
156 REV Journal on Electronics and Communications, Vol. 15, No. 4, October–December, 2025

Regular Article

SHA-RV: A RISC-V Accelerator for SHA-224/256 with Cycle-
Reduced ISA Extensions for Blockchain Applications

Pham Tuan Dat1, Luu Van Tuan1, Tran Thi Diem2, Dao Hoang Nam3, Le Vu Trung Duong5, Nguyen
Van Tinh1, Pham Thi Mai1, Pham Xuan Nghia1

1 Le Quy Don Technical University, Hanoi, Vietnam
2 University of Information Technology, Vietnam National University, Ho Chi Minh City, Vietnam
3 High-Tech Telecommunication Center, Ha Noi, Vietnam
4 Foreign Trade University
5 Nara Institute of Science and Technology, Nara, Japan

Correspondence: Nguyen Van Tinh, take@lqdtu.edu.vn
Communication: received 01 November 2025, revised 04 December 2025, accepted 17 December 2025
Online publication: 25 December 2025, Digital Object Identifier: 10.21553/rev-jec.423

Abstract– The Secure Hash Algorithm SHA-256 and SHA-224 are widely used for software integrity, digital signatures,
and blockchain across embedded and edge platforms. Prior RISC-V accelerators still struggle to achieve low cycle counts
and high system throughput on long message streams. This paper proposes a hardware-efficient RISC-V accelerator with
low-latency SHA instruction extensions, named SHA-RV, to reduce cycles and improve end-to-end performance. SHA-RV
integrates three optimizations: a high-bandwidth BufferSet for continuous data supply, a four-stage pipelined SHA core,
a system-level double-buffering pipeline, and an FSM-orchestrated BufferSet mapping. Implemented on a Xilinx ZCU102
system on a chip, SHA-RV operates at up to 300 MHz and uses 3,146 flip-flops, 5,175 lookup tables, and 15 block RAMs.
On 64-byte blocks, SHA-RV completes a block in 257 cycles, improving over related RISC-V designs by between 9.7 and 134.9
times, while reducing logic resources versus the ISOCC 2024 design by 89.4 percent in flip-flops and 85.2 percent in lookup
tables. At the system level, SHA-RV achieves a throughput of 599 megabits per second and an energy efficiency of 798.7
megabits per second per watt under a real-time dynamic power under a measured average PS+PL dynamic power of 0.75 W
(INA226-based on-board measurement), outperforming representative CPUs by between 61 and 454 times in energy efficiency.
These results show lower latency and superior hardware efficiency relative to prior work.

Keywords– RISC-V, SHA-224/256, custom ISA extensions, pipelined hardware accelerator, blockchain applications.

1 Introduction

RISC-V, introduced by the Berkeley research group
in the late 2010s, is an open-source CPU architecture
designed to promote flexibility and innovation [1–3].
Its open Instruction Set Architecture (ISA) allows de-
velopers to design custom processors without licensing
fees, facilitating advancements in specialized hardware.
With high compatibility across various applications
and superior energy efficiency, RISC-V has become
an ideal choice for resource-constrained devices [4–6].
Specifically, this architecture accelerates cryptographic
algorithms on IoT devices, supporting the efficient im-
plementation of security standards such as AES, SM4,
and SHA-256 [7, 8]. Although RISC-V offers numerous
advantages, its ISA is continuously evolving to meet
new demands in fields like artificial intelligence and
cloud computing.

The Secure Hash Algorithm (SHA-256), standardized
by the National Institute of Standards and Technology
(NIST) [9–12], is a pillar of modern digital security.
Its application has expanded to cost-sensitive systems
such as IoT devices, edge servers, and personal com-
puters, where it is used to ensure the data integrity
of software updates, digital signatures, and blockchain

transactions [13–15]. These platforms require SHA-256
processing solutions that are both energy-efficient to
preserve battery life and high-performance to meet in-
creasingly stringent security requirements [16–18]. The
flexible integration capabilities of RISC-V allow for the
design of specialized SHA-256 accelerators, enhancing
performance and reducing hardware complexity [19].

Many previous studies have developed SHA-256
hardware platforms with high speed and low power
for IoT security domains. The platform proposed in [20]
has significantly improved speed compared to software.
However, its latency is still very high because of the
lack of dedicated hardware with ISA extensions. Other
works in [7, 8] have proposed RISC-V instruction ex-
tensions for cryptographic functions to achieve latency
reduction. However, their latency and hardware re-
sources are still high because of integrating many ded-
icated cores to support multiple algorithms. Overall,
current SHA-256 implementations on the RISC-V plat-
form are still not able to provide high power efficiency
to adapt to SHA applications [21, 22].

To address these challenges, this paper pro-
poses SHA-RV, a RISC-V architecture for accelerating
SHA-224/256 with significantly reduced cycle counts.
The main contributions are (1) High-Bandwidth Buffer-

1859-378X–2025-0403 © 2025 REV

Pham T. D. et al.: SHA-RV: A RISC-V Accelerator for SHA-224/256 with Cycle-Reduced ISA Extensions for Blockchain Appl.157

Em
b

e
d

de
d

 C
P

U

RISC-V SHA
program

RISC-V GCCRISC-V GCC

Standard
SHA programC
 e

n
viro

n
m

en
t

Verifier D
M

A

C
o

n
tro

ller

A
XI M

a
n

ager

Processing System (PS)

DMA

PIO

Instructions

Data

IM addr

IM data SH
A

-R
V

 C
o

re

(a)

(b)

start

done

Register File

enable

Mem_addr

Buffer_addr

A
LU

DM

Sta
rt

func3

func7

opcode

func7

func3

State
Controller

Basic
ControllerALU op

rs1

rs2

SHA Core

A
ddr

D
ata

D
o

n
e

PC

B
u

ffe
r_

a
d

dr

IM

opcode
Basic

Controller

ID IF EXE MEM WB

IF

ID

EXE

MEM

WB

DM addr

DM data

D
ata

 ge
ne

rato
r

an
d

 So
C

 driver

D
D

R
4

Buffers
128x32b

Spec. op
Spec.

Controller
1SH

A
-Con

tro
ller

32x32b

SHA-224 long

2 SHA-256 long

3 SHA-224 short

4 SHA-256 short

Figure 1. System overview and SHA-RV core datapath. (a) SoC
integration with PS and coprocessor interfaces. (b) Internal pipeline
with BufferSet and four-stage SHA core.

Set for Continuous Processing, (2) Four-Stage Pipelined
SHA-RV Core, (3) System-Level Double-Buffering
Pipeline, and (4) Efficient FSM for BufferSet mapping.
The design is implemented on the ZCU102 FPGA and
demonstrates lower latency and better hardware effi-
ciency than prior work.

The remainder of the paper is organized as follows:
Section II presents the SHA-RV architecture, Section III
reports implementation and evaluation results, and Sec-
tion IV concludes the paper.

2 Proposed SHA-RV

2.1 System Architecture Overview

The overall architecture of SHA-RV on an SoC plat-
form, as illustrated in Figure 1(a), consists of two
main components: the Processing System (PS) and
the SHA-RV Core. The PS, typically controlled by
an embedded CPU, executes the SHA application,
RISC-V host program, verifier, data generator, and SoC
driver. When a hash operation is required, the applica-
tion prepares the input data and dispatches it to the
SHA-RV module via a standard bus interface such
as AXI. To optimize data movement, bulk payloads
are transferred using Direct Memory Access (DMA),
while control/status transactions are handled through
peripheral I/O (PIO).

The SHA-RV Core is implemented as an in-
dependent co-processor. It exchanges control/status
registers and computation data with the PS via
AXI manager/supervisor interconnect. As shown in
Figure 1(b), SHA-RV employs five pipeline stages: in-
struction fetch (IF), instruction decode (ID), execute
(EXE), memory access (MEM), and write-back (WB).

Data Memory
8192×32 bits

Buffers
256×32 bits

0
x5

0
x1

SHA Core
Four-staged

Pipelining

Message Expander

Message Compressor

amount = 5

Notes:

Accessing amount: [1:256 – base]

- (r8, r20) : (base, amount)
- (opcode, funct3) : buffer execution context
Browsing address: base → base + amount)

Figure 2. Buffer management and bulk transfers between DMEM and
the 256×32-bit BufferSet.

0612

funct7
Buffer Accessing Custom Instructions

14

rs2 rs1 funct3 rd opcode

711151920242531

opcode funct3

0101011

000 Latch base and amount

001 Enable buffer write flag

Function

010 Enable buffer read flag

Functionfunc3
000
001
010

opcode
00 010 11
00 010 11
00 010 11

SHA-224 short
SHA-256 short
SHA-224 long

opcode
SHA Custom Instructions

0612

funct7

14

rs2 rs1 funct3 rd

11 7151920242531

01100 010 11 SHA-256 long

Figure 3. Custom instructions for BufferSet access and SHA-224/256
invocation on RISC-V.

Specifically, the EXE stage integrates an internal Buffer-
Set and a four-stage pipelined SHA Core to acceler-
ate SHA-224/256 under custom instructions. Under PS
control, the SHA-RV Core achieves high efficiency
through high-bandwidth DMA transfers on a low-
power SoC platform. The detailed architecture and
operation of the BufferSet and SHA Core are described
in the following sections.

2.2 Internal BufferSet for Continuous Processing

The use of the general-purpose ALU in a conven-
tional RISC-V core, following standard resource-usage
rules, requires many instructions just to marshal the
data needed for SHA’s primary processing. As a result,
SHA-256/224 performance on a baseline RISC-V core is
low and fails to meet current security/latency targets.
Therefore, the proposed SHA-RV improves through-
put by using an SHA Core that integrates specialized
components optimized for SHA-224/256. The SHA core
requires sustained data availability across the compres-
sion loops. To ensure high computational efficiency,
a 256×32-bit (4096 bits total) FF-based BufferSet is
placed in front of the SHU, holding critical data: the K
constants (64×32-bit), the previous digest H (8×32-bit),
and the message block M (16×32-bit). Unlike traditional
BRAM, this BufferSet is designed for true parallel ac-
cess: each 32-bit lane has its own dedicated read/write
path. This architecture lets the SHU load or store the

158 REV Journal on Electronics and Communications, Vol. 15, No. 4, October–December, 2025

{Kj+1 -> Kj+63;Kj}

Kj -> Kj+63

Wj -> Wj+15 Message
Expander

Message
Compressor

Kj Wj

a
b
c
d

f
e

h
g

Wj+14

Wj+9

Wj+1

Wj

a'
b’
c’
d’

f’
e’

h’
g’

Wj+16

Wj+1 -> Wj+15
Rotate
Value

a_out
b_out
c_out
d_out

f_out
e_out

h_out
g_out

a_in
b_in
c_in
d_in

f_in
e_in

h_in
g_in

Wj+16

SIG1SIG1

SIG0SIG0

Wj+14

Wj+9

Wj+1

Wj

Wj+16

Stage 1 Stage 2 Stage 3 Stage 4

EP1EP1

EP0EP0

ChCh

MajMaj

e

f
g
c
b

a

h
d

Wj

Kj

a’

e’

Stage 1 Stage 2 Stage 3 Stage 4

b’
c’
d’
f’
g’
h’

SHA Core

Figure 4. Four-stage SHA Core hardware architecture.

entire 4096-bit window in a single cycle, bypassing
shared-bus limits and providing the extreme paral-
lelism required for continuous, high-speed hashing.

Figure 2 shows the detailed communication mecha-
nism between the high-bandwidth BufferSet and data
memory. In this scheme, a burst of words is transferred
between data memory (DMEM) and the buffer under
the control of registers r8 and r20. Register r8 holds
the DMEM base address for read/write operations,
while r20 specifies the number of 32-bit words to
transfer. This process is executed by the buffer-access
instructions in Figure 3: one instruction configures the
address and length, and another sets a start flag to
trigger the transfer. Once the BufferSet is filled, the
SHA core immediately performs the message-schedule
expansion and compression rounds. To initiate hashing,
the SHA-RV uses a set of custom SHA instructions
that call the SHA core in four modes: SHA-224 short,
SHA-256 short, SHA-224 long, and SHA-256 long.
These instructions enable the core to select the corre-
sponding configuration and number of rounds auto-
matically, ensuring optimal throughput for both short
and long message blocks. Using the high-bandwidth
BufferSet in combination with these custom instruc-
tions eliminates redundant data movement and instruc-
tion overhead present in the standard RISC-V ISA,
resulting in significantly higher hashing efficiency.

WRITE
First

WRITE
Last

Write
Instr.

Data
Memory

Control
Memory

Instruction
Memory

SHA-RV

WRITE
Start

EXEC
Last

READ
Done

READ
First

EXEC
First

EXEC
First

READ
Last

WRITE
Last

WRITE
First

Output Data

Execution

SHA-224 SHA-256

SHA-224 SHA-256

Figure 5. System-level pipelining with double-buffering scheduling
to overlap WRITE/EXEC/READ.

2.3 Four-Stage pipelined SHA Core
As shown in Figure 4, the proposed SHA-RV core

employs a four-stage pipelined SHA-224/256 architec-
ture to improve throughput while maintaining hard-
ware efficiency. The design consists of three main
modules: the Message Expander (ME), the Message
Compressor (MC), and the Value Rotator (VR). The
ME module expands 16 input message words into 64
message words, which are subsequently processed in 64
main hashing rounds by the MC module. After each
computation, the VR rotates the active message words
and the 64 constant K values before storing them back
into the internal buffer for the next iteration.

To ensure continuous operation, the internal Buffer-
Set stores at least four input cases that are concurrently
fetched by the pipelined SHA core. This configuration
allows efficient utilization of all four pipeline stages,
minimizing idle cycles during message scheduling and
compression. The buffer capacity supports up to 11
input cases for long-message processing and up to 8
cases for short messages, ensuring optimal system
throughput across different message lengths.

The four pipeline stages are equally divided between
the ME and MC modules, with registers inserted be-
tween stages to balance the critical path. Each stage
contains no more than one adder, keeping the delay
comparable to the baseline RISC-V ALU. This pipelined
architecture enables the SHA core to complete one
round per cycle after the pipeline is fully filled. The
overall latency of the four-stage pipeline can be ex-
pressed as

LSHA = 64 + (Nin − 1), (1)

where 64 represents the 64 hashing rounds for
SHA-224/256, and Nin denotes the number of input
cases concurrently processed in the pipeline. With
Nin = 4, the system achieves the highest steady-state
throughput while maintaining balanced timing and
resource utilization.

2.4 System-Level Pipeline with Double Buffering
Mechanism

Transferring large blocks of input and output data to
the SHA-RV core through the AXI interface introduces
considerable latency. In a conventional SoC design,
the waiting time for data reads and writes may ex-
ceed the computation time of the SHA-224/256 core,
creating a system bottleneck. In such a case, simply

Pham T. D. et al.: SHA-RV: A RISC-V Accelerator for SHA-224/256 with Cycle-Reduced ISA Extensions for Blockchain Appl.159

Algorithm 1 System-Level Pipelined Execution with
Double Buffering

1: Initialize: Split data memory into two regions
(First, Last)

2: Load SHA-RV configuration and custom SHA-
224/256 instruction

3: while there are message blocks to process do
4: if First buffer is free then
5: WRITE new input data to First
6: EXEC computation on Last
7: READ output from Last
8: else
9: WRITE new input data to Last

10: EXEC computation on First
11: READ output from First
12: end if
13: end while

Table I
BufferSet data map for SHA-224/256

Range (32-bit) Content Note
Long–message mode (digest stored after all blocks)
0–7 IV H0..H7
8–71 K[0..63] 64 round constants
72–79 digest final digest
80–95 message block 0 W[0..15] source
96–111 message block 1 continue 16 words steps
...

... until end of DMEM copy
Short–message mode (digest after each block)
0–7 IV H0..H7
8–71 K[0..63] 64 round constants
72–87 message block 0 W[0..15] source
88–95 digest 0 digest of block 0
96–111 message block 1 next block
112–119 digest 1 digest of block 1
...

... until end of DMEM copy

accelerating the SHA-RV core does not significantly
improve the overall system performance. To overcome
this limitation, a system-level pipeline combined with
a ping-pong (double-buffering) memory mechanism
is proposed to hide data-transfer latency and maximize
throughput.

As shown in Figure 5 and Algorithm 1, the data
memory is divided into two equal regions, referred
to as First and Last. Initially, configuration instruc-
tions and custom SHA commands are issued from the
instruction memory to the SHA-RV core. Input data
for multiple message blocks is then written into the
First half of the data memory (WRITE First). When
this region is filled, the SHA-RV core begins execution
(EXEC First). During this execution phase, new data
is written to the Last half (WRITE Last). Once the
first execution is completed, the system performs over-
lapped operations: while the SHA-RV core processes
data in the Last half (EXEC Last), the processing system
reads output from the First half (READ First) and
writes new input into that same region (WRITE First).
This alternating process continues seamlessly, ensuring

Algorithm 2 Cycle-accurate FSM control for SHA-256
with BufferSet

1: state ← IDLE; cnt ← 0;
2: k_iv_loaded ← 0; blk_idx ← 0
3: while true do
4: if state = IDLE then
5: if start_sha = 1 then
6: state ← PREP
7: end if
8: else if state = PREP then
9: ▷ one-time IV and K staging

10: if k_iv_loaded = 0 then
11: DMEM→BufferSet:
12: IV→[0..7], K[0..63]→[8..71];
13: k_iv_loaded ← 1
14: end if
15: state ← LOADMSG
16: else if state = LOADMSG then
17: ▷ stage next message block
18: DMEM→BufferSet:
19: copy 16 words of block blk_idx
20: long: to [80 + 16 · blk_idx..95 + 16 · blk_idx];

short: per Table I
21: cnt ← 0; state ← EXEC
22: else if state = EXEC then
23: ▷ rounds and schedule with 4-stage core
24: enable BufferSet reads for K[i] and W[i]
25: if cnt = 16 then
26: advance to schedule expansion
27: end if
28: if cnt = 65 then
29: enter finalization window
30: end if
31: if cnt = 82 then
32: state ← FINAL
33: else
34: cnt ← cnt + 1
35: end if
36: else if state = FINAL then
37: ▷ write digest to mapped slots
38: long: digest→[72..79];
39: short: per-block slots
40: state ← DONE
41: else if state = DONE then
42: done_sha ← 1
43: if next_block = 1 then
44: blk_idx ← blk_idx + 1; done_sha ← 0;
45: state ← LOADMSG
46: else if start_sha = 0 then
47: done_sha ← 0; state ← IDLE
48: end if
49: end if
50: end while

continuous computation without idle transfer periods.
The ping-pong buffering strategy enables concurrent
execution and data movement, fully utilizing both the
SHA-RV core and the memory bus. For optimal perfor-
mance, the transfer time Tmem must satisfy Tmem < Texe,
ensuring that data movement is completed before the

160 REV Journal on Electronics and Communications, Vol. 15, No. 4, October–December, 2025

Table II
FSM specification for SHA-256 control (states, transitions, and counter windows)

State Code Transition condition Counter window Primary operations
IDLE 000 start_sha = 1 – wait for command
PREP 001 k_iv_loaded set – stage IV and K to BufferSet
LOADMSG 010 message copied – stage next 16-word block
EXEC 011 cnt = 82 0–15, 16–64, 65–81 rounds and schedule from BufferSet
FINAL 100 digest written – store digest to mapped slots
DONE 101 next_block or stop – signal done; iterate or return

next pipeline iteration. Under this condition, the total
system throughput approaches the raw hardware speed
of the SHA-RV core.

Overall, this system-level pipelining mechanism ef-
fectively eliminates transfer-induced stalls and ensures
continuous SHA-224/256 processing. As a result, the
SoC can maintain near-peak throughput even when
processing long message streams, achieving efficient
data reuse and balanced utilization between computa-
tion and communication.

2.5 FSM-Orchestrated BufferSet Mapping

The control bottleneck that arises when a base-
line RISC-V host must micromanage SHA-224/256
rounds with generic loads, stores, and branches. In
such a flow, the four-stage pipeline SHA core fre-
quently stalls because message words and K constants
are not staged at cycle-accurate boundaries, and the
digest writeback interleaves with data movement.
To keep the pipeline fully utilized, the read–write
session between data memory (DMEM) and the
internal BufferSet must be regulated so operands arrive
exactly when needed, while the host is relieved from
per-round sequencing.

The proposed idea is a lightweight FSM-driven con-
trol paired with a fixed BufferSet map and a single
custom SHA instruction. The host performs one bulk
move of data from DMEM into the BufferSet following
Table I (long- and short-message layouts). It then issues
the custom instruction to start the SHA session. From
that point, the FSM in Algorithm 2 (summarized in
Table II) proceeds through PREP, LOADMSG, EXEC,
FINAL, and DONE: it ensures IV and K are present
once, stages each 16-word message block into its slice,
opens read windows so the four-stage core consumes
W[i] and K[i] at cycles 0–15 and 16–63, and deposits
the digest in the mapped locations (global for long-
message mode, per-block for short-message mode).
The controller thus maintains continuous issue to the
pipeline without host-inserted bubbles.

This scheme minimizes instruction overhead on the
RISC-V host, sustains back-to-back block processing,
and aligns operand timing with the four-stage SHA
core. The next section presents the implementation
on ZCU102 and reports utilization, frequency, latency
per block, and system-level throughput and energy-
efficiency measurements.

3 Evaluation Results

3.1 Implementation Results on ZCU102 FPGA SoC

To evaluate the functionality and efficiency, SHA-
RV was implemented on the Zynq UltraScale+ MP-
SoC ZCU102 FPGA SoC platform, as illustrated in
Figure 1. The processing system is managed by an ARM
Cortex-A53 CPU running Debian GNU/Linux 11, in-
stalled via PetaLinux 2022.2. The programmable logic
hosts the SHA-RV IP, synthesized using Vivado Design
Suite 2022.2.

SHA-RV was verified by executing all four sup-
ported hashing configurations, defined by the set
H = {SHA-224 short, SHA-256 short, SHA-224 long,
SHA-256 long}. Real-time SoC verification was con-
ducted with 100,000 randomly generated message
blocks per mode, and all tests achieved 100%
correctness at the maximum operating frequency
of 300 MHz. We additionally investigated timing clo-
sure at 300 MHz. The critical path is located inside the
SHA-256 datapath, mainly along the logic path from
variable/register a to the EP0 computation. To en-
able high-frequency operation, the SHA core is parti-
tioned into four pipeline stages, where each stage is
constrained to include at most one adder and only
lightweight bitwise transformations, thereby reducing
the combinational depth per stage and facilitating tim-
ing closure at 300 MHz. For completeness, we also
report the resource utilization of the whole SHA-RV
SoC system on ZCU102, which consumes 28,732 LUTs,
14,856 FFs, and 16 BRAM blocks, including the
RISC-V host integration and system management logic.
The synthesis and implementation results show that
SHA-RV occupies 5,175 LUTs, 3,146 flip-flops (FFs),
and 15 Block RAM tiles (36 KB each). Power esti-
mation for the SHA-RV core was obtained from the
Vivado post-implementation power report, resulting
in 0.137 W dynamic power under the reported oper-
ating conditions. System-level power was measured on
the ZCU102 board using the on-board INA226 power
sensors, reflecting the total dynamic power of PS + PL
during execution. We ran 1,000,000 SHA-256 hash cases
and repeated the measurement 10 times, reporting the
average value (≈ 0.75 W).

Overall, SHA-RV demonstrates stable high-frequency
operation and complete functional correctness on a
real-time SoC system. The combination of its high
throughput, low dynamic power, and efficient FPGA
resource utilization makes it an excellent candidate for

Pham T. D. et al.: SHA-RV: A RISC-V Accelerator for SHA-224/256 with Cycle-Reduced ISA Extensions for Blockchain Appl.161

Figure 6. Total cycle counts of SHA-RV vs. baseline RISC-V on SHA-
224/256 (short/long) across different numbers of blocks; effect of
BufferSet mapping and the four-stage core.

integration into low-power, secure SoC applications.

3.2 Cycle count benchmarking on SHA-224/256
(short/long) and comparison with baseline RISC-V

Figure 6 reports end-to-end cycle counts for SHA-
RV versus a baseline RISC-V software path on
SHA-224/256 across 1, 4, 16, 64, 256, and 1024 blocks.
The baseline executes a fixed 96,466 cycles per 64-
byte block, while SHA-RV amortizes a one-time IV + K
staging (72 cycles) and then runs block processing with
low transfer overheads. For N=1, SHA-RV requires 353
cycles (long) or 361 cycles (short). For N>1, the total
cycles are

Tlong(N) = 282N + 72, Tshort(N) = 290N + 72,

where the +24N (long) or +32N (short) terms account
for data movement, and the 258N term covers four-
stage SHA core execution.

The improvement over the baseline scales with N.
On long-message mode, SHA-RV reduces cycles by 273×
at N=1 (96,466 vs. 353 cycles) and grows to 342×
at N=1024 (98.78×106 vs. 288,840 cycles), with a rep-
resentative 341× at N=256 (24.70×106 vs. 72,264 cy-
cles). On short-message mode, SHA-RV delivers 267×
speedup at N=1 (96,466 vs. 361 cycles), rising to 333×
at N=1024 (98.78×106 vs. 297,032 cycles), and about
332× at N=256 (24.70×106 vs. 74,312 cycles). These
results confirm that the custom BufferSet mapping plus
the four-stage core keeps hashing throughput saturated
while the per-block overhead remains negligible.

Overall, SHA-RV achieves from 273× to 342× fewer
cycles than baseline RISC-V for long messages and
from 267× to 333× for short messages, depending
on the batch size N. This establishes a consistent
cycle-level advantage over the baseline across both
operating modes.

3.3 Performance Comparison with Baseline RISC-V
Implementation

To assess the hardware efficiency and computational
performance, the proposed SHA-RV was benchmarked
against recent RISC-V-based SHA-256 accelerators, as

Table III
Comparison with related RISC-V works on SHA-256 with a

64-byte message block

Reference Cycles FFs LUTs BRAMs
ATC2023 [7] 2,495 8,347 2,968 16
ISOCC2024 [8] 2,495 29,644 34,898 16
HP3C2022 [19] 8,278 – – –
LCIoT2025 [20] 34,667 1,345 2,434 –
SHA-RV (This Work)∗ 257 3,146 5,175 15

∗ The FF/LUT/BRAM results report only the SHA-RV core (RISC-V
core with SHA extensions) implemented in PL, excluding the full
SoC integration overhead. The whole SoC resource utilization on
ZCU102 is additionally reported in Section 3.1.

summarized in Table III. The comparison includes rep-
resentative works from ATC2023 [7], ISOCC2024 [8],
HP3C2022 [19], and LCIoT2025 [20].

As shown in Table III, SHA-RV achieves a re-
markable reduction in computation latency, requir-
ing only 257 cycles to process one 512-bit message
block, while the previous designs require 2,495 [7],
8,278 [19], and 34,667 [20] cycles, respectively. This
corresponds to an improvement of approximately 9.7×,
32.2×, and 134.9× compared with ATC2023, HP3C2022,
and LCIoT2025. Even when compared to the high-
performance ISOCC2024 implementation [8], SHA-RV
still achieves a 9.7× reduction in cycles.

In terms of resource utilization, SHA-RV demon-
strates an excellent balance between performance and
hardware cost. The design uses only 5,175 LUTs,
3,146 FFs, and 15 BRAMs, which is significantly smaller
than the ISOCC2024 [8] implementation that consumes
34,898 LUTs and 29,644 FFs. This corresponds to a
reduction of approximately 85.2% in LUTs and 89.4%
in FFs while maintaining superior processing speed.

Overall, SHA-RV delivers outstanding hashing per-
formance with a minimal hardware footprint, validat-
ing the efficiency of its four-stage pipelined SHA core
and high-bandwidth buffer mechanism. The architec-
ture demonstrates the capability to outperform prior
RISC-V implementations by an order of magnitude
in throughput while significantly reducing hardware
complexity, making it highly suitable for embedded
and IoT-oriented secure computing systems.

3.4 Comparison with powerful CPUs in throughput
and energy efficiency

Figure 7 summarizes the throughput and en-
ergy–efficiency of SHA-RV against contemporary CPUs
on SHA-256 with a 512-bit block.

As the throughput chart in Figure 7(a), SHA-RV
reaches 599 Mbps, outperforming all baseline CPUs:
17.4× over Core i7-12700H (34.5 Mbps), 15.7× over
i5-12600K (38.18 Mbps), 13.6× over Ryzen 7 7800X3D
(44.22 Mbps), 13.8× over Ryzen 7 8845HS (43.40 Mbps),
5.1× over Core i9-10940X (117.8 Mbps), and 33.7× over
Cortex-A53 (17.8 Mbps).

The energy–efficiency chart in Figure 7(b)
further accentuates this gap: using the measured
average full-system (PS+PL) dynamic power of

162 REV Journal on Electronics and Communications, Vol. 15, No. 4, October–December, 2025

(a)

(b)

Figure 7. Throughput and energy–efficiency comparison on SHA-256
with a 512-bit block: SHA-RV vs. contemporary CPUs. (a) Through-
put (Mbps). (b) Energy–efficiency (Mbps/W).

0.75 W obtained from INA226 sensors for SHA-
RV, the design delivers 798.7 Mbps/W, which is
454× higher than i7-12700H (1.76 Mbps/W), 418×
higher than i5-12600K (1.91 Mbps/W), 271× higher
than 7800X3D (2.95 Mbps/W), 212× higher than
8845HS (3.77 Mbps/W), 61× higher than i9-10940X
(13.09 Mbps/W), and 121× higher than Cortex-A53
(6.59 Mbps/W).

Overall, SHA-RV achieves CPU-class or better
throughput at a fraction of the power, yielding two
orders of magnitude improvement in Mbps/W for real-
time, energy-constrained deployments.

4 Conclusion

This paper presented SHA-RV, a hardware-efficient
RISC-V accelerator with low-latency instruction ex-
tensions for SHA-256 and SHA-224. By combining a
high-bandwidth BufferSet, a four-stage pipelined SHA
core, a system-level double-buffering pipeline, and
an FSM-orchestrated BufferSet mapping, the design
achieves 257 cycles per 64-byte block and runs at up
to 300 MHz on ZCU102 using 3,146 flip-flops, 5,175
lookup tables, and 15 block RAMs. Compared with
recent RISC-V implementations, SHA-RV reduces cycle
counts by between 9.7 and 134.9 times and substan-
tially lowers logic resources. In system measurements,
the design reaches 599 Mbps throughput and 798.7
Mbps/W energy efficiency with a 0.75 W measured av-
erage PS+PL dynamic power (INA226-based on-board
measurement), providing large margins over contem-
porary CPUs. Future work will extend the instruction
set and buffering strategy to multi-block chaining and
additional hash variants, and will refine rail-level power
measurements for complete system energy reporting.

Acknowledgment

This research was funded by the Vietnam National
Foundation for Science and Technology Development
(NAFOSTED) under Grant 102.01-2025.50

References

[1] K. Asanović and D. A. Patterson, “Instruction sets should
be free: The case for RISC-V,” EECS Department, Uni-
versity of California, Berkeley, Tech. Rep. UCB/EECS-
2014-146, 2014.

[2] T. N. Van, P. H. Pham, V. T. D. Le, H. L. Pham, T. H.
Vu, and T. D. Tran, “AES-RV: Hardware-efficient RISC-
V accelerator with low-latency AES instruction extension
for IoT security,” IEICE Electronics Express, vol. 22, no. 16,
pp. 20 250 329–20 250 329, 2025.

[3] M. Ao, X. Zhou, X. Kong, S. Gou, S. Chen, X. Dong,
Y. Zhu, Q. Sun, Z. Zhang, J. Zhang et al., “A RISC-V
32-bit microprocessor based on two-dimensional semi-
conductors,” Nature, pp. 1–8, 2025.

[4] N. H. Nguyen, D. H. A. Le, V. T. D. Le, V. T. Nguyen,
T. H. Vu, H. L. Pham, and Y. Nakashima, “LI-RV: A Fast
and Efficient RISC-V based Coprocessor for Lightweight
Cryptography,” in Proceedings of the 2024 21st Interna-
tional SoC Design Conference (ISOCC), 2024, pp. 1–2.

[5] A. Waterman and K. Asanović, “The RISC-V instruction
set manual, volume I: User-level ISA,” in Technical Re-
port UCB/EECS-2014-54, EECS Department, University of
California, Berkeley, 2014.

[6] J. Park, K. Han, E. Choi, J.-J. Lee, K. Lee, W. Lee, and
M. Pedram, “Designing low-power RISC-V multicore
processors with a shared lightweight floating point unit
for IoT endnodes,” IEEE Transactions on Circuits and
Systems I: Regular Papers, 2024.

[7] V. T. D. Le, D. H. A. Le, T. H. Y. Tran, T. H. Vu, and H. L.
Pham, “RVCP: High-Efficiency RISC-V Co-Processor for
Security Applications in IoT and Server Systems,” in Pro-
ceedings of the 2023 International Conference on Advanced
Technologies for Communications (ATC), 2023, pp. 1–6.

[8] D. H. A. Le, V. T. D. Le, V. A. Ho, V. T. Nguyen, H. L.
Pham, V. D. Tran, T. H. Vu, and Y. Nakashima, “High-
Efficiency RISC-V-Based Cryptographic Coprocessor for
Security Applications,” in Proceedings of the 2024 21st
International SoC Design Conference, 2024, pp. 103–104.

[9] National Institute of Standards and Technology, “Secure
Hash Standard (SHS),” U.S. Department of Commerce,
Tech. Rep., August 2015.

[10] F. Kahri, H. Mestiri, B. Bouallegue, and M. Machhout,
“Efficient FPGA hardware implementation of secure
hash function SHA-256/Blake-256,” in Proceedings of the
2015 IEEE 12th International Multi-Conference on Systems,
Signals & Devices (SSD15). IEEE, 2015, pp. 1–5.

[11] T. Li, C. Cheng, R. Wang, C. Wang, X. Zou, and D. Yu, “A
High Performance Hardware Implementation of SHA-
256 Algorithm,” in Proceedings of the 2024 IEEE 4th Inter-
national Conference on Information Technology, Big Data and
Artificial Intelligence (ICIBA), vol. 4, 2024, pp. 477–481.

[12] M. Kammoun, M. Elleuchi, M. Abid, and M. S. BenSaleh,
“FPGA-based implementation of the SHA-256 hash al-
gorithm,” in Proceedings of the 2020 IEEE international
conference on design & test of integrated micro & nano-
systems (DTS). IEEE, 2020, pp. 1–6.

[13] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” Decentralized Business Review, p. 21260, 2008.

[14] A. A. Ahmed and O. O. Alabi, “Secure and scalable
blockchain-based federated learning for cryptocurrency
fraud detection: A systematic review,” IEEE Access,
vol. 12, pp. 102 219–102 241, 2024.

[15] U. Q. Bajra, E. Rogova, and S. Avdiaj, “Cryptocurrency

Pham T. D. et al.: SHA-RV: A RISC-V Accelerator for SHA-224/256 with Cycle-Reduced ISA Extensions for Blockchain Appl.163

blockchain and its carbon footprint: Anticipating future
challenges,” Technology in Society, vol. 77, p. 102571, 2024.

[16] R. Martino and A. Cilardo, “Designing a SHA-256 pro-
cessor for blockchain-based IoT applications,” Internet of
Things, vol. 11, p. 100254, 2020.

[17] Y. Xiao, Y. Jia, C. Liu, X. Cheng, J. Yu, and W. Lv, “Edge
Computing Security: State of the Art and Challenges,”
in Proceedings of the 2020 IEEE international conference on
design & test of integrated micro & nano-systems (DTS), vol.
107, no. 8, 2019, pp. 1608–1631.

[18] V. T. D. Le, H. L. Pham, T. H. Tran, T. S. Duong, and
Y. Nakashima, “Efficient and high-speed cgra acceler-
ator for cryptographic applications,” in 2023 Eleventh
International Symposium on Computing and Networking
(CANDAR). IEEE, 2023, pp. 189–195.

[19] J. Wu, X. Zheng, S. Zeng, H. Gao, and X. Xiong, “High-
Performance Cryptographic SoC Virtual Prototyping
Platform Based on RISC-V VP,” in Proceedings of the 6th
International Conference on High Performance Compilation,
Computing and Communications (HP3C), 2022, pp. 84–90.

[20] F. Kreff, L. R. Prade, R. M. de Figueiredo, and J. Schmith,
“A RISC-V Approach to Energy-Efficient Cryptographic
Processing in IoT Application,” in Proceedings of the 2025
IEEE Latin Conference on IoT (LCIoT), 2025, pp. 298–301.

[21] V. T. D. Le, H. L. Pham, T. H. Tran, and Y. Nakashima,
“Flexible and Energy-efficient Crypto-Processor for Ar-
bitrary Input Length Processing in Blockchain-based IoT
Applications,” IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences, vol. 107,
no. 3, pp. 319–330, 2024.

[22] V. T. D. Le, P. H. Luan, T. H. Tran, and Y. Nakashima,
“CSIP: A Compact Scrypt IP design with single PBKDF2
core for Blockchain mining,” in Proceedings of the 2022
35th SBC/SBMicro/IEEE/ACM Symposium on Integrated
Circuits and Systems Design (SBCCI), 2022, pp. 1–6.

Pham Tuan Dat received the Engineering de-
gree in Electrical and Electronic Engineering
from Le Quy Don Technical University, Ha
Noi, Viet Nam, in 2021. Author has been active
in the field of electronics and information en-
gineering. His research interests include elec-
tronic systems, communication technologies,
and information processing.

Luu Van Tuan received the B.Sc. degree in
electrical and electronic engineering and the
M.S. degree in Radar and navigation engineer-
ing from Le Quy Don Technical University,
Hanoi, Vietnam, in 2012 and 2018, respec-
tively. He also is currently working toward
the Ph.D. degree in electronic engineering at
Le Quy Don Technical University, Hanoi, Viet-
nam. His research interests include hardware
security, embedded systems, and VLSI archi-
tecture for digital processing.

Tran Thi Diem received B.E. and M.E. degrees
in Physical Electronics Engineering from the
University of Science, VNU-HCM, Vietnam,
in 2006 and 2009, respectively. She received
a Ph.D. degree in Information Science from
the Nara Institute of Science and Technology,
Japan. Since 2006, she has been a lecturer
in the Department of Computer Engineering,
University of Information Technology, VNU-
HCM, Vietnam. Her research interests include
computer architecture, signal processing, and

artificial neural networks.

Dao Hoang Nam received the B.Eng. and
M.Eng. degrees from Le Quy Don Techni-
cal University, Hanoi, Vietnam, in 2010 and
2017, respectively. He earned the D.Eng. de-
gree in Telecommunication Engineering from
King Mongkut’s Institute of Technology Lad-
krabang (KMITL), Bangkok, Thailand, in 2022.
He is currently a researcher at the High-Tech
Telecommunication Center in Hanoi, Vietnam.
His research interests include antennas for
wireless communications and microwave ap-

plications in agriculture.

Le Vu Trung Duong received the Bachelor
of Engineering degree in IC and hardware
design from Vietnam National University Ho
Chi Minh City (VNU-HCM)—University of
Information Technology (UIT) in 2020, and the
Master’s degree in information science from
the Nara Institute of Science and Technology
(NAIST), Japan, in 2022. He completed his
Ph.D. degree in 2024 at NAIST, where he now
serves as an Assistant Professor at the Com-
puting Architecture Laboratory. His research

interests include computing architecture, reconfigurable processors,
and accelerator design for quantum emulation, AI and cryptography.

Nguyen Van Tinh received the Ph.D. degree
in computer science from Division of Infor-
mation Science, Nara Institute of Science and
Technology, Nara, Japan, in 2022. Since 2023,
he has been a lecturer in the Electrical Engi-
neering Department of Le Quy Don Technical
University, Ha Noi, Viet Nam. His research
interests include machine learning, bigdata,
blockchain, and hardware security.

Pham Thi Mai holds a Ph.D. in English Lin-
guistics and is currently a lecturer at Foreign
Trade University, Vietnam. Her research fo-
cuses on English for Specific Purposes (ESP),
academic writing, and scientific communica-
tion in engineering and technology. She has
extensive experience in interdisciplinary re-
search involving language use in technical
contexts.

Pham Xuan Nghia is currently a lecturer at
the Faculty of Radio-Electronics Engineering,
Le Qui Don Technical University, Hanoi, Viet-
nam. He earned his bachelor’s and master’s
degrees in Information Engineering from the
Le Qui Don Technical University and holds
a Ph.D. in Electronics Engineering from the
Russian Federation. His research interests in-
clude information theory, signal processing
and wireless communications.

