Description file

4−phase handshaking
PN−DFG model Specifications

Circuit−desired

NuSMV model
checking tool

PN−DFG model
High−level

Figure 7. PAiD verification module design flow

PN-DFG model. Other protocols can be also selected
for different implementations. We applied the PN-DFG
to SMV transformation rules described earlier to au-
tomatically generate appropriate SMV description file
afterward. Finally, this SMV file will be used by NuSMV
model checking tool for running verifying process.

4 Experimentation

This section will demonstrate their feasibility in circuit
verification by applying to some case studies.

4.1 Case Studies
4.1.1 Asynchronous Arbiter: Arbiter [36] is a common

electronic device in digital system that controls access
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to a shared resource among different client processes.
A block diagram of an asynchronous arbiter is depicted
in Figure 8.

C2

C1Client_1

Client_2

C
Asynchronous

Arbiter

Figure 8. Architecture of the asynchronous arbiter

Two clients compete to access a common resource.
Each client requests the arbiter to access the resource
via its corresponding channel (C1 or C2). The arbiter
must determine which request is served first. The chan-
nel C then shows the number of selected client to the
resource.

A verifying specification “If there is a pending request
in channel c1, there should be an execution path so that c
presents 1 eventually (Arbiter_P)” is expressed in form of
CTL as follows:

AG(c1_request → EF(c = 1)) (1)

4.1.2 Asynchronous Selector: This benchmark repre-
sents a selector that consists of one input and two
outputs. It will deterministically select one output (S1
or S2) to transfer input data (E) depending on the
value read from specific channel (C). The corresponding
architecture is depicted in Figure 9.

C

E

Selector

Component_2

Component_1
S1

S2
Component_4

Component_3

Figure 9. Architecture of the asynchronous selector

A verifying specification “If channel C chooses output
S1 by sending value 0, the value of channel E should be
transferred to S1 eventually (Selector_P)” is expressed in
NuSMV as follows:

AG((C = 0 & E = 1) → EF(S1 = 1)) (2)

4.1.3 Asynchronous Multiplexer: The asynchronous
multiplexer works similarly to the asynchronous selec-
tor described above. Depending on the value read from
a specific channel, the multiplexer will enable data from
appropriate input source to be transferred to output. A
two-input multiplexer has been shown in Figure 1.

A verifying specification “If the value read from channel
sel is 0, the data of channel inter1 must be transferred to
channel output (Multiplexer_P)” is expressed in NuSMV
as follows:

AG((sel = 0 & inter1 = 1) → EF(output = 1)) (3)

4.1.4 Distributed Mutual Exclusion: The Distributed
Mutual Exclusion (DME) is a well-known mutual ex-
clusion problem in which some cyclic processes, called
“masters”, share a common resource. The resource is
controlled by servers. Each master has its own server.
This benchmark analyses one simple solution of DME
problem, called “The Reflecting Privilege” [37]. Each
server will have a flag indicates whether it has privilege
to access common resource or not. There is maximum
one privilege in a system. A master can access to com-
mon resource if its private server holds the privilege.
Otherwise, its server will request privilege to the next
server. The privilege will move in an opposite direction
to the request.

A specification “Only one master has right to access
common resource (DME_P)” is represented in NuSMV
as follow (using 2 DME cells):

AG((master0.cs + master1.cs) <= 1) (4)

where state cs of each component master is defined as
toint(master.state = criticalsection).

4.1.5 Asynchronous Pipelined Finite Impulse Response
Filter: An asynchronous pipelined finite impulse re-
sponse filter (FIR filter) is characterized by the follow-
ing equation:

y(n) = h(n)× x(n) =
N−1

∑
k=0

(h(k)× x(n − k)) (5)

It is also called N-tap FIR filter. The architecture
of a 3-tap asynchronous pipelined FIR filter is shown
in Figure 10. In each level, there are one buffer (L

Adder0 Adder1 Adder2

APM0 APM1 APM2

L1 L2

h(0) h(1) h(2)

L0

y(n)

x(n) ...

...

...

Figure 10. Architecture of the asynchronous pipelined FIR filter

component), one Asynchronous Pipelined Multiplier
(APM component) and one Adder component.

A verifying specification “The value of a buffer stays
unchanged while it has not been read by the next buffer yet
(FIR_P).” is expressed in NuSMV as follows:

AG(x = 1 → AF(A[L0 = 1 U L1 = 1])) (6)

4.2 Experimentation Setup

The chosen environment is an Intel Core i5 2500
Processor PC with 3.4 GB of RAM that runs Fedora 16
Verne. NuSMV 2.5.4 is used as model checking tool. In
current experimentation, NuSMV is set to its running
default options.
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Table I
Experimental Results of Transforming Processes

Statistic
Benchmark Transforming information
specification successful? Num. of Num. of

places transitions
Asynchronous Arbiter

Yes 29 28
Asynchronous Selector

Yes 35 36
Asynchronous Multiplexer

Yes 41 42
Distributed Mutual Exclusion

2 cells Yes 86 92
3 cells Yes 129 138
4 cells Yes 172 184
6 cells Yes 258 276
8 cells Yes 344 368

Asynchronous Pipelined FIR Filter
2-tap Yes 87 84
3-tap Yes 130 126

Table II
Experimental Results of Verification Processes

N Property Running Num. of
time (s) BDD nodes

Asynchronous Arbiter
Arbiter_P 0.02 20,234

Asynchronous Selector
Selector_P 0.07 140,211
Asynchronous Multiplexer

Multiplexer_P 0.17 277,583
Distributed Mutual Exclusion

2 cells DME_P 0.22 614,474
3 cells DME_P 0.52 1,189,097
4 cells DME_P 2.03 1,449,572
6 cells DME_P 49.82 7,585,691
8 cells DME_P Time out −

Asynchronous Pipelined FIR Filter
2-tap FIR_P 1692.43 21,081,300
3-tap FIR_P Time out −

4.3 Experimentation Results

The results derived from the benchmarks include
transforming results and verifying results. Transform-
ing results demonstrate whether the new PAiD tool
automatically generates proper SMV descriptions of
asynchronous circuits from PN-DFG models. Those
results are shown in Table I. In this table, some statistic
information of the corresponding high-level 4-phase
PN-DFG of each benchmark is also represented. It
consists of the number of places (Num. of places) and
transitions (Num. of transitions) that is used to show
how big the PN-DFG model is. It is easy to observe
that, all circuits have been successfully converted into
PN-DFG models (‘Yes’ values in columns Transforming
successful?).

Verifying results of those benchmarks are shown in
Table II. In this table, column N indicates the size of
corresponding benchmark. The Property column shows
the specifications that are applied to NuSMV to be
verified. They are already described in the previous
section. That table also has information about execution
of NuSMV model checking tool such as verifying time
(Running time (s)) in second(s) and BDD nodes (Num.

of BDD nodes). The number of BDD nodes allocated
indicates the complexity of checking process.

The specific numbers of running times and BDD
nodes indicate that corresponding properties are ver-
ified as true. Furthermore, it is easy to figure out from
the table that when the number of BDD nodes increases,
the corresponding running time relatively increases too.

Obviously, Table II shows that NuSMV model check-
ing can easily check for small models such as asyn-
chronous arbiter, asynchronous selector, asynchronous
multiplexer and also some of DME benchmarks. For the
6-cell DME, more than seven million BDD nodes are
created but NuSMV model checking took less than one
minute to examine the model in its verifying process.

When the problem becomes more complicated such
as DME 8 cells or 3-tap asynchronous pipelined FIR
filter, NuSMV is running out of expecting time, which
is set to 4 hours. They are marked as ‘Time out’ in
the table. Hence, the corresponding properties are not
verified.

Taking a deep consideration on that table, the
progress of running time is not linear to that of BDD
nodes allocated. Furthermore, the running time has
been grown exponentially. Hence, it can lead to the
time-out situation. Clearly, the running time of NuSMV
must be studied furthermore in order to verify asyn-
chronous circuits efficiently. This is left for the future
works.

5 Conclusion

In this work, a method for verification of asynchronous
circuits has been represented. It takes the system-
under-test in form of PN-DFG, an intermediate-level
representation of asynchronous circuits in PAiD tool,
and transforms it to be verified in NuSMV, a famous
open-source symbolic model checking tool. Although
the current approach is only applied at an abstract
level during the synthesis process, it shows that the
verification can be used in many other internal syn-
thesis levels. Therefore, other correctness concerned at
different levels can be verified similarly. For example,
at the high level of abstraction, designers may focus
on the abstract behaviors of the circuits, but in the low
level, they may consider more on the temporal-related
correctness of the handshaking protocol. Of course, it
should be studied more in the future.

The PAiD tool for designing and synthesizing asyn-
chronous circuits has also been improved by employing
a verification module. The new architecture allows us to
continuously extend the tool to utilize more verification
techniques in the future. The tool then can be used more
widely in academia and industry as it empowers engi-
neers to describe the behaviors of the desired circuits,
verify their correctness and synthesize them into logic
gates.

However, the research in this field should be ex-
tended in many directions such as applying abstraction
techniques in verification to reduce the impact of the
‘state-space explosion’ or to guide the search-for-faulty
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in model checking techniques. Some EDA related re-
search areas such as multi-level circuit simulation and
synthesis optimization should be studied more to help
circuit designers make quality products. Other future
works may include studies in describing circuits in
abstract-level that is similar to the formal specifica-
tion research area, and component-based circuit design
approach that employs both formal specification and
component-based automation research areas.
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