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can be shown that a set of heuristic principles can be leveraged to engineer a self-organized connection-oriented wireless
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global state with only a modest amount of local signaling. It will naturally and jointly balance the many parameters related
to radio resource management, exhibiting great adaptability, fault tolerance and scalability.
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1 Introduction

1.1 Wireless Networks as Distributed Software
Systems

Modern wireless networks, whether they are random
access local-area networks (WiFi), cellular networks,
or wireless sensor networks, are conceptually similar
to distributed computers. Terminals and access points
are typically capable of sophisticated processing and
collaborate among themselves so that the network as
a whole provides one or more useful functions. There-
fore, the entire network is in essence a computer whose
main function is to ensure that its parts can communi-
cate effectively among themselves in spite of spectral
congestion and the inherent difficulties associated with
the wireless channel. It would typically achieve this by
1- collecting information on the environment, such as
channel quality, degree of interference, and communi-
cation requirements (bit rate, quality of service, etc.),
and 2- computing a ’good’ overall solution according
to some fitness criterion determining how the resources
(space, time, channels, access radio interfaces) will be
allocated.

Clearly, from a global point of view, the task of the
network is to dynamically and continuously compute
the solution of a multidimensional constrained opti-
mization problem. This problem is of the “traveling
salesman” variety and does not scale well, since it is
NP-complete. Therefore, current practical systems are
typically content to split the problem into smaller parts
and obtain a suboptimal solution.

We can think of the higher reasoning functions of
the network associated with resource allocation as
software-based, whether or not they are actually imple-
mented in software. This allows us to view a wireless
network essentially as a platform supporting a parallel
and distributed software system. With this point of
view, we can draw insights from the computer science
community, which has long been concerned with the
complexities of distributed systems, and see how they
apply to the wireless context.

1.2 Increasing Software Localization

In [1], Parunak observed that the history of software
is one of “increasing localization and encapsulation.”
Initially, there was the monolithic program where the
control flow would jump arbitrarily from one point to
the next, making it difficult to define and manipulate
any element other than a single line of code or the entire
program. With the advent of structured programming
came subroutines, which were tightly written, inde-
pendent and reusable portions of code performing a
well-delimited function. While a subroutine’s behav-
ior (code) is encapsulated, its state must be supplied
externally (through arguments), and it becomes ac-
tive only when invoked by a call. Then came object-
oriented programming where the code and its state
were both encapsulated in the form of an object. While
this provided many advantages, objects are still passive
and gain control only when they receive an external
message.

The natural evolution of objects is to cut the last
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link to centralized control by allowing them to invoke
themselves and to have their own internal goals. Hence,
behavior, state and invocation are all localized, leading
to the concept of a software agent. The agent is therefore
a small piece of localized, independent software that
acts “on behalf of” the system as a whole, and thus
has full authority to determine which action is appro-
priate on its own. Relevant variants of this concept
include intelligent agents (which exhibit some form of
reasoning or learning), autonomous agent (which can
invoke itself and take appropriate action depending
on circumstances), distributed agents (a set of agents
implemented on several physically distinct machines),
and multi-agent systems (distributed agents which need
to communicate among themselves and collaborate to
accomplish their objective).

Visionary economist and writer Ernst Friedrich Schu-
maker said

“The system of nature, of which man is a part,
tends to be self-balancing, self-adjusting, self-
cleansing. Not so with technology.”

This quote emphasizes the embarassing failure of
man-made technology to adapt to even the slightest
change that was not foreseen by its creators, something
that nature accomplishes with ease. The ultimate vision
behind software localization is to avoid the complexities
associated with traditional top-down design and to
provide some measure of dynamic self-organization, in
response to changing circumstances. This capability au-
tomatically brings many benefits, including robustness,
fault tolerance, flexibility, ease of maintenance, and
others.

1.3 Emergent Behavior
In essence, this vision of multi-agent systems falls

under the umbrella of nature-inspired computing, and
is related to cellular automata, swarm intelligence,
ant colonies, and amorphous computing. In a living
organism, each cell has its own internal goals, yet
alters its behavior in response to external information
from its environment. It also alters the environment
by liberating chemicals. A collection of such cells, each
acting of its own accord and being influenced by, and
influencing its environment, can achieve a high degree
of structure and perform a high-level function which is
significantly more sophisticated than the simple tasks
performed by the individual cells.

This is emergent behavior, whereby a complex system
or pattern emerges out of a great number of simple
actions and interactions. Conway’s game of life [2]
constitutes the classic example. When emergent behav-
ior is observed, dynamic self-organization is normally
implicit, with all the advantages that it brings. However,
it is challenging to engineer a specific emergent behavior,
since there is no known recipe or precise systematic
method of deriving local behaviors and interactions
backwards from the desired global behavior.

An important goal in agent architectures is to pro-
vide some degree of self-organization and dynamic
adaptation capability without resorting to top-down

control from a higher system authority. There are re-
searchers who implement these features with sophis-
ticated agents that explicitly reason about their inter-
actions, much as a human would. The drawback of
this approach is that it reintroduces many problems
associated with complex system design that motivated
increased software localization in the first place [1].

Thus, engineering emergent behavior from multi-
ple simple, minimalist agents is a more promising
approach, in spite of its engineering challenges. The
latter are not, however, insurmountable; there might
not be any systematic procedure to derive the agent’s
behaviors, but there are heuristic guidelines which can
be applied in practice.

1.4 Application to Wireless Networks

The deployment and maintenance of a conventional
cellular wireless system are complex, demanding tasks.
Rigid organization is favored in the classical cellular
paradigm, with specific subsets of channels being as-
signed to each cell. This limits the co-channel interfer-
ence, but also restricts the solution space, thus leading
to suboptimal resource allocations. The size and shape
of a cell, as well as the height of the base station tower
are important parameters which depend on the prop-
agation environment, obstacles, the density of wireless
traffic, the presence of interference sources, etc. Thus,
deployment typically requires extensive planning and
coverage measurements. As the environment changes
(new interference sources, higher density of wireless
traffic, changes in the propagation environment due
to new buildings, etc.), the design choices gradually
become invalid and the system must be periodically
upgraded / re-engineered.

On the other hand, 802.11 wireless local area net-
works require little in the way of planning and can be
readily deployed in an ad-hoc manner. However, their
random-access approach makes it difficult to guarantee
any type of quality of service, and the network collapses
under the weight of collisions as the traffic offering goes
above a certain fraction of the theoretical capacity. They
are also plagued by the so-called “hidden terminal”
problem.

Despite these shortcomings, 802.11 networks enjoy
considerable commercial success and this is no doubt
linked to their low cost and ease of deployment. The
802.11 “distributed coordination function” (DCF) which
embodies the basic channel random-access mechanism
(based on carrier sense mulitple access with collision
avoidance – CSMA/CA), is a primitive example of
distributed self-organization.

Self-organization through emergent behavior in the
context of wireless systems has the potential to sim-
ply and efficiently arrive at better resource allocation
solutions in a robust, dynamically adaptive manner,
while providing the requested quality of service if
required. Indeed, quality of service just needs to be
factored into the global resource allocation problem. If
such a problem is tackled in a distributed manner as
described, it matters little how many dimensions and
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constraints are present. It becomes possible to include
all variables in a single optimization problem, some-
thing which is not feasible in conventional systems for
various reasons, including the difficulty in centralizing
all relevant information at the decision point. Such a
centralization is unnecessary in multi-agent systems
based on swarming (MASS).

The increasingly relevant usage of multiple antennas
for beamforming and spatial multiplexing (MIMO pro-
cessing) also adds degrees of freedom to the optimiza-
tion problem, making the MASS approach even more
appealing.

2 The Distributed Base Station Paradigm

In the distributed base station (DBS) paradigm, large
central base stations are replaced by a plurality of
smaller access points more or less evenly distributed
in space so that their areas of coverage overlap sig-
nificantly. This implies that any given terminal can
be served by multiple access points simultaneously,
thus leveraging the benefits of macrodiversity. This
collection of access points, which provides access to the
network for the terminal, plays the role of a single base
station in a conventional system.

In the DBS concept, we assume that each access
point is linked to the other access points via a set of
links which is independent from the channels used
to communicate with terminals. This “infrastructure
network” can be wired or wireless (on a different band),
and is used by the access points to coordinate their
work, as well as process and forward data to and from
terminals. On the uplink for example, the infrastructure
network will route data from many access points to a
concentrator node which will perform diversity com-
bining and possibly other signal processing tasks to
estimate the transmitted packet from a given terminal.

Thus, there are three tiers of devices arranged in
a bottom-up hierarchy: terminals, access points, and
concentrator nodes, the latter being connected to a
larger wired network such as the Internet. This consti-
tutes a conceptual framework which can be reduced to
practice in many different ways. It will be discussed
herein as a means of providing connection-oriented
communications, as in a cellular system, but could
equally apply, with appropriate changes, in the context
of wireless LANs or wireless sensor networks. Also, the
infrastructure network could be implemented as a form
of wireless mesh, thus enabling rapid deployment, but
many other forms are possible.

Most importantly, the DBS paradigm is designed
to capitalize on self-organization to offer some of the
best features of both cellular (robust quality of service,
effective management of multiple channels, efficient
spectrum usage) and wireless LANs (rapid easy de-
ployment and maintenance, low cost), while leveraging
macrodiversity and offering a high degree of robustness
against changes in the environment (including access
point failures).

2.1 DBS with Centralized Management

Unlike what is proposed here, it is noteworthy that
there is a body of literature on so-called distributed
base stations or distributed arrays which tie in to a
centralizing “brain” via fiber optics. While this is re-
lated to the DBS paradigm herein and is known to have
many advantages (see [3] and references therein), it is
also very different since it consists in a centrally located
conventional base station to which remote radio heads
(RRHs) are connected. Thus, the physical antennas
might be separated physically, but the decision power
is centralized. This has the drawback of requiring more
complex scheduling and management algorithms, as in
traditional cellular systems, of requiring huge band-
width to centralize the information (hence the fiber
optic connections), and of being very difficult to scale
up.

One recent paper [4] brings this concept closer to
what is presented herein by comparing distributed
versus centralized scheduling algorithms in the context
of RRHs linked to a central point by fiber optics for
the uplink of 3G-LTE (Long Term Evolution) cellular
systems. It is therein assumed that RRHs are imbued
with local decisional power, and it is shown that the
distributed approach outperforms the centralized ap-
proach in terms of sum-throughput. Thus, the superior-
ity of a distributed approach seems to be demonstrated
in the context of an existing, practical cellular standard.
However, the approach described is deterministic, semi-
centralized and is not self-organized. What is proposed
here goes much further in terms of exploiting syn-
ergy and emergent behavior to derive unprecedented
benefits in the areas of robustness, scalability, self-
organization, and implementation simplicity.

2.2 Connection Management

In such a system, a mobile establishes its link to the
network via multiple stations simultaneously. Not all
DBS may relay all mobiles, and minimalist strategies
such as relaying the closest mobiles prevent the system
from adapting towards more globally optimal solutions.
It was shown in [8] that connections can be easily
managed by agents corresponding to the DBS behaving
autonomously, with their local actions leading to an
emergent behavior which optimizes connections and
QoS for the overall network. This agent system is herein
used with no modification. Cooperating mobiles are
seen as a single connection for a DBS (since they use
the same channel).

2.3 Interference Management

Interference in a DBS scheme is complex. There exists
a macrodiversity versus reuseability compromise which
comes from the fact that a mobile using macrodiversity
will have a larger spatial footprint on the channel it is
using (due to the many links). On the other hand, the
more compact such footprints are, the more mobiles
it is possible to accommodate since the reuse distance
is smaller. At first glance, the two aspects seem to be
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in opposition. However, macrodiversity should enhance
the overall link quality of mobiles thus leading to
resource savings by lowering the transmit power (with
respect to what would be required to achieve the same
link quality with a single access point) and hence the
spatial footprint.

The challenge here is to deal with many connections
(relaying connections for macro-diversity) in assigning
channels to mobiles while optimizing the overall net-
work’s performance.

2.4 Cooperation
In the context of DBS, we see that all aspects -

macrodiversity, connection and interference manage-
ment - are entangled in such a way that the behavior
of each distributed agent has an effect on the overall
network in a non-linear and intricate manner. Adding
cooperation will necessarily add to these complex rela-
tions. However, and because the whole system has been
designed to adapt to what it senses, the design equation
boils down to the design of an additional agent which
will work fairly independently and handle cooperation.
Connection and interference agents should then be able
to adapt to the new conditions. Especially, the channel
allocation agent should be able to efficiently make use
of the channels freed by cooperating mobiles (since two
mobiles will then share a channel).

3 Engineering Swarming

Cellular systems achieve spectral efficiency and robust
quality of service through precise, deterministic plan-
ning and resource allocation. However, this is costly
and suboptimal (in terms of channel usage, for exam-
ple, in the case of a rigid per-cell allocation) and adapta-
tion to changes (such as major environment changes or
scaling to meet increased traffic demands) is difficult.
Wireless LANs on the other hand are cheap, easy to
deploy and maintain, but have difficulty with quality
of service and are spectrally inefficient. Indeed, the
efficiency is typically of one third in loaded networks
and can fall to as low as one tenth in certain cases
(because of collisions, transmission errors, idle periods
and preamble overhead) [5].

We aim for an intermediate solution between these
two extremes, capitalizing on self-organization. Access
points are disseminated in such a way that their cov-
erage areas overlap significantly. Such access points
would have higher hardware complexity than 802.11
counterparts, but still be considerably simpler and
cheaper than cellular base stations. They would not
need the same power or height as standard base sta-
tions, nor the same coverage planning effort, because
of the macrodiversity gain. On the other hand, each
access point is capable of operating on multiple chan-
nels simultaneously (unlike 802.11 access points). Said
channels are considered at an abstract level, and can
in practice consist of time slots, frequency bands, or-
thogonal codes, or combinations thereof. It will simply
be assumed that these channels are orthogonal among

themselves, and that each access point can address a
maximum number N of such channels at any given
time (where N could be construed to indicate the
number of effective radio interfaces).

In this context, many interrelated optimization prob-
lems crop up, such as how to assign a multiplicity of
access points to any given terminal, given the limit N, in
such a way that all terminals desiring their connection
can obtain it with the desired quality of service. If we
only take into account for the time being the limit of N
connections per access point and ignore the issue of ac-
tual channel allocation and the effect of self-interference
due to channel reuse, we already have an NP-complete
problem, which, for a large number of access points,
cannot practically be tackled in an optimal, centralized,
deterministic manner. We will therefore resort to multi-
agent systems with swarming (MASS) as a distributed
computing platform to address this connection problem.

The environment, through which the agents com-
municate, is an integral part of a MASS system. In
our case, the environment is the wireless medium and
it is noteworthy that any multi-agent system essen-
tially reduces to three elements: the agents themselves,
the environment, and a coupling relationship between
them. The addition of the swarming component is,
according to Parunak, obtained by incorporating three
principles:

1. the coupling principle, whereby processes within
the agents must continually exchange information
via the environment;

2. the autocatalysis principle, whereby this interaction
is self-maintained and self-perpetuating;

3. the function principle, whereby the organization
thus induced provides a useful emergent function.

In the following, we will provide some indications
on the reduction to practice of Parunak’s swarming
principle within the DBS context.

3.1 Coupling
We’ve seen that the coupling is realized via an envi-

ronment where sources of information are distributed,
and organized behavior can only emerge through con-
tinuous exchanges. In the DBS paradigm, the access
points and terminals constitute information sources
distributed within the wireless medium, the latter be-
ing the environment. For example, terminals constitute
sources of information on connection requests and QoS
requirements.

In ant colonies, the coupling leading to emergent
behavior is realized by the ants leaving behind a trail
of pheromones. In artificial systems, the literature refers
to this as “volatile markers,” which are bits of informa-
tion left in the environment which decay in time (as
their relevance diminishes) and eventually disappear.
Terminals send requests for connections with a given
level of QoS, and such requests can be seen as messages
(markers) impressed on the environment (the wireless
medium). The request disappears with distance, since
its relevance diminishes as we move further away from
its source (given that the terminal cannot be served by a
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remote access points). One or more access point will re-
spond to the request and provide a diversity link to the
terminal. This action is in turn sensed by other access
points in the vicinity and will impact their behavior.
In this manner, local actions ripple through the system,
impacting on an increasingly larger neighborhood, thus
leading to a globally emergent behavior.

3.2 Autocatalysis

The autocatalysis principle implies that agents re-
trieve, process, and send out information in a continu-
ous fashion. The agents must not wait for some event
or discrete state transition, but must favor continuous
flow. In this context, both amplification and limitation
mechanisms are called for. Amplification refers to posi-
tive feedback such that convergence towards a desirable
solution is accelerated. Any action by an agent which
is deemed to move the system in a positive direc-
tion should therefore trigger similar actions in nearby
agents, thus accelerating convergence through a form
of viral contagion.

However, if amplification is allowed to function with-
out bounds, the system could easily accelerate towards
an undesirable state or suboptimal solution. So a lim-
itation mechanism is also required to achieve balance.
In our wireless DBS context, a poor signal quality will
favor multiple access point connections. If this state-
ment was allowed to take effect without bounds, a very
poor signal would soon have connections to hundreds
of access points. But this is naturally limited by the
maximum number N of connections per AP, signal
attenuation through distance, eventually the obtention
of a “good enough” connection, and other factors.

Also, the system must keep priming itself to explore
the solution space even if it reaches a so-called “sweet
spot,” since the latter might be suboptimal, and the en-
vironment is likely to change rapidly. This continuous
dynamic optimization is guaranteed by maintaining a
flow of entropy. In the DBS context, connections are con-
tinously created and destroyed to create and maintain
such a flow. Furthermore, the random activation times
of the agents ensures that the system does not fall into
any periodically-repeating pattern (such as observed
with Conway’s classic game of life, where all cells are
activated simultaneously).

3.3 Function

Autocatalysis ensures that the interactions discussed
under coupling are self-sustaining, but not necessarily
that they are useful. There is no known precise, sys-
tematic procedure to derive local behaviors based on
the desired useful global function. There are, however,
heuristic approaches and one such approach consists in
finding a utility function which can be evaluted locally
by agents and that maps to the global desired behavior.
Finding such a function is pretty much a matter of
trial and error, again guided by heuristics. The utility
function in effect translates the flow of entropy into
desirable decisions. It can be seen as embodying a

multi-dimensional problem within a single dimension
(scalar) quantity.

In our DBS system, link quality is rated according to
such a continuous function to determine the best links
to establish and / or sever at each agent activation.

4 Connection Agents

The goal is to design minimalist, low-complexity
agents, which will address global optimization prob-
lems in a totally distributed manner, avoiding any
explicit centralization of information (which would
consume significant bandwidth and represent a con-
siderable overhead in storage, network activity, and
computing power). It might at first seem that a wireless
communication system in which most major functions
are totally distributed would almost collapse under the
overhead of control signaling. However, that is not the
case with the MASS approach because decisions are
taken at the local level.

Agents must operate entirely based on information
collected continuously from the environment, not on
explicit signaling from a system operator. The connec-
tion agents [6], implemented at the access points, have
access to a minimal amount of information:

1. the set of terminals present and within range,
either requesting connection or already connected
to the network;

2. the quality of service requested by each;
3. the level of QoS each connected terminal currently

enjoys;
4. the incremental diversity gain the access point can

bring to a currently connected terminal.
For the sake of simplicity and without loss of gener-

ality, error probability is used as an index to measure
both QoS and diversity gain. Quality of service can
mean latency, bit rate, and / or bit error probability
(BER). Since we are dealing with a connection-oriented
network, latency is guaranteed. Furthermore, there is a
direct tradeoff between BER and bit rate using adaptive
modulation. For these reasons, BER is chosen as the sole
QoS index and the modulation will be assumed fixed.

Furthermore, it was shown in [7] that when em-
ploying maximal-ratio combining (MRC) in a white
Gaussian noise environment, the BER could be approx-
imated by a product form. This implies that, on a log-
arithmic scale, the BER figures observed on individual
links add up when the said links are combined using
MRC.

In this context, the following notation is used:
• Pe(i, m) is the logarithm of the BER of the link

from terminal m to access point i and also the
incremental diversity gain access point i can bring
to mobile m.

• Ptot(m) = ∑i Pe(i, m) is the total error probability
for terminal m. This quantity is set to 0 if the
terminal is not connected to the network.

• Preq(m) is the logarithm of the error probability re-
quested by terminal m, and constitutes its required
QoS.
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• Pthresh is a logarithmic BER threshold below which
the terminal is not considered in range and will
not be relayed by the access point.

While it is more convenient in analysis and sim-
ulation to work exclusively with the BER, it might
clearly be easier in an actual physical implementation
to measure the signal-to-noise ratio and deduce the BER
from there (since for a given modulation type, there is
a direct monotonic relation between the two).

We have devised the following utility function to rate
links for connection and disconnection:

D(i, m) =

(
Ptot(m)

Preq(m)

)
× log

(
Ptot(m)

Pe(i, m)

)
, (1)

where the first factor translates the QoS actually pro-
vided with respect to the requested QoS and the second
factor (logarithmically scaled) measures the relative
contribution of access point i to terminal m with respect
to its overall connection quality.

When evaluating for disconnection, the access point
will disconnect from the best-served terminal, which is
the terminal with the maximum D(i, m). According to
the first factor, this implies that the terminal has a good
overall connection quality with respect to its requested
QoS, and, according to the second factor, the relative
contribution of AP i is low.

Likewise, when evaluating for connection, the goal
is to establish a link to the worst-served terminal, i.e.
the one with the lowest value of D(i, m). A low value
implies that the terminal has a poor overall connection
quality and / or the relative contribution (incremental
diversity gain) of AP i would be important.

The simple act of normalizing the first factor of
the utility function by the requested QoS is sufficient
to implement the support of QoS classes within the
system.

The agent is activated at random intervals according
to a Poisson distribution. It has three distinct behav-
iors, depending on the number of active links the AP
currently has:

1. Initialization: If there are fewer than N − n − 1
connections, several connections are established to
the closest terminals (with the lowest Pe(i, m)) until
the limit N is reached.

2. Connection: If there are fewer than N connections,
the utility function is evaluated and a link is es-
tablished to the terminal in range with the lowest
D(i, m).

3. Disconnection: If there are more than N − n con-
nections, the mobile with the highest D(i, m) is
disconnected.

The parameter n is normally set to 1.
Extensive simulations have been performed to char-

acterize the emergent behavior of the connection agents.
One scenario is based on 200 terminals randomly and
uniformly disseminated over a 5 km × 5 km area. A
set of 19 access points are deployed to cover this area
according to a predetermined, uniform, “honeycomb”
pattern, i.e. the APs are in approximately the same
positions as if each was in the center of a traditional
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Figure 1. Transient and steady-state behavior when N = 25,
maximum total number of connections=475.

hexagonal cell. The mean trigger rate of the agents is
set to λ = 3 time units.

As far as propagation parameters go, the propagation
exponent is 4, i.e. signal strength decays proportion-
ally to 1/d4. Furthermore, Rayleigh fading is assumed
except when the link length is less than 100 meters,
in which case a line of sight is assumed to exist, thus
leading to Rice fading with K = 5 dB. This propagation
model is assumed throughout this paper.

For best results, the system must have sufficient de-
grees of freedom to favor macrodiversity, i.e. 19× N �
200. Figure 1 shows simulation results when N = 25.
Three behavioral phases can be clearly distinguished. In
the first phase, terminals are rapidly connected to the
nearest access points. During this phase, which ends
at time index 8, most terminals are connected, but a
quarter of them still don’t have their requested QoS. In
the second phase, links are broken and rearranged to
improve the global solution until, at time index 190,
nearly all terminals achieve their QoS requirements.
In the steady-state, the MASS system achieves the
same performance as an optimal, omniscient, central-
ized algorithm used for comparison purposes. It was
assumed that the QoS requirement for all terminals
corresponded to a BER level of 10−3 or better.

For the same simulation scenario, Figure 2 shows
a sorted profile of the terminals according to their
achieved QoS (Ptot) when two classes of terminals are
present. Half of the terminals request a BER of 10−2.5

(class 1), and half of the terminals request a BER of
10−5 (class 2). It can be seen that the MASS tends to
distribute resources so that terminals are more evenly
served than with the centralized algorithm.

5 Channel Allocation Agents

It was noted that the connection agent was developed
by ignoring the effect of co-channel interference due
to channel reuse. However, the nature of MASS is such
that, without changing the connection agent, the simple
addition of further agents to handle channel allocation
is sufficient to effectively manage interference. Indeed,
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Figure 2. Sorted profiles with 100 mobiles in class 1, 100 mobiles in
class 2, and N = 25.

the connection agent is robust to changes and will
naturally interact with the additional agents in such a
way that the emergent behavior tends towards global
multidimensional optimization.

To effectively address the channel allocation problem,
it was found useful to introduce the concept of master
link. Hence, any given terminal being connected to
the network by linking to multiple APs, one of the
said links (and, by extension, the associated AP) is
designated as master. A terminal’s master AP is respon-
sible, jointly with the terminal itself, for selecting the
terminal’s channel.

The channel allocation function emerges from inter-
actions between 4 types of agents [8], of which two are
located at the terminal, and two at the AP:
• Agents A are located at the AP and their job is to

make channel suggestions to the terminals.
• Agents B are located at the terminal; they receive

suggestions from agents A, evaluate the quality of
the suggested channel from the terminal’s point of
view, and accept or refuse the said channel.

• Agents C are located at the AP; they select, among
the terminals who share a master link with the AP,
one terminal for a channel change, said channel
change being initiated afterwards by agent A.

• Agents D are located at the terminal and are
responsible for choosing one AP as master among
the set of APs linking the terminal to the network.

Figure 3 outlines the interactions among all five
agent types, including the connection agent. Agent A
chooses a channel to suggest to the terminal, and the
strategy employed to select the said channel can greatly
influence the system. Three selection behaviors have
been considered:

1. Segregation: a strategy based on Akaiwa’s channel
segregation algorithm, where channels are chosen
according to how frequently they are used.

2. Clairvoyant: a strategy where it is assumed that
the AP possesses perfect information on the
interference-plus-noise power on all channels. This
strategy will first select the channel with the least

Agent  A
proposes a channel to a mobile

Master  DBS

Connect ion agent

creates and destroys connections

Master  Mobi le

Agent  C
chooses a mobile to change its channel

Agent  B

accepts or refuses channel

Agent  D

chooses a DBS to be the master

Agent  E
Proposes mobiles to join for cooperation

Agent  F

awaits to enter cooperation

Agent  G

Evaluates intermobile l ink quality

Slave Mobi le

Channel assignment

Allocation optimization

Establish and maintain
cooperation (shared
channels) in pairs and
optionally in tr iplets

Connection optimization

Figure 3. Diagram depicting the various interactions among the
different agent types in the DBS architecture.

interference. While it is possible to approach this
strategy in practice, it is considered less practical
since it would require continuous monitoring of
signal power on all channels.

3. Random: a strategy where channels are simply
selected at random, until a suitable channel is
found.

Agent A’s suggested channel may seem adequate
from the AP’s point-of-view, but it must be validated
at the terminal as well. Even though the AP and the
terminal are very often relatively close, the interference
pattern perceived by one and the other on a given
channel is not the same. For this reason, agent B at the
terminal receives agent A’s suggestion and evaluates
the SINR on that channel. If it is found to be below
a threshold T, the suggestion is rejected and agent A
must try again at the next activation.

Agent D looks after the selection of the master AP. At
each activation, it selects the AP offering the best link
quality (from the terminal’s point of view) as the new
master. Agent C selects at each activation one terminal
among the set of master links, and this terminal is
then targeted for a channel change. This implements
a form of frequency-hopping which establishes a flow
of entropy and forces the system to keep exploring the
solution space. The idea is to select a terminal who
is currently under-served. Three different criteria have
been tested in simulation:

1. according to the weakest link quality to the master
AP;

2. according to the weakest overall connection quality,
including macrodiversity;

3. according to the stongest interference power, as
measured by the master AP.

Then, agent A will propose a new channel to the
targeted terminal. This is done as described above, with
the additional constraint that the proposed channel
must present less interference power than the currently
used channel. Also, agent A will only examine a max-
imum of ChTryMAX channels before giving up (thus
aborting the channel change). This scheme establishes
the flow of entropy allowing for continuous and iter-
ative improvement of the global mutual interference
pattern. Hence, this is also the aspect of the system
which allows it to react favorably to changes, e.g. due
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to mobility, failures, new terminals, etc.
Like the connection agents, agents C and D are self-

activated at random intervals according to a Poisson
distribution with a mean interactivation time of λ. On
the other hand, agents A and B must be explicitly
activated either by agent C or by the connection agent.

Extensive simulations have shown that the joint work
of all five agents is effective at managing both con-
nections and channel allocations, regardless of the par-
ticular behaviors chosen (although performance varies
slightly). Again, the addition of an additional aspect
and additional agents integrates naturally with the
existing ones and the entire system remains stable
and robust. Furthermore, the proposed MASS approach
scales effortlessly to any system size, so long as there
are enough resources available to support some degree
of macrodiversity.

6 Cooperation Agents

6.1 Assumptions and Motivation

Additional agents (agents E, F, and G) have been
devised for pairwise and triplet-wise cooperation (de-
scribed in detail in [9])

Technical and economical constraints restrict mobiles
to embed a single half-duplex air interface. However,
the ability to rapidly switch from receive to transmit
and vice-versa is assumed.

Cooperation is considered for two or three mobiles.
The three-mobile case can be considered as a linear
superposition of mobiles cooperating two at a time.

The proposed method is not meant to improve range,
or capacity, it is meant to maintain link quality while
freeing radio resources. The benefit of cooperation in
this case is synergetic and in line with the underpin-
ning principles of the proposed DBS paradigm. Mo-
biles which will cooperate should be close enough to
simplify synchronization and minimize the effect of
intermobile communication on diversity, but also to
keep the spatial interference footprint as compact as
possible.

6.2 Cooperation Code

The following code, adapted from [10], is used:

M1 µx1 � νx̃∗2
M2 � µx2 x̃∗1

Both mobiles share the same channel. First M1 trans-
mits block x1 while M2 listens. Then, M2 transmits
x2 while M1 listens. In the last phase, both mobiles
transmit modified versions of the symbols observed in
the listening phase such that a “half-duplex” version of
Alamouti’s code is realized. The scaling factors µ =

√
2

and ν = 1 result in a total transmit energy of 3 times the
symbol power over 3 time slots. Moreover, the excess
amount of energy used during the broadcasting slots
enables higher SINR, thus lowering the probability of
a detection error at the opposite mobile.

The estimated symbol at the mobile is

x̃i = xi +
z′i
b

, (2)

where b is the channel coefficient between mobile 1 and
2. During each time slot, the received signal at the DBS
is given by

y1 = a1x1 + z1, (3)
y2 = a2x2 + z2, (4)
y3 = a1 x̃∗1 − a2 x̃∗2 + z3, (5)

and the signal decoding is performed (in Alamouti-like
fashion [11]) according to

x̃1 = a∗1
y1 + y2

µ
− a2

y∗3
ν

(6)

=
(
|a1|2 + |a2|2

)
x1 + a∗1

z1 + z2

µ
− a2a∗1

z′1
b
+

|a2|2
z′2
b
− a2z∗3 (7)

A similar rule applies for decoded signal x̃2 [9].
Three-way cooperation in the same spirit is also

possible according to the following code structure:

M1 µx1 � � νx̃∗2 � -νx̃∗3
M2 � µx2 � -νx̃∗1 νx̃∗3 �
M3 � � µx3 � -νx̃∗2 νx̃∗1

with µ =
√

18
4 and ν =

√
6
5 .

Cooperation being a kind of orthogonal repetition
code, it is compared to an equivalent — in terms of code
rate — (3,1) Hamming code for non-cooperating mo-
biles. 4-QAM (QPSK) modulation is employed for both
two-way cooperation and no cooperation (Hamming
code). In both cases, 2 bits are transmitted per 3 time
units per mobile, and each mobile consumes the same
transmit energy per bit. However, only one channel is
occupied for 2 mobiles in pairwise cooperating mode,
leading to higher spectral efficiency at the system level.

For three mobiles, six time slots are used but only 3
symbols transmitted, such that to maintain a constant
number of bits per mobile per time unit with respect to
the other modes, 16QAM modulation should be used
(4 bits per mobile in 6 time slots =2/3 bit per time unit).

6.3 Cooperation Agent Protocol
Consider that a mobile is connected to the network

via a plurality of DBS, but that one of them constitutes
its "master" connection. That particular DBS controls
the mobile’s channel, while the other DBS provide
secondary, or what is referred to as "relay" connections.
Cooperation is organized in a similar master-slave ar-
rangement, where one mobile within a cooperating set
is a master while the rest are slaves.

One agent located at the DBS will at each activation
propose mobiles from its master connection list for
cooperation. For some possible combinations of mobiles
chosen randomly, where the mobiles’ SINR at the DBS
is above a predetermined threshold, i.e.

SINRM1,DBS > ThB, (8)
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the DBS sends a request to a potential slave mobile to
test the reception of a master mobile. If the slave senses
that the intermobile link is good enough, i.e.

SINRM1,M2 > Thcoop, (9)

it sends an acknowledgment to the DBS and the two
mobiles start cooperating on the master mobile’s chan-
nel. Therefore, the slave mobile is connected to the
network via the connections allocated to the master
mobile. Also, the slave mobile’s channel is freed as well
as the master and relay connections it had. This offers
more relaying resources for macrodiversity for other
mobiles.

Three-way cooperation occurs when a DBS proposes
a mobile for association with two mobiles already
cooperating. Then, the new candidate evaluates the
two intermobile links to acknowledge whether it can
cooperate or not. A second agent is situated at the
mobile and activated when the mobile is in slave mode.
The agent evaluates the intermobile link quality, and if
it falls under a certain SNR, the mobile requests that
cooperation be terminated. The master DBS then has
to find a free channel to reconnect the mobile. Also,
the mobile then momentarily looses all of its relaying
connections, since the relay DBS must first evaluate if
they can reconnect to the mobile on its new channel.
This will necessarily be done at the next activation of
the connection agents of each DBS. If the DBS fails to
allocate a channel, the mobile is blocked.

Hence cooperation starts and ends, in an opportunis-
tic fashion, throughout the network given the required
sufficient conditions for cooperation between a set of
mobiles are met. The agent protocol requires very little
processing overhead, the complexity of the algorithms
being minimal. It does, however, lead to more pressure
on the channel allocation agent as mobiles join or end
cooperation when moving randomly.

Simulation of the system is performed over a square
field of 25 km2. The field is wrapped around both ways
to form a torus in order to avoid “edge” artifacts. One
thousand mobiles evolve, moving in random directions,
with individual speeds being drawn from a uniform
distribution between 0 and 18 km/h at the beginning
of the simulation.

Agents activate randomly with a mean interval of 3
seconds between activations, coordinating connections
(see [6]), channel assignments [8] and managing coop-
eration links [9]. Mobiles are randomly positioned. One
hundred DBS are also randomly scattered throughout
the area, thus avoiding any form of regular topological
pattern. Some regions of the field therefore enjoy very
good coverage while others do not. The purpose of the
configuration is to observe how well the agents are able
to compensate the inequities and balance the resources
across all mobiles. Each DBS can relay 25 mobiles. There
are 50 shared channels, Thcoop is set to 25dB and ThB
to 10dB. The scenario is executed for 200 seconds, and
the last 100 seconds are used to measure the means of
the observed parameters (the first part is left aside to
not account for the transitional state).

Figure 4 shows the sorted mean symbol error rate of

Figure 4. BER performance compared with and without cooperation
(2 way, and both 2 and 3 way enabled).

Figure 5. Effect of cooperation on mobiles’ SNR.

each mobile (in effect approximating the density distri-
bution over the network) in order to observe how well
the multiple agents handle the various load balancing
challenges. Therefore, the x axis represents the mobiles
ordered according to the quality of their overall link
(including the effect of macrodiversity). The y axis is
the BER (on a log10 scale). Curves are presented for
the three cases of no cooperation, two-way cooperation
only, and both 2 and 3 way cooperation.

Despite the Hamming code being more efficient than
the two way cooperation in terms of BER at the same
SNR, cooperation proves to be a better strategy. With
three-way cooperation enabled, the advantage is even
more obvious. Two aspects are involved. First, coop-
eration allows for better spectral efficiency such that
the granularity of DBS and the ability of the channel
allocation agents to adapt to changing interference pat-
terns (while mobiles join and leave cooperation) lead to
better SNRs for all mobiles even though not all of them
engage in cooperation. Figure 5 illustrates the enhanced
SNR by plotting the sorted mobiles’ SNR (to their best
relaying DBS) (mobiles order is not comparable to the
previous figure). Mobiles often obtain an additional 5dB
of SNR.

This factor alone does not fully characterize the
benefits of cooperation. In the DBS model, macrodiver-
sity is an important factor, and cooperation leverages
the macrodiversity gain in a synergetic way. Indeed,
the diversity obtained from cooperation multiplies the
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Figure 6. BER performance compared with and without cooperation
(2 way, and both 2 and 3 way enabled).

diversity obtained from the multiple relaying links.
Hence, 2-way cooperation with 2 relaying DBS would
be better for high SNR than no cooperation with a (3,1)
Hamming code. This is illustrated in Figure 6, where
without macrodiversity, the gain of cooperation allows
for poorly connected mobiles to enjoy higher SINR, at
the expense of mobiles enjoying higher SINR which
loose on BER. Although this allows for more evenly
balanced resources, the benefits are more marginal.
However with macrodiversity, cooperation enables im-
proved BER for all mobiles with respect to a non-
cooperating scheme.

Moreover, cooperation allows for DBS receivers to be
freed, since only one is needed to receive two or three
communications such that DBS can relay more mobiles.
It also lowers the interference allowing for remote DBS
to reach the signal and enable more macrodiversity
links. This synergetic effect is captured by Table I,
which gives the mean number D of macrodiversity
links. It would take about 40 receivers per DBS, com-
pared to 25 to obtain as many macrodiversity links
without cooperation.

The channel management agents are also helped by
the introduction of cooperation. Table I provides the
number of blocked channel allocation attempts per
simulation time step (B). This value is clearly reduced
since more channels are made available by virtue of
cooperation. Hence, fewer attempts are required to
connect a mobile. This happens even though additional
mobiles need to be assigned a new channel when
cooperation links end and slave cooperating mobile
need a new channel to remain connected.

Table I
Performance parameters are given for the three cooperation

scenarios (no cooperation, 2-way cooperation, and 3-way

cooperation) including mean number of macrodiversity links

(D), mean number of blocked channel allocation attempts (B),
and mean number of disconnected of completely disconnected

mobiles (L).

D 2Coop 3Coop Join/leave B L
No coop 2.34 7.09 0.64
2 coop 3.18 566 7.8 6.23 0.75

2-3 coop 3.75 330 330 11.2 4.72 0.77

Figure 7. Diagram depicting the various interactions among the
different agent types with the inclusion of agent class H for power
control.

Table I also lists the number of mobiles cooperating
in pairs, the number of mobiles cooperating in triplets,
the mean number of mobiles joining and leaving coop-
eration per second, and the mean number L of mobiles
which are completely disconnected per simulation time
step. This value rises slightly in cooperation scenarios
because of the effect of suddenly orphaned slave mo-
biles when a cooperation pair / triplet is disbanded.

7 Power Control Agents

The idea of introducing an additional agent at the mo-
bile for power control purposes is a natural extension of
the multi-agent platform described so far. Power control
in various forms helps limit interference footprints
in existing systems, thus saving energy and reducing
further the interference levels affecting link quality.
The approach taken here is to introduce an additional
agent at the mobile which simply senses the energy
on the currently used channel and adjusts the transmit
power according to a simple technique described below.
However, this approach is not used in conjunction with
the cooperation agents at this stage. It turns out that
the coupling between the power control and the coop-
eration functions is intimate and difficult to manage /
predict, such that they cannot be combined in a trivial
manner, unlike the previous classes of agents. This
question therefore requires further investigation.

Thus, the power control functionality was studied in
the absence of the cooperation agents and the appli-
cable agent interaction scheme is depicted in Figure 7.
The question naturally arises whether the interaction
between power control and the other classes of agents
could also be problematic. There is in fact a potential
risk of instability if actions taken by one type of agent,
i.e. power level adjustments, excessively impede or
exacerbate another agent’s action (connection / discon-
nection or channel allocation) in a manner that disrupts
the overall balance of the system. Hence, the limitation
aspect is important and it should ensure that reactions /
counter-reactions are not excessive in any direction.
For example, a sudden change in interference should
not trigger wild oscillations in other agents within
nearby access points and mobiles, but rather smooth,
progressive adjustments.

Given that mobile m has a power level ratio of pm,
an associated overall link quality index is defined as
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follows:

Qm =
Ptot(m)

Preq(m)
=

log10 BERm

log10 BERR
m

=
∑Mm

k=1 log10 BER(m, k)

log10 BERR
m

.

(10)
The sum on k iterates through the Mm DBS relaying
mobile m. As with the other agent classes, normalizing
with respect to the logarithm of the requested BER
(Preq(m)) naturally implements classes of QoS.

If Qm is above 1, the mobile is considered overserved
since it benefits from a better BER level than that
requested. Hence, we could conclude that in the interest
of preserving resources, such a mobile should reduce
its power level. If Q is below 1, then a natural solution
would be to increase the power level until Q = 1
is reached. However, this must be done with care
and progressively since increasing the power level also
increases the interference footprint and affects multiple
nearby mobiles. The challenge here is to induce inter-
actions that create an appropriate balance between all
these considerations. Furthermore, automatically forc-
ing overserved mobiles to lower their power level is
not necessarily optimal, since there are cases where
this excess link quality margin can be enjoyed without
significant negative impact on neighbors, e.g. when the
local traffic level is low compared to the available radio
resources.

There are other subtle implications if the power level
is naively reduced in the overserved case. In very good
channel conditions, the power level could be reduced
to the point where the signal level is close to the noise
floor, making that mobile very vulnerable to a deep
fade and the so-called hidden terminal effect. Indeed,
if a mobile does not transmit with sufficient strength,
nearby DBS will not detect it and will choose to use its
channel, thus making it prone to a sudden interference
flooding. Using the same logic, mobiles that cannot
reach their requested BER / QoS would systematically
reach their maximum transmit power, a solution point
which may not be optimal from a systemic standpoint.

The above discussion highlights the need for a more
subtle approach. To achieve this, we introduce the
Need variable. It corresponds to the power level a
given mobile m should converge to, determined by its
current quality Qm, provided that nothing changes in
the mean time. It follows that the point of equilibrium
(homeostasis) is reached when the current Needm value
equals the current power level pm for all mobiles.

To ensure proper dynamic behavior, the Need vari-
able incorporates an appropriate shaping function and
is given by

Needm(Qm) = 2e−SQm (SQm + 1)− 1, (11)

where S is a scaling parameter applicable to Qm which
can be adjusted to allow mobiles to enjoy QoS higher
than their requested BER. This implies, depending on
the value of S, that the Needm is not necessarily smaller
than pm when Qm > 1. Simulations have shown that
the optimal value of S to maximize QoS across the
entire system is 0.8, and this holds across wide ranges

of conditions in terms of traffic, mobile speeds, and
available resources.

The shape of the Need function is largely condi-
tioned by the exponential in (11). As before, it is not
the only choice, but experiment has shown it to be
viable. The choice may in fact seem arbitrary since this
function gives us the pm the mobile should converge to
irrespective of its distance from serving access points,
propagation or interference conditions. It should be
understood to make sense only in the context of a
dynamic balancing act with other mobiles which also
work according to the same guidelines.

In practice, this requires translating the Needm value
into a power level increment step to be applied at the
current power control agent activation. The conversion
to this delta / step value must be performed in such
a way as to incorporate the capability to converge
towards and attain a homeostasis point. It must also
incorporate an inherent limitation mechanism to pre-
vent overshoot and ensuing instabilities.

The convergence to an equilibrium point or home-
ostasis state is induced by making the delta value
linearly or non-linearly proportional to Needm − pm.
Hence, if we are far from this equilibrium (defined
as the point where Needm = pm), we move quickly
towards it; if we are close, we slow down, thus emu-
lating classic steepest descent behavior. A relationship
between linear and quadratic was found to be favorable
to convergence and stability. In light of this, we initially
define the step

∆(1)
m = βsign (Needm − pm) |Needm − pm|1.5 , (12)

where the constant β can be adjusted to obtain the
desired compromise between convergence speed and
stability. This relationship will be refined below to
incorporate the limitation aspect.

It has been demonstrated empirically that our initial
expression for ∆m above leads to unacceptable insta-
bility for high values of β. However, it is possible to
modify it so that high values of β can be used (resulting
in fast convergence time) while stability is obtained
through additional parameters. Indeed, a respectable
convergence speed, obtained with values of β equal to
or in excess of 5, is important to support mobility, a
condition which led to instability with our initial defi-
nition (12). The desired result is achievable by scaling
(12) by the current power level pm and the desired
power level Needm. This ensures that changes in power
levels remain very subtle when the values of pm and /
or Needm are small. These are indeed the conditions
where rapid changes can suddenly alter the interference
patterns causing multiple broken links and sending
exaggerated ripples throughout the system. Thus, our
new definition is

∆(2)
m = pm |Needm| βsign (Needm − pm)

|Needm − pm|1.5 .
(13)

Finally, the delta value is additionally constrained to
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avoid exceeding the valid power level range, i.e.

∆(2)
m < 0 → ∆(3)

m = max
{

∆(2)
m ,− pm

2

}
,

(14)
∆(2)

m > 0 → ∆(3)
m = min

{
∆(2)

m ,
1
2
(1− pm)

}
.

At each activation of the mobile’s PC agent, the
power level is adjusted according to

p(ν+1)
m = p(ν)m + ∆(3)

m , (15)

where ν is the activation index.
To properly characterize the proposed power control

scheme, two existing power control algorithms from the
literature were adapted to the DBS context and used as
benchmarks within the simulations. These algorithms
were selected because they are both representative of
the state of the art, yet are also well-suited to the
characteristics of the DBS paradigm, including high-
order macrodiversity. The first one is Grandhi’s cen-
tralized power control algorithm [12], which seeks to
maximize the lowest SIR in the system through an
approach based on eigenanalysis. The algorithm, as
applied to the DBS context, is described in [13]. The
second benchmark algorithm is Yanikomeroglu’s SIR-
Balanced Macro Power Control (SBMPC) scheme [14].
Formulated for the context of distributed antennas in
CDMA systems, it requires very little change to apply
to the DBS paradigm. Again, this is detailed in [13].

As before, a square area of 25 km2 is considered,
containing a population of 1000 mobiles in motion,
and 100 fixed DBS uniformly and randomly scattered
throughout. Each DBS can relay a maximum of 25
mobiles simultaneously, making the average number
of relay links per mobile in this scenario equal to 2.5.
Mobiles move in random directions with random speed
drawn from a uniform distribution between 0 and Vmax.
A mobile’s maximum transmit power is 1 W measured
at 1 meter from the antenna. Thermal noise at the
receiver affects a signal bandwidth of 30 kHz at an
assumed temperature of 20◦C, yielding N0 = −129
dBW. The total number of available channels in the
system is denoted Ch.

Simulations are run for 1000 seconds and repeated
10 times with different initializations of the geometry
(DBS positions and mobile initial positions, directions
and speeds). Time is discretized with a time step of
1 second. At each time step, physical parameters are
evaluated (mobile positions, propagation, interference,
BER, connection outage). Agents activate randomly ac-
cording to a Poisson distribution with parameter λ = 3
time steps. At each time step, agents which activate
evaluate their local state and take actions accordingly.
Depending on the agent class, this can be adjusting
the power level, creating / destroying a connection, or
performing a channel assignment action).

At each time step, the set of QoS (total BER level
given on a logarithmic scale) for each mobile is sorted,
thus providing a snapshot in time of the distribution of
the network resources across all mobiles. These sorted
distributions are then averaged for all the time steps
of the simulation. Given this information, it is then
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Figure 8. Simulation results with Ch = 40, N = 0, Vmax = 0.

possible to compare how each algorithm distributes re-
sources. The same is done for the power level allocation.
Also, to verify the stability over time (considering the
dynamic properties) of the algorithm, two parameters
are interesting to observe to understand how the system
handles outage:
(1) the mean number N̄d of mobiles that loose all

connections to the network per second, and
(2) the mean time t̄r it takes for the network to recon-

nect a mobile after it has been disconnected.
Figure 8(a) shows the base results, that is, with a

static simulation where fading is considered as if mo-
biles where moving, but mobility is not considered (to
observe a nominal capacity without taking into account
dynamic adaptation of the algorithms). Noise is also not
considered in this case.

The graphic reveals different aspects. First, with no
PC, the QoS is clearly not balanced, but more impor-
tantly, not all mobiles can be connected as is seen from
the right hand side of the graph. With the centralized
algorithms, we can clearly see that QoS is balanced, and
all mobiles are connected. MAPC on the other hand is
able to provide much more QoS to almost all mobiles,
while only impeding (compared to SBMPC) very few
mobiles.

Values of the parameters N̄d and t̄r are given in
Table II for this simulation scenario. One immediate
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Table II
Outage behavior without mobility and noise Ch = 40.

No PC CPC SBMPC MAPC
N̄d (×10−6) 570 8.9 130 190
t̄r (seconds) 24.2 1 2.0 2.65
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Figure 9. Sorted BER profile averaged in time
(meant(sortm(PT(m)))).

observation based on these values is that the CPC is
extremely adept at handling outage. It takes only 1
time step (1 iteration of the simulation) to reconnect
a lost mobile, and the probability that a mobile is
disconnected is extremely low. Even SBMPC is not as
good, but remains excellent compared to no power
control. MAPC is doing only slightly worse in this
respect, but with a much enhanced QoS provided to
all mobiles.

Faced with higher interference levels (same user pop-
ulation but with Ch = 25), it can be observed that the
centralized algorithms seem to collapse (Figure 9(a)).
Indeed, under high interference levels, maximizing the
minimum SIR leads to very poor SIRs for all mobiles.
In turn, this generates many disconnections. Figure 9(a)
clearly illustrates that the traditional algorithms are
inefficient in this case, and lead to an even worse system
snapshot than in the absence of PC. However, the
MAPC algorithm still manages to provide acceptable
levels of QoS, while connecting more mobiles.
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Figure 10. Sorted BER profile averaged in time
(meant(sortm(BERm))), Ch = 40, N = −129dBW, Vmax = 0.

The performance of the traditional algorithms dete-
riorates even more when noise is introduced. The fact
that these algorithms focus on the SIR can make them
unstable in the presence of noise, as Figure 10 attests,
thus provoking widespread disconnections.

8 Conclusion

While many other aspects still need to be worked
out (routing on the infrastructure network, reciprocal
downlink operation, etc.), the described work provides
a strong case for the feasibility of the MASS ap-
proach for radio resource management. The approach
is scalable, easily deployed and extended, modular
by function yet globally convergent, of disconcerting
implementation simplicity, robust, flexible, and toler-
ant to faults. Multiple resource management aspects
have been tackled through the introduction of various
classes of agents: connection management, dynamic
channel allocation (and inherent scheduling), pair-wise
and triplet-wise cooperation, and finally, power control.
In general, each new class of agent can be added on top
of the previous one and designed independently, yet the
different agents interact implicitly to reach an equilib-
rium. Thus, each new variable added in the system does
not compound the optimization problem in the way one
would expect with traditional centralized deterministic
algorithms. For each class of agents, the performance is
seen to be comparable, and in certain respects, better to
that of known good centralized /traditional algorithms.
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