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Abstract– In this study, a novel method is proposed to improve the accuracy of the direction of arrival (DOA) estimation
for radio signal sources when a uniform circular antenna array (UCA) has inactive elements. Specifically, the full-rank
covariance matrix is reconstructed by integrating a U-Net deep learning model with the multiple signal classification
(MUSIC) algorithm, even with incomplete array elements. To restore essential correlation information lost due to inactive
elements, a subspace-based full-rank recovery technique is employed. The reconstructed covariance matrix is then utilized by
the MUSIC algorithm for accurate DOA estimation. Experimental results demonstrate significant improvements in accuracy,
especially under low signal-to-noise ratio (SNR) conditions and with incomplete antenna arrays. Therefore, this approach
ensures stable and precise DOA estimation even under non-ideal operating scenarios, offering a practical solution when
antenna arrays experience element failures or physical obstructions.

Keywords– Direction of Arrival estimation, incomplete antenna array, deep learning, convolutional neural network.

1 Introduction

Direction of arrival (DOA) estimation is a highly re-
garded research field due to the diversity and sig-
nificance of its related applications, including radar,
sonar, communications, electronic warfare, and many
other areas [1]. DOA can be estimated using multi-
ple sensors arranged in different geometric configura-
tions. Well-known traditional methods widely applied
in DOA estimation include the conventional beam-
forming (CB) method [2], the Minimum Variance Dis-
tortionless Response (MVDR) method [3], the signal
subspace analysis methods, including the Multiple Sig-
nal Classification (MUSIC) algorithm [4], and the Es-
timation of Signal Parameters via Rotational Invari-
ance Techniques (ESPRIT) method [5]. These methods
vary in computational complexity and applicability.
The beamforming method is simple to implement,
but experiences significant performance degradation in
environments with complex noise interference and a
large number of incoming sources. Subspace analysis
methods can achieve high resolution in scenarios with
multiple signal sources; however, they require prior
knowledge of the number of sources in a predefined
scenario. These methods generally assume a complete
antenna array and an environment free of correlated
noise between the receiving channels of the array.

The rapid advancement of Artificial Intelligence (AI)
in recent years has led to groundbreaking develop-
ments in the DOA estimation problem [6]. The I/Q
(In-phase/Quadrature-phase) signals from the antenna

array are commonly used as input for supervised learn-
ing models to classify the angle of arrival [7]. I/Q
data, which includes both the amplitude and phase
information, provide a complete representation of the
received signal, enabling the model to extract essential
features for the determination of the angle of arrival.
This approach has the advantage of being simple to im-
plement, as it does not require complex pre-processing
steps. However, its angular resolution is often limited
and exhibits high errors in scenarios with multiple
signal sources or when continuous angle estimation is
required. Improving accuracy requires a larger training
dataset to cover all classification categories, leading
to increased computational costs and longer training
times. An alternative approach is to use the covariance
matrix of the I/Q signal as input for deep learning
models [8]. This approach helps reduce data size and
more effectively extract important features while lever-
aging correlation information between elements in the
antenna array. However, in practical scenarios, antenna
arrays often face various technical challenges and op-
erate in harsh environments, leading to the failure of
some sensor elements. When the antenna array has
inactive elements, the size of the covariance matrix is
reduced, resulting in the loss of critical information nec-
essary for signal processing. Consequently, the accuracy
of the DOA estimation for signal sources is significantly
reduced, making it more challenging to analyze and
locate signal sources.

In this paper, we propose a rank restoration method
for the covariance matrix of an antenna array with inac-
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tive elements using a subwindow matrix approach. We
develop a U-Net-based convolutional neural network
model to reconstruct the covariance matrix, aiming to
restore values close to the ideal state. Subsequently,
traditional methods are applied to improve the accu-
racy of DOA estimation for signal sources. The main
contributions in this paper are as follows:

- We introduce a novel rank restoration method for
the covariance matrix of an antenna array with inactive
elements by utilizing a subwindow matrix approach.
This method effectively compensates for the inactive
elements, restoring the essential correlation information
between the array elements necessary for accurate sig-
nal processing.

- We develop a U-Net based convolutional neural
network model to reconstruct the covariance matrix,
aiming to restore it to values close to the ideal state of
a complete antenna array. This deep learning approach
improves the quality of the reconstructed covariance
matrix, improving the overall performance of subse-
quent signal processing algorithms.

- By applying traditional methods, specifically the
multiple signal classification (MUSIC) algorithm, to
the reconstructed covariance matrix, we enhance the
accuracy of direction of arrival estimation for radio
signal sources. Our approach demonstrates significant
improvements, particularly in scenarios where the an-
tenna array is incomplete, thereby ensuring more re-
liable signal source localization even under non-ideal
operating conditions.

The rest of this paper is organized as follows. Sec-
tion II presents the received signal model for the UCA,
both with and without inactive elements. Then, in Sec-
tion III, our proposed method is introduced, where the
rank restoration of the covariance matrix, the MUSIC
algorithm, and the U-Net model are explained in depth.
In Section IV, simulations are conducted to evaluate the
proposed method, and the results are discussed. Finally,
Section V concludes our work and provides directions
for future research.

2 Received Signal Model

2.1 Signal model of the normal UCA

A received signal model for a uniform circular ar-
ray (UCA) with a radius R and M elements is shown
in Figure 1. Assume there are P narrowband far-field
signal sources that impinge on the antenna array with
corresponding angles θi, 1 ≤ i ≤ P. The signal received
at the output of the UCA array can be expressed
as follows

x(t) = A(θ)× s(t) + n(t), (1)

where s(t) =
[
s1(t), s2(t), . . . , sP(t)

]T

is the signal vector of the P sources;
n(t) =

[
n1(t), n2(t), . . . , nM(t)

]T is the uncorrelated
noise vector corresponding to the M receiving channels;
x(t) =

[
x1(t), x2(t), . . . , xM(t)

]T is the output signal

Figure 1. UCA model with P signal sources.

vector of the UCA; and A(θ) is the array steering
matrix, which is expressed as follows

A(θ) =
[
a(θ1), a(θ2), . . . , a(θP)

]
M×P . (2)

The covariance matrix of the output signal of the
UCA array is calculated using the following formula

Rxx = x(t)x(t)H = A(θ)RssA(θ)H + σ2
NIM, (3)

where Rss = E
[
s(t)s(t)H

]
is the correlation matrix of

the transmitted signals, σ2
N is the noise variance, and

IM is the identity matrix of rank M.

2.2 Signal model of the UCA with inactive elements

Suppose that some elements in the UCA are inactive,
leading to inactive signals at the array output. In this
case, the set of inactive elements can be presented
as follows

mmissing = {i1, i2, . . . , iL} (4)

where L is the number of inactive elements.
The set of active elements is presented as follows

mactive =
{

i
∣∣∣ i ∈ {0, 1, . . . , M}, i /∈ mmissing

}
. (5)

The steering vector of the array, restricted to the
active elements, is defined as follows

aact(θk) =
[
ej 2π

λi
R cos(2π i

M −θk)
]

i∈mactive
, (6)

where θk is the DOA of the k-th signal source. The
steering matrix of the array with inactive elements is
given by

Aact(θ) =
[
aact(θ1), . . . , aact(θP)

]
(M−L)×P , (7)

where P is the number of incoming signal sources.
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3 Proposed Method

3.1 Rank restoration for the covariance matrix of the
UCA with inactive elements

The covariance matrix of a normal UCA of M el-
ements has a size of M × M. When the array has
inactive elements, the covariance matrix is reduced in
size as follows

Ractive = Rxx

[
mactive, mactive

]
∈ C(M−L)×(M−L). (8)

To restore the full rank of the covariance matrix R,
the inactive elements are estimated from the active
elements. The rows i and columns j corresponding
to minactive in the matrix are assigned undefined values
(NaN) to represent the inactive state as follows

Ri,j = NaN, ∀i, j ∈ minactive. (9)

The inactive elements corresponding to the value
Ri,j are replaced with the local mean value µi,j of the
neighboring elements as follows

µi,j =
1

|Nij| ∑
(k,l)∈Nij

Rk,l , (10)

where Nij is the set of indices (k, l) neighboring the
inactive position (i, j), defined within a subwindow ma-
trix of size (2h + 1)× (2h + 1), h is the window radius.
|Nij| is the number of elements in the set Nij, and Rk,l
is the covariance value corresponding to mactive. The
resized matrix Rmasked is used as the input for the
U-Net model for reconstruction.

3.2 MUSIC algorithm
The MUSIC method operates based on decomposing

the covariance matrix of the received data into two
orthogonal matrices, corresponding to the signal sub-
space and the noise subspace. The signal subspace con-
sists of eigenvectors corresponding to the eigenvalues
of the signal components, while the noise subspace con-
tains eigenvectors representing the noise components.
The DOA estimation process is performed by exploiting
the properties of these subspaces, under the assumption
that noise at each receiving channel is uncorrelated.
The covariance matrix of the received data serves as the
foundation for the entire process, which is represented
as follows

Rxx = ARssAH + σ2
NIM, (11)

here, Rss = E
[
s(t)s(t)H

]
is the correlation matrix of the

transmitted signal, σ2
N is the noise variance, and IM is

the identity matrix of rank M. The eigenvalues of Rxx
are determined by solving the following equation∣∣Rxx − λI

∣∣ = 0. (12)

The eigenvector Vn corresponding to the
specific eigenvalue λa is determined from the
following equation

RVn = λaVn. (13)

With N eigenvalues, an eigenvector matrix of size
N × N is formed. The eigenvectors of the noise sub-
space are orthogonal to the steering vectors of the array

aH(θ)ENEH
Na(θ) = 0. (14)

The MUSIC spectrum is obtained as follows:

PMUSIC =
1

aH(θ)ENEH
Na(θ)

, (15)

where a(θ) is the steering vector of the array, EN rep-
resents the noise subspace with a size of N × (N − M).

3.3 U-Net model
Figure 2 illustrates the structure of the proposed U-

Net model, which consists of two phases: encoding
and decoding. These phases are interconnected through
skip connections to maintain the integrity of informa-
tion throughout the processing. In the encoding phase,
the input data is the covariance matrix Rxx of size 9× 9,
which is processed through sequential convolutional
blocks. Each block consists of a 2D convolutional layer
(Conv2D) with a 3 × 3 filter kernel. The LeakyReLU
activation function is used to reduce neuron dead zones
compared to standard ReLU. After each layerconvolu-
tional block, a MaxPooling layer with a 2 × 2 kernel is
applied to reduce the spatial dimensions of the data
while preserving essential feature information. The
number of filters in the convolutional layers gradually
increases from 16, 32, 64, to 128, allowing the model to
learn more complex feature representations from the
input matrix.

Figure 2. Architecture of the U-Net model.

The decoding phase operates in the reverse direc-
tion of the encoding phase, consisting of blocks that
expand the data dimensions through transposed con-
volution layers, combined with regular convolutional
layers where the number of kernels gradually decreases
from 256 to 16 to restore the information. A key ar-
chitectural feature of U-Net is the use of skip con-
nections, where feature maps from the corresponding
encoding layers are concatenated with the decoding
layers through Depth Concatenation. This approach
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helps preserve crucial spatial information lost during
dimensional reduction, while also improving the recon-
struction performance of the covariance matrix. To mit-
igate overfitting, the model applies dropout layers with
a probability of p = 0.5 in the deeper layers. Finally,
the model employs a regression layer to reconstruct
the covariance matrix to its original size, ensuring that
the correlation information between antenna elements
is fully restored.

The model training process was conducted over 30
epochs, applying the Adam optimizer to improve con-
vergence ability and reduce oscillations during weight
optimization. The initial learning rate was set to 10−4,
ensuring a stable weight update process. The mini-
batch size was set to 32, allowing the model to ef-
ficiently utilize computational resources, enhancing
generalization capability, and improving convergence
speed. The computational complexity of the model
training process is described by the following formula

FLOPstotal = FLOPsencoder + FLOPsdecoder. (16)

Specifically,

FLOPstotal =
L

∑
i

2 × Hi × Wi × Cin,i × Cout,i × k2 (17)

where L is the total number of convolutional layers in
the model. H and W represent the height and width
of the input data, Cin and Cout correspond to the
number of input and output channels of the model,
and k2 is the kernel size. Thus, the proposed model
has a total floating point operation (FLOPs) count of
55,246,034 and was trained on an Intel(R) Core(TM)
i7-6820HQ processor combined with an GPU NVIDIA
Quadro M2000M.

4 Simulation and Results

4.1 Dataset

In this study, the dataset was generated according
to Algorithm 1. The uniform circular antenna array
model consists of 9 elements with an array radius
of R = 22.4 m. The number of signal sources impinging
on the antenna array is randomly chosen between 1
and 4 sources, with a frequency of fc = 6.7 MHz and
a random initial phase. The interference is assumed to
be Gaussian distributed white noise, with a sample size
of Nx = 1024. The SNR values are distributed from −20
dB to 20 dB, with a step size of 1 dB.

The objective of the U-Net model constructed in this
study is to reconstruct Rxx in (3) into Rrct with the
expectation that it does not contain noise components.
This corresponds to the output signal from the antenna
array reaching an ideal state, meaning it is not affected
by noise. In this case, x(t) in (1) becomes

x0(t) = A(θ)× s(t). (18)

The reconstructed covariance matrix Rrct can be ex-
pressed as follows

Rrct = E
[
x0(t) · x0(t)H

]
. (19)

The covariance matrix Rxx is in complex form, so
before being fed into the model for training, it needs to
be transformed into a real-valued matrix Rin. Due to the
properties of the Hermitian matrix, the transformation
process can be described by the following formula

Rin = real
{

triu{Rxx}
}
+ diag{Rxx}+ imag

{
tril{Rxx}

}
,

where the components real{} and imag{} are func-
tions that extract the real and imaginary parts of
a complex number, respectively. diag{}, triu{}, and
tril{} are functions that extract the main diagonal,
upper triangular, and lower triangular elements of a
matrix, respectively. The output matrix Rout recon-
structed by the model is converted into a complex
matrix Rrct before being used for DOA prediction with
traditional methods.

Algorithm 1 : Dataset Generation
Step 1: Parameter Setup

1: Antenna Array UCA: M = 9, Radius = λ/2
2: Signal Sources: P = Randi(1:4), fc = 6.7 MHz,

Nx = 1024
3: SNR Ratio: −20:1:20 dB
4: DOA Angles: −179◦:180◦

5: Number of trials per SNR: n = 40, 000
Step 2: Data Generation Loop

6: for n = 1 to 40, 000 do
7: Generate incoming signal: s(t)
8: Compute ideal received signal: x0(t)
9: Compute ideal covariance matrix: Rideal

10: Add Gaussian noise: x(t)
11: Compute covariance matrix: Rxx
12: end for

The dataset is generated with a sample size
of 40,000 for each SNR level. The total dataset consists
of 1,640,000 samples of Rin, which is divided into 80%
for training and 20% for testing. The dataset generation,
model training, and evaluation processes are imple-
mented in Matlab 2023.

4.2 Evaluation of the proposed method in the Case
of the normal UCA

Consider a normal UCA array with 9 elements
affected by incoming signal sources at a frequency
of 6.7 MHz. The interference is assumed to be Gaus-
sian distributed white noise, with a sample size
of Nx = 1024 at an SNR level of 1 dB. The covariance
matrix Rxx of size 9 × 9 is used for DOA estimation
using the MUSIC algorithm, while also serving as input
for the U-Net network to reconstruct the ideal covari-
ance matrix Rrct. Afterward, the MUSIC algorithm is
again applied to Rrct for DOA estimation.

When the UCA array has fully active elements,
the results of the MUSIC spectrum (blue)
and U-Net - MUSIC (red) in Figure 3 show that both
methods accurately identify the spectral peaks at the
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actual DOA positions. In the case of two signal sources
(θ1 = −55.66◦ and θ2 = −129.13◦), the U-Net-MUSIC
algorithm maintains an accurate estimation capability
while also providing a smoother spectrum and
reducing background noise compared to traditional
MUSIC. When the number of sources increases to
three (θ1 = −55.66◦, θ2 = −129.13◦, θ3 = 30.35◦),
U-Net-MUSIC still ensures clear spectral peaks,
demonstrating its ability to generalize in more
complex signal scenarios. Evaluating the root mean
square error (RMSE) in 1000 trials shows that, in
the two-source case, MUSIC has an average RMSE
of 0.1707◦, while U-Net - MUSIC achieves 0.1594◦,
corresponding to a 6.6% improvement. When the
number of sources increases, the average RMSE for
MUSIC is 0.1782◦, while for U-Net-MUSIC it is 0.1645◦,
achieving a 7.7% improvement over traditional MUSIC.
Although the reduction in RMSE is not large, this still
demonstrates that the use of U-Net helps reconstruct
a more accurate covariance matrix, thus improving
the accuracy of the MUSIC algorithm in high-noise
environments (SNR = 1 dB). Notably, as the number
of signal sources increases, U-Net - MUSIC still proves
effective, confirming its stability and adaptability in
DOA estimation problems.

(a) Case with two incoming signal sources

(b) Case with three incoming signal sources

Figure 3. DOA Estimation Results Using MUSIC and U-Net-MUSIC.

Figure 4 presents a comparison of the root mean
square error (RMSE) between the traditional MUSIC
algorithm and the U-Net-MUSIC method in cases of
two and three signal sources, with the SNR level vary-
ing from −10 dB to 20 dB, based on 1000 experimental
trials. The results show that when SNR < 0 dB, the
RMSE of both methods is high due to the strong impact
of noise on the DOA estimation process. However,
U-Net-MUSIC consistently has a lower RMSE than
MUSIC, reflecting its ability to more accurately re-
construct the covariance matrix using deep learning,
significantly reducing the effect of noise. When SNR
increases from 0 dB to 10 dB, RMSE decreases sig-
nificantly for both methods, but U-Net - MUSIC still
maintains a lower error rate than MUSIC, confirming
its effectiveness. When SNR > 10 dB, the RMSE of both
algorithms nearly converges to a very low and similar
value. When the number of incoming signal sources in-
creases, the RMSE of both methods is higher than in the
two-source case, reflecting the increased complexity of
the DOA estimation problem. However, U-Net-MUSIC
still maintains an advantage over traditional MUSIC
across the entire low SNR range, demonstrating that
using the U-Net network to reconstruct the covariance
matrix significantly improves estimation performance,
even when the number of sources increases. rom the
experimental results, it can be concluded that U-Net-
MUSIC provides a clear advantage over traditional
MUSIC, especially in low SNR conditions and with
multiple signal sources, where its ability to suppress
noise and accurately reconstruct information signifi-
cantly reduces estimation errors.

Figure 4. RMSE (degrees) of the methods when the number of
incoming sources is 2 and 3.

4.3 Evaluation of the proposed method in the case
of the UCA with inactive elements

When the UCA array has inactive elements, the qual-
ity of the DOA estimation degrades significantly due to
the loss of spatial information, which directly affects the
accuracy and completeness of the covariance matrix, as
well as the performance of the MUSIC algorithm. The
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results of the inactive element scenarios in Figure 5
show that when the MUSIC algorithm is applied di-
rectly to the covariance matrix with inactive elements
(MUSIC(Rinactive)), the DOA spectrum is severely dis-
torted, showing spurious peaks and reduced angular
resolution. Restoring the covariance matrix size using
the subwindow-based method (MUSIC(Rmasked)) and
then applying MUSIC to this matrix still fail to accu-
rately reconstruct the true DOA positions, especially as
the number of inactive elements increases.

(a) UCA with inactive element number 7

(b) UCA with inactive elements number 2 and 7
Figure 5. DOA estimation results at SNR = 5 dB in cases of inactive
elements in the UCA.

In this context, the U-Net-MUSIC method demon-
strates superior effectiveness in reconstructing the co-
variance matrix and improving the quality of DOA esti-
mation. Instead of directly using the incomplete matrix,
the U-Net model is trained to reconstruct the ideal
covariance matrix Rrct from the marked matrix Rmasked,
significantly restoring lost spatial information through
the subwindow-based method. When the MUSIC al-
gorithm is applied to this reconstructed matrix (U-
Net(Rrct) - MUSIC), the resulting DOA spectrum closely
resembles the MUSIC(Rxx) spectrum in the case of a

fully populated array, with significantly sharper and
more accurate peaks compared to MUSIC(Rinactive) and
MUSIC(Rmasked). Notably, as the number of inactive
elements increases, the performance of the traditional
MUSIC method significantly declines. However, the U-
Net-MUSIC method still maintains its ability to ac-
curately determine DOA positions. This demonstrates
that the U-Net network is capable of learning and ef-
fectively reconstructing the covariance matrix structure,
reducing estimation errors in DOA estimation when the
UCA array has inactive elements.

(a) UCA with inactive elements 2, 3, and 4

(b) UCA with inactive elements 2, 5, and 7
Figure 6. DOA estimation results for UCA with three inactive ele-
ments at SNR = 5 dB.

The positions of inactive elements in the UCA array
significantly affect the performance of DOA estimation,
especially for the MUSIC algorithm, which relies on
the covariance matrix. In Figure 6, it can be observed
that when the inactive elements are adjacent to each
other (inactive elements 2, 3, and 4), the geometric
structure of the array becomes locally unbalanced,
leading to a significant decrease in the angular reso-
lution. The MUSIC spectrum in this case shows that
the MUSIC algorithm applied to the incomplete matrix
MUSIC(Rinactive) suffers severe distortion, with multiple
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spurious peaks and an inability to accurately deter-
mine the actual DOA positions. Meanwhile, the U-
Net-MUSIC method demonstrates outstanding perfor-
mance in reconstructing the spectrum, closely matching
MUSIC(Rxx), effectively reducing noise and improv-
ing the sharpness of the spectral peaks. However, the
spectral width remains larger than in the ideal case,
indicating that the impact of adjacent inactive elements
has not been entirely eliminated.

In contrast, when inactive elements are distributed
randomly across the array (for example, inactive ele-
ments 2, 5, and 7), the impact of data loss is more evenly
dispersed, reducing localized disruptions to the overall
structure of the array. In this scenario, the MUSIC
spectrum using the incomplete matrix MUSIC(Rinactive)
still suffers from noise but is less distorted compared
to the case of adjacent inactive elements. Meanwhile,
MUSIC(Rmasked) shows significant improvement, re-
flecting a better ability to recover inactive data when
the loss is not concentrated in a specific region. No-
tably, U-Net-MUSIC continues to demonstrate superior
performance, producing a reconstructed spectrum with
sharper peaks, reduced background noise, and better
alignment with the true DOA positions than the other
methods. This indicates that when data loss is scattered,
deep learning models can effectively exploit spatial
features to reconstruct inactive information, thereby
enhancing the accuracy of the MUSIC algorithm.

From the above results, it can be seen that the
U-Net-MUSIC method consistently improves estima-
tion performance, especially in cases where inactive
elements are scattered. In such scenarios, the remaining
spatial information in the array is still sufficient to
support the reconstruction of the covariance matrix.
These findings confirm the potential of integrating
deep learning with MUSIC to overcome the limitations
caused by data loss in real-world antenna systems. In
addition, they open new research directions for opti-
mizing reconstruction models to better accommodate
the specific characteristics of missing data scenarios.

Figure 7 presents the RMSE results of the
U-Net-MUSIC algorithm when the UCA array has
between 1 and 3 missing elements, under varying SNR
conditions from −15 dB to 20 dB. The statistical results
are based on 1000 trials, with the number of random
signal sources ranging from 1 to 2. Analysis of the
results shows that when only one element is missing,
the U-Net-MUSIC algorithm still maintains high
accuracy, with RMSE nearly equivalent to the fully
populated case. This demonstrates that the method can
effectively reconstruct the covariance matrix when the
level of data loss is minimal. However, as the number
of missing elements increases (2 or more), especially
under low SNR conditions (< −5 dB), the RMSE
increases significantly, reflecting severe degradation of
spatial information, which negatively impacts DOA
estimation quality. When SNR improves (> 0 dB),
RMSE in these cases decreases significantly and
stabilizes, even when multiple elements are missing.
Overall, U-Net-MUSIC demonstrates the ability to
reconstruct missing information when only a few

elements are lost, contributing to improved system
accuracy. However, when the number of missing
elements exceeds a certain threshold (≥ 3 elements),
performance declines due to excessive data loss.
Therefore, further research on optimizing rank
restoration methods for covariance matrices is crucial
to maintaining stable accuracy in scenarios where
multiple elements are missing.

Figure 7. RMSE Results of the U-Net - MUSIC Method for UCA with
Missing Elements.

An important criterion for evaluating the perfor-
mance of DOA estimation methods is the computa-
tional time of the system. Table 1 presents the process-
ing time of DOA methods over 1000 trial runs when
applied to different covariance matrices, particularly in
scenarios where the UCA array has missing elements.

Table I
DOA Estimation Time

Estimation Method Time (ms)
MUSIC (Rxx) 3.2
MUSIC (Rmasked) 3.2
MUSIC (Rmissing) 3.1
U-Net(Rrct) - MUSIC 24.16

The results show that the MUSIC algorithm, when
applied to the full covariance matrices Rxx and Rmasked,
has the same processing time of 3.2 ms. When using
the matrix Rmissing, where the matrix size is reduced
according to the number of missing elements, the com-
putational time decreases to 3.1 ms. For the U-Net(Rrct)-
MUSIC method, the processing time increases signifi-
cantly to 24.16 ms. Although this method improves the
accuracy of DOA estimation, the high computational
cost can become a limitation for real-time applications.
Therefore, selecting the appropriate DOA estimation
method depends on the specific requirements of the
application. If speed is the priority, the traditional
MUSIC algorithm remains the optimal choice. However,
in cases where accuracy is more critical, using the
U-Net-MUSIC approach offers significant advantages.
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5 Conclusion

This paper proposes a method that combines the
U-Net convolutional neural network with the MUSIC
algorithm to improve the accuracy of direction of arrival
estimation in uniform circular antenna arrays with
inactive elements. This approach utilizes rank restora-
tion techniques to reconstruct a complete covariance
matrix, followed by applying the MUSIC algorithm to
determine the direction of the incoming signal sources.
Experimental results demonstrate that U-Net effectively
restores information lost due to inactive elements, re-
ducing distortions in the MUSIC spectrum, minimiz-
ing background noise, and improving DOA estimation
accuracy even under low SNR conditions. When the
number of inactive elements increases, the proposed
method maintains a more stable performance com-
pared to traditional MUSIC. Notably, when inactive
elements are randomly distributed, the reconstruction
of the covariance matrix becomes even more effec-
tive. This method not only overcomes the limitations
of MUSIC in incomplete arrays but also opens new
research directions for future applications, expanding
models with more advanced network architectures to
further enhance accuracy and generalization capabil-
ity in real-world antenna systems. However, the ef-
fectiveness of applying this method depends on the
specific requirements of the application, particularly
the computational cost. Although U-Net-MUSIC im-
proves estimation accuracy, its higher processing time
can be a drawback in systems that require real-time
performance. Therefore, selecting the optimal method
requires balancing accuracy and computational feasi-
bility for the specific application.

The research results provide a foundation for ex-
tending applications to more complex problems, espe-
cially in nonuniform, adaptive, or randomly positioned
antenna arrays, where missing or displaced elements
impact DOA estimation performance. The proposed
method also has potential applications in challeng-
ing environmental conditions or low SNR scenarios,
improving accuracy compared to traditional MUSIC
algorithms. Furthermore, further research could in-
tegrate deep learning models to enhance generaliza-
tion and robustness. Future applications include radar,
wireless communication, sonar, and next generation
networks (6G), where accurate direction estimation is
crucial for positioning and tracking moving sources. Ul-
timately, deploying this model in practical applications
requires careful consideration of the trade-off between
accuracy and real-time performance.
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