
REV Journal on Electronics and Communications, Vol. 14, No. 4, October–December, 2024 19

Regular Article

Performance Analysis of Quine-McCluskey Method on CPU

Hoang-Gia Vu1, Thanh Bang Le1, Dai-Do Tran 2, Do Xuan Tien 3

1 Faculty of Radio-Electronic Engineering, Le Quy Don Technical University, Ha Noi, Vietnam
2 Faculty of Basics Training, Telecommunications University, Khanh Hoa, Vietnam
3 Electric Power University, Ha Noi, Vietnam

Correspondence: Thanh Bang Le, banglt@lqdtu.edu.vn
Communication: received 03 September 2024, revised 22 October 2024, accepted 27 October 2024
Online publication: 15 December 2024, Digital Object Identifier: 10.21553/rev-jec.385

Abstract– The Quine-McCluskey method is a widely used procedure for minimize Boolean functions. Although the method
can be programmed on computers, it takes a long time to return the set of essential prime implicants, thus slowing the
analysis and design of digital logic circuits. In this paper, we first propose two methods of data representation for prime
implicants in memory, followed by our performance analysis for each representation. We then propose a multithreading
scheme to find all prime implicants of a Boolean function. This scheme aims to accelerate step 1 of the method on multicore
platforms. After that, we propose an algorithm for step 2 of the Quine-McCluskey method to select the minimal number
of essential prime implicants. The evaluation shows that the mask-based representation achieves the highest performance
when the input number is small. When the input number is 20 or more, the best data representation is bitarray-based.
The bitarray-based representation achieves a 5x higher performance than the ASCII-based representation when the input
number is 24 and the fill factor is 0.002. The number of essential prime implicants can be reduced by up to 45% of the
total prime implicants generated in step 1 of the method for a 16-input Boolean function at a fill factor of 0.05.

Keywords– Quine-McCluskey, prime implicant, multithreading, Boolean function.

1 Introduction

A Boolean function is a mathematical expression con-
sisting of binary variables and logical operators. These
functions are the basic components for designing and
developing digital circuits and systems. Since the main
goal of design is to keep the number of logic gates
as low as possible, this reduces the cost of manufac-
turing these systems. The complexity of logic design
is directly related to the complexity of Boolean func-
tions. Therefore, designers aim to create the simplest
Boolean function. Simplifying the algebraic formulas of
any given Boolean function is known as minimization.
The two most commonly used methods in practice for
minimizing a Boolean function are the Karnaugh map
(K-map) and the Quine-McCluskey (QM). The K-map
was first proposed by Veitch [1] and later modified
by Karnaugh [2], which gives a simple, fundamental
procedure for reducing Boolean functions. However, if
there are more than five or six variables, the K-map
approach becomes inconvenient. The QM approach is
more appropriate when more than six input variables
are used in the Boolean function. This method generates
prime implicant lists using the tabulation technique,
which was first introduced by Quine [3, 4] and then
improved by McCluskey [4]. Similar to the K-map, the
QM technique looks for entries that differ by only a
single bit in order to collect product terms. The only
difference between the two methods is that the QM
performs the searching process instead of the mapping.
Basically, the QM Method consists of the following
two steps:

Step 1: Identify all prime implicants of the
Boolean function.

Step 2: Select the essential prime implicants that cover
all the minterms of the function.

The primary benefit of the QM approach is its ability
to be used algorithmically in software. However, its
drawback is that computational complexity still re-
mains high, which can be theoretically calculated as
a function O(Nlog2 3 log2 N), N - the input length [5].
This procedure indicates that the execution time of the
QM method increases exponentially with the number
of input variables. Consequently, it slows down digital
logic circuit analysis, design, and verification, espe-
cially when designing reconfigurable hardware archi-
tectures. There have been many studies on the com-
putational complexity of the QM method. In an early
work, Mileto et al. presented mathematical formulas for
the average number of comparison operations among
prime k-cubes occurring in Quine’s and Mc-Cluskey’s
method [6]. Prasad et al. analyzed the behavior of QM
simplification for various numbers of product terms
and also introduced a mathematical model to forecast
the Boolean space complexity as shown in the following
equation [7]:

N = a · tb · e−tc + 1, (1)

where N is the number of literals; t is the number of
non-repeating product terms in the Boolean function;
a, b and c are three constants depending on the number
of input variables.

Several studies have focused on the rapid and auto-
mated simplification of Boolean functions to enhance

1859-378X–2024-0403 © 2024 REV



20 REV Journal on Electronics and Communications, Vol. 14, No. 4, October–December, 2024

the process of minimizing these functions. Dusa et al.
introduced eQMC, a method designed to reduce the
computational complexity of the QM algorithm [8].
The approach relies on two seemingly insignificant
observations. First, every positive-complete product is
a (proper) subset of at least one prime implicant. Sec-
ondly, no subset of any prime implicant is a negative-
complete product. Based on these two related facts,
eQMC performs an exhaustive procedure that relies on
index vectors instead of complex matrices. The simu-
lation results show reduced memory consumption and
completion time. As the set of configurations explic-
itly excluded from the minimization process increases,
eQMC slows down until its advantage over QMC dis-
appears. Gurunath et al. introduced an algorithm for
multiple output minimization [9]. This study presented
a novel category of selective prime cubes, termed valid
selective prime cubes. The new class has demonstrated
significant utility by directing the algorithm toward the
minimal set of selective prime cubes when faced with
single or connected cyclic sequences of selective prime
cubes. In numerous instances, this approach helps to
avoid the need for branching, which is a computation-
ally intensive process. In [10], Jain et al. optimized the
QM method by introducing the concept of Reduced
Mask, which reduces the run time complexity of the
algorithm by proposing an efficient algorithm for the
determination of prime implicants. The Reduced Mask
has bits set corresponding to the literal reduction, and
as a result, the execution time decreased significantly.

The other approach to improve the performance of
Boolean functions is minimization based on decimal
manipulations [11]. The study demonstrates that as the
number of variables in a Boolean function increases,
the proposed method exhibits a significantly lower rate
of increase in the number of comparisons compared to
the original QM method. For instance, for a Boolean
function with ten variables, the proposed method re-
quires 32.80 times fewer comparisons than the QM
method. To enhance the efficiency of the QM technique,
Siládi et al. proposed a scheme to adapt the first step
of the method for parallel execution on a GPU com-
puting platform [12, 13]. In these works, the proposed
algorithm processes implicants across multiple rounds.
During each round of the first step, implicants are
initially partitioned based on the positions of dashes
within the terms. Each partition is then examined for
terms that can be merged. In the merging process,
the list of terms is first transformed into a bitmap
representation, where each term is represented as a bit
set. Initially, the bitmap is loaded into shared memory,
and the usage flag for each minterm representation is
initialized to zero. Following thread synchronization,
the minterms are combined with other minterms uti-
lizing the instructions specified in rows. These sections
of the program code represent the inherently parallel
implementation discussed earlier, utilizing CUDA. The
kernel executes on the GPU (device), while the remain-
ing components of the algorithm operate on the CPU
(host). This process necessitates the transfer of data
between the host and the device. While the proposed

parallel algorithm demonstrates greater efficiency in
utilizing device memory compared to previously pub-
lished parallel algorithms, it remains suboptimal for im-
plementation on GPUs. Adapting the inherently paral-
lel aspects of the QM algorithm for GPU execution does
not substantially enhance the speed of the reduction
process. Furthermore, this work does not consider the
Boolean functions don’t care (x) output values.

This work was partially presented in [14], where
we introduced a bitarray-based data representation for
storing implicants in memory to minimize cache misses
in the program. In this paper, we make two new
contributions. Firstly, we present a new data represen-
tation, named mask-based, for implicants in the Quine-
McCluskey method. Secondly, we introduce a scheme
for step 1 of the method allowing the comparisons
among groups executed on multiple threads. Totally the
contributions of this study are as follows:

1) We present two data representations for prime impli-
cants of a Boolean function. We then analyze the performance
of the Quine-McCluskey method based on each of the two
data representations. For Boolean functions with large num-
bers of input variables, we propose to use the bitarray-based
data representation for implicants to reduce the cache misses
when the method running on the CPU.

2) We propose a scheme for step 1 of the method executed
on multiple threads. We evaluate the performance of the
multithreading scheme and identify the bottleneck of the
scheme.

3) We propose an algorithm for step 2 of the method to
minimize the number of required prime implicants covering
all the minterms of the Boolean function.

The remainder of the manuscript is structured as
follows: Section 2 briefly introduces the QM method.
Section 3 presents the data representations for prime
implicants. Section 4 details the proposed algorithms
for the method. Section 5 discusses the evaluation
results, and Section 6 concludes with a summary of
the findings.

2 The Quine-Mccluskey Method

The Quine-McCluskey method is a simple and sys-
tematic approach to minimizing Boolean functions.
The basic idea behind this tabulation procedure is
that by repeatedly applying the associativity theorem
XY + XY′ = X (where X is the set of literals) on all
adjacent pairs of terms. We obtain the set of all prime
implicants from which the smallest sum may be chosen.
The Quine-McCluskey method comprises two major
steps:

Step 1: Identify the prime implicants, which are the
products where the function evaluates to logic 1 or
has an indeterminate value, along with the variable
components that cannot be further simplified. This step
is divided into four sub-steps:

1.1) Focus exclusively on combinations of variables
for which the output function y = 1 or has an indeter-
minate value, and represent these combinations using
binary code.



Hoang-Gia Vu et al.: Performance Analysis of Quine-McCluskey Method on CPU 21

1.2) Construct a Quine-McCluskey table by organiz-
ing the combination blocks into adjacent layers, ordered
by the increasing number of 1 bit.

1.3) Compare each combination in the i-th class with
the combinations in the (i + 1)-th class. If the two
variable combinations differ by only a single bit, replace
both combinations with a new combination in which
the differing bit is substituted with a dash (-), and mark
the two original combinations with an asterisk (*).

1.4) After completing all comparisons, repeat step 1.3
until no further combinations can be generated. The
set of combinations in the final column, along with the
unmarked combinations from the preceding columns,
constitutes the prime implicants of the function.

Step 2: Identify the essential prime implicants, which
are the prime implicants of the logic function that
encompass the minimum number of functions while
preserving the original function’s behavior. Only the
combinations of variables for which output y = 1 are of
significance. Consequently, the table is structured with
columns representing these variable combinations and
rows corresponding to the minimum products of the
function. Cells are marked with an ’x’ if the minimum
product of the function encompasses the corresponding
column associated with that cell. Rule for selecting
essential prime implicants: Select the columns marked
with an ’x’ and eliminate the corresponding rows and
columns associated with that row. If no such columns
exist, then prioritize rows containing multiple ’x’s, en-
suring that at least one minimum product is selected.
Continue this process until all elements are covered
using the minimum number of positive products.

In general, the Quine-McCluskey method offers a
more effective approach for function simplification
compared to the K-map. However, it remains a chal-
lenging problem and becomes impractical for large
input sizes due to its exponential complexity.

3 Data Representation

In this section, we present three ways of data repre-
sentation for the Quine-McCluskey method. The first
way uses ASCII characters to represent symbols, called
ASCII-based data representation. The second represen-
tations is based on the bit array format, called bitarray-
based data representation. The third way is based on
a mask to indicate whether symbols are don’t care,
called mask-based data representation. It is noted that the
original Quine-McCluskey method uses the first way,
ASCII-based data representation, to express implicants.

3.1 ASCII-based Data Representation

Symbols in a prime implicant can be written by ASCII
characters. Particularly, they are represented as follows:

Symbol ‘1’→ ASCII character ‘1’,
Symbol ‘0’→ ASCII character ‘0’,
Symbol ‘-’→ ASCII character ‘-’.

As a result, implicant (10-00-10) will be represented as
a 16-bit array as follows:

(10-00-10)→ ASCII string ‘10-00-10’.

This representation requires 8 bytes, and it is actually
allocated 8 bytes in the main memory.

3.2 Bitarray-based Data Representation

To reduce the memory allocation of the Quine-
McCluskey method, we propose to represent implicants
in form of bit arrays instead of ASCII characters. Par-
ticularly, symbols ‘1’, ‘0’, ‘-’ are represented as follows:

Symbol ‘1’→ bit array ‘01’,
Symbol ‘0’→ bit array ‘00’,
Symbol ‘-’→ bit array ‘10’.

As a result, implicant (10-00-10) will be represented as
a 16-bit array as following:

(10-00-10)→ bit array ‘0100100000100100’.

The implicant (10-00-10) consumes 8 bytes if it is
represented in the form of ASCII characters. The im-
plicant requires 2 bytes (16 bits) if represented in a
bit array. Therefore, the memory requirement of the bit
array-based representation is four times more efficient
than that of the ASCII-based representation. In fact,
bit array variables are often allocated a given number
of bytes in the memory. If each bit array variable is
allocated 64 bits, then the implicant (10-00-10) will
consume 8 bytes in the memory, the same as the ASCII-
based representation. However, when the number of
input variables increases, the bitarray-based represen-
tation may be more memory-efficient than the ASCII-
based one. For example, a 16-symbol ASCII-based im-
plicant consumes 16 bytes in memory, more than only 8
bytes for that 16-symbol implicant in the bitarray-based
representation.

For comparison between two-bit arrays to find out if
they can be combined into a new implicant, we propose
to use the operator XOR as in Algorithm 1. If the two
implicants differ in only one symbol, then the XOR
operation of two corresponding bit arrays will return
a bit array including only one bit ‘1’. It is noted that
the comparison is only for implicants having the same
number of dashes. In the function, the XOR operation of
the two-bit arrays is first executed, followed by counting
the number of bits ‘1’ in the result. If the number of bit
‘1’ is equal to one, the position of the bit ‘1’ is returned.
Otherwise,‘-1’ will be returned.

3.3 Mask-based Data Representation

Beside the bitarray-based data representation, we
propose a mask-based data representation that uses
two-bit arrays for an implicant. The first bit array
shows the value of the implicant, called the value. The
second indicates the position of dash ‘-’ symbols in the
implicant, which is called the mask. The combination of
the value and the mask fully represents the implicant.



22 REV Journal on Electronics and Communications, Vol. 14, No. 4, October–December, 2024

Algorithm 1 Comparison of two bitarray-based impli-
cants

1: Input: a, b: bitarray-based implicants
2: Output: position of the symbol making 2 implicants dif-

ferent
3: temp← a OR b
4: if temp contains one bit ’1’ then
5: return position of the bit ’1’ in temp
6: else
7: return -1
8: end if

For the value, symbols ‘1’, ‘0’, and ‘-’ are represented
as follows:

Symbol ‘1’→ bit array ‘1’,
Symbol ‘0’→ bit array ‘0’,
Symbol ‘-’→ bit array ‘0’.

For the mask, symbols ‘1’, ‘0’, and ‘-’ are represented
as simple as follows:

Symbol ‘1’→ bit array ‘1’,
Symbol ‘0’→ bit array ‘1’,
Symbol ‘-’→ bit array ‘0’.

As a result, implicant (10-00-10) will be represented by
an 8-bit value and an 8-bit mask as follows:

(10− 00− 10)→ value ’10000010’,
mask ’11011011’.

Totally, the data representation in this way also re-
quires 16 bits (2 bytes). In fact, if each bit array value is
allocated 64 bits, then this mask-based representation
will consume 128 bits (18 bytes) instead of 8 bytes
as the ASCII-based representation. However, it takes
less time to count the number of bits ‘1’ in the 8-bit
value than doing that in a 16-bit bit array. Therefore,
the mask-based data representation is expected to be
better than the bit array-based representation in terms
of comparison time between two implicants.

For comparison between two mask-based implicants
to find out if they can be combined into a new im-
plicant, we first check whether their masks are equal
or not. If they are equal, then the operator XOR is
used between their values as in Algorithm 2. If the
two implicants differ in only one symbol, then the XOR
operation of two corresponding values will return a bit
array including only one bit ‘1’. If the number of bits
‘1’ is equal to one, the position of the bit ‘1’ is returned.
Otherwise, ‘-1’ will be returned.

Algorithm 2 Comparison of two mask-based implicants
1: Input: a, b: mask-based implicants
2: Output: position of the symbol making 2 implicants dif-

ferent
3: if a.mask = b.mask then
4: temp← a.value OR b.value
5: if temp contains one bit ’1’ then
6: return position of the bit ’1’ in temp
7: end if
8: end ifreturn -1

4 Algorithms for The Quine-Mccluskey

Method

In this section, we focus on optimizing both step 1 and
step 2 of the Quine-McCluskey method.

4.1 Algorithm for Step 1: Finding all Prime
Implicants

In step 1 of the Quine-McCluskey method, the major
operations are memory accesses to read all the impli-
cants and the comparison among implicants. We believe
that the performance bottleneck in this step is the huge
number of memory references. In this part, we propose
an algorithm for step 1 of the method. The Pseudo code
is described in Algorithm 3.

Algorithm 3 Finding all prime implicants
1: Input: m = # input variables
2: list-1 = [minterms]
3: list-x = [d-terms]
4: Output: prime-list
5: implicant-list = list-1 ∪ list-x
6: prime-list = []
7: new-implicant-list = []
8: combined = True
9: while (combined) do

10: combined = False
11: groups = make_groups(implicant-list)
12: for i = 0 to (m− 1) do
13: for x1 in groups[i] do
14: for x2 in groups[i + 1] do
15: pos = compare(x1, x2)
16: if pos ̸= −1 then
17: combined = True
18: new-term = x1
19: Update new-term with a new dash
20: x1.used = True
21: x2.used = True
22: new-implicant-list.append(new-term)
23: end if
24: end for
25: end for
26: end for
27: for impl in implicant-list do
28: if impl.used = False then
29: implicant-list.remove(impl)
30: end if
31: end for
32: prime-list.append(implicant-list)
33: implicant-list = new-implicant-list
34: end while

• Let m be the number of input variables in the
Boolean function.

• Let list-1 be the list of all minterms that the corre-
sponding output is evaluated to ‘1’.

• Let list-x be the list of all minterms that the corre-
sponding output is evaluated to ‘x’ – don’t care.

• Let implicant-list be the list of all implicants in each
round of comparison.

• Let prime-list be the list of all prime implicants
found out after step 1 of the method.

• Let new-implicant-list be the new implicant
list generated after each round of comparison
and merging.



Hoang-Gia Vu et al.: Performance Analysis of Quine-McCluskey Method on CPU 23

• Let combined be the Boolean variable indicating if
there is any combination between two implicants.
It starts at True.

In the while loop, combined is first assigned to False. Then
all the implicants are classified as in Line 11. Implicants
belonging to the same group have the same number of
symbols ‘1’. Therefore, there are at most m + 1 groups.
Implicants in each group are then compared with the
implicants of the consecutive group to find if they can
be merged into a new implicant as in Line 13 to Line 19.
If there is any combination, the variable combined is
marked as True in Line 17. That means at least one new
implicant is generated, and the next round of the while
loop is required. At the same time, the two combined
implicants are marked as used in Line 20,21. Then the
new generated implicant, called new-term, is added to
new-implicant-list.

All the marked-as-used implicants are then removed
from the implicant-list before the list is updated into
the prime-list as in Line 32. After that, new-implicant-
list is assigned to implicant-list before the next round
of the while loop. The while loop will end up if
combined = False. That means the loop will terminate
if no implicants can be combined to a new one.

In Algorithm 3, group[i], also called group i, is
compared with group i− 1 and group i + 1. The com-
parison between group i and group i + 1 consists of
all comparisons among each implicant of group i and
each implicant of group i + 1. There are total m + 1
groups in each round of the while loop. Therefore, there
are m group comparisons, including the comparisons
of group 0 and group 1, group 1 and group 2, group 2
and group 3, . . . , and group m− 1 and group m as in
Figure 1. In each group comparison, many comparisons
are made up from each pair of implicant groups. Each
comparison requires two memory accesses to the two
implicants. In this work, we propose to map each group
comparison onto a thread. As a result, m threads are
created and executed as in Figure 1. These threads are
then mapped onto computing cores of the CPU. In a
multi-core CPU, multithreading often achieves a higher
performance than single thread because multiple cores
can execute and access memory simultaneously.

4.2 Algorithm for Step 2: Selection of Essential
Prime Implicants

In step 2 of the Quine-McCluskey method, essential
prime implicants will be selected among the full set
of prime implicants from step 1. We aim to choose
the smallest number of prime implicants that cover
all the minterms of the Boolean function. For that
perspective, we propose a function in Pseudo code to
select essential prime implicants that cover the most
minterms as in Algorithm 4. After step 1 of the Quine-
McCluskey method, we have prime-list including all
prime implicants of the Boolean function.

• Let final-prime-list be the final list of essential
prime implicants covering all the minterms of
the function.

Figure 1. Mapping group comparisons onto threads.

Algorithm 4 Selection of Essential Prime Implicants
1: Input: prime-list
2: Output: final-prime-list
3: final-prime-list = []
4: victim = None
5: max-len = 1
6: while max-len ̸= 0 do
7: max-len = 0
8: for prime in prime-list do
9: prime.val-1.difference_update(victim.val-1)

10: if len(prime.val-1) > max-len then
11: max-len = len(prime.val-1)
12: temp = prime
13: end if
14: end for
15: prime-list.remove(temp)
16: victim = temp
17: final-prime-list.append(temp)
18: end while

• Let victim be the prime that is selected after each
round of the while loop. victim is the prime im-
plicant that is merged from the largest number
of minterms.

• Let max-len be the maximum length of all minterm
sets of prime implicants.

• Let val-1 be the minterm set of a prime implicant.

In the while loop, max-len is assigned to zero in Line 7.
max-len is found by iterating prime-list and comparing
the length of the minterm sets of all prime implicants.
It is noted that after finding out a victim in each round
of the while loop, the victim is removed from prime-
list as in Line 15. Then, the minterm set of each prime
implicant is also updated as in Line 9 before finding
max-len.



24 REV Journal on Electronics and Communications, Vol. 14, No. 4, October–December, 2024

5 Evaluation

Table 5 shows the experimental setup we used to
evaluate the proposed data representations and algo-
rithms. Our proposals do not have any limitation on
the number of input variables. However, the execution
time increases exponentially when scaling the variable
number. In this evaluation, the number of input vari-
ables in the Boolean function is scaled from 10 to 24.
For the number more than 24, the execution time can
last hours or days. For the number less than 10, the
execution time can last several milliseconds that we
do not need to accelerate. For the k-input Boolean
function, the number of possible input vectors is 2k,
which evaluate to ‘0’, ‘1’, or ‘x’ – don’t care.
• Let fill-factor-1 be the ratio between the number

of input vectors that evaluate to ‘1’ and the total
number of input vectors 2k. fill-factor-1 must be not
more than 1.

• Let fill-factor-0 be the ratio between the number
of input vectors that evaluate to ‘0’ and the total
number of input vectors 2k. fill-factor-0 must be not
more than 1.

• Let fill-factor-x be the ratio between the number
of input vectors that evaluate to ‘x’ and the total
number of input vectors 2k. fill-factor-x must be less
than 1.

In this section, we evaluate the cache performance,
execution time, and the number of essential prime
implicants in our proposals. We then compare our two
data representations with the ASCII-based data rep-
resentation of the original Quine-McCluskey method.
For the number of input variables 10, we scale the
fill-factor-1 and fill-factor-x from 0.1 to 0.4. It is noted
that the sum of fill-factor-1, fill-factor-0, and fill-factor-x
must be equal to 1. Therefore, we cannot scale both fill-
factor-1 and fill-factor-x to more than or equal to 0.5.

Table I
Evaluation Setup

CPU Intel Core i9 – 12900K
Number of cores 16
L1 Dcache 640 KB (16 instances)
L1 Icache 768 KB (16 instances)
L2 cache 14 MB (10 instances)
L3 cache 30 MB (1 instance)
Main memory 32 GB
Block cache size 64 Bytes
Operating system Ubuntu 22.4
Cache profiling tool Perf 5.4.143

5.1 Cache Performance

Table II shows the load misses of L1 data cache for
the Quine-McCluskey method evaluated on the three
data representations in a Boolean function with 10
input variables while scaling the fill factor. As can
be seen from the table, the number of L1 cache load
misses in the mask-based representation is the largest
number for each fill factor. The highest number of cache
load misses comes from the most memory-consuming

Table II
L1 Cache Miss for Different Fill Factors

Fill- L1-misses L1-misses L1-misses L1-misses
factor (L1-loads) (L1-loads) (L1-loads) (L1-loads)

(ASCII) (Mask) (Bitarray) (Bitarray)
(Multi-
thread)

0.1
1,658K

(188,257K)
1,913K

(117,101K)
1,638K

(115,767K)
1,450K

(79,046K)

0.2
2,322K

(789,408K)
2,452K

(377,481K)
2,076K

(377,196K)
2,119K

(268,923K)

0.3
7,984K

(5,418M)
15,145K
(3,866M)

10,173K
(5,596M)

6,603K
(1,593M)

data representation. The smallest number of L1 cache
misses belongs to the bitarray representation running
on multiple threads. The same situation is in Table III
and Table IV for the L2 cache misses and the L3 cache
misses. As a result, the execution time for the mask-
based and bitarray-based representation is expected to
be shorter than that for the ASCII-based representation.

Table III
L2 Cache Miss for Different Fill Factors

Fill-
factor

L2-misses
(L2-loads)
(ASCII)

L2-misses
(L2-loads)

(Mask)

L2-misses
(L2-loads)
(Bitarray)

L2-misses
(L2-loads)
(Bitarray)

(Multi-thread)

0.1
10,086

(250,962)
12,661

(309,699)
10,038

(226,533)
3,498

(81,379)

0.2
24,154

(303,621)
15,771

(383,583)
11,680

(353,855)
11,811

(167,849)

0.3
12,906

(356,449)
12,397

(237,830)
19,414

(324,124)
23,296

(386,820)

Table IV
L3 Cache Miss for Different Fill Factors

Fill-factor
L3-misses
(L3-loads)
(ASCII)

L3-misses
(L3-loads)

(Mask)

L3-misses
(L3-loads)
(Bitarray)

L3-misses
(L3-loads)
(Bitarray)

(Multi-thread)

0.1
27,422

(316,617)
23,424

(360,180)
21,631

(343,158)
12,049

(151,871)

0.2
31,984

(321,276)
25,425

(234,079)
21,421

(221,399)
22,184

(198,494)

0.3
17,935

(176,758)
29,556

(301,314)
24,008

(203,321)
28,271

(224,900)

Table V, Table VI, and Table VII show the L1, L2,
and L3 cache load misses, respectively, while scaling
the input number. As can be seen from Table V, the
ASCII-based method has the highest numbers of L1
cache misses compared to the other data representa-
tions. The lowest numbers belong to the bitarray-based
representation. The same situation for L2 cache misses
and L3 cache misses in Table VI and Table VII. When
the number of inputs increases, the mask-based and
the bitarray-based representations are much better than
the ASCII-based. Particularly, when the input number
is equal to 24, L3 cache misses for the bitarray-based
is around 25 times smaller than that for the ASCII-
based. Therefore, the execution time for the bitarray-
based representation is expected much shorter than that
for the ASCII-based.

When the input number increases, the numbers of
L2 and L3 cache load misses for the bitarray-based
representation on multiple threads are even smaller
than the numbers of load misses on a single thread.



Hoang-Gia Vu et al.: Performance Analysis of Quine-McCluskey Method on CPU 25

Therefore, the execution time of the multi-threading
bitarray-based method is predicted shorter than that
running on a single thread.

Table V
L1 Cache Miss for Different Input Numbers

Inputs
(fill factor)

L1-misses
(ASCII)

L1-misses
(Mask)

L1-misses
(Bitarray)

L1-misses
(Bitarray)

(Multi-thread)
12 (.1) 3,397,083 3,083,846 2,585,441 2,673,154
16 (.05) 65,956K 54,035K 26,989K 43,314K
20 (.01) 440,162K 387,084K 185,498K 261,792K

24 (.002) 4,554,942K 3,418,002K 1,521,518K 2,608,102K

Table VI
L2 Cache Miss for Different Input Numbers

Inputs
(fill factor)

L2-misses
(ASCII)

L2-misses
(Mask)

L2-misses
(Bitarray)

L2-misses
(Bitarray)

(Multi-thread)
12 (.1) 5,569 11,425 9,329 22,561
16 (.05) 148,174 69,535 122,544 101,358
20 (.01) 662,361 318,347 263,191 175,546
24 (.002) 80,873K 32,984K 3,027K 2,470K

Table VII
L3 Cache Miss for Different Input Numbers

Inputs
(fill factor)

L3-misses
(ASCII)

L3-misses
(Mask)

L3-misses
(Bitarray)

L3-misses
(Bitarray)

(Multi-thread)
12 (.1) 27,888 22,443 21,316 52,716

16 (.05) 315,143 129,136 89,935 78,893
20 (.01) 740,297 433,095 316,474 187,970
24 (.002) 81,396K 33,002K 3,259K 2,643K

The cache miss rates for L1, L2, and L3 cache when
keeping the input number at 10 and scaling the fill
factor from 0.1 to 0.3 are presented in Figure 2, Figure 3,
and Figure 4, respectively. As can be seen from Figure 2,
the miss rates are quite small compared to the miss
rates for L2 and L3 cache. Although the CPU cores takes
a huge number of load references to L1 cache, many
of the accesses are to the same memory addresses or
memory blocks. This reduces the miss rate significantly.
All the three figures show that the miss rates for the
ASCII-based are not higher than that for the other two
data representations. However, the numbers of misses
for the ASCII-based are quite larger than that for the
mask-based and bitarray-based representation. As a
result, the average access time for the ASCII-based is
longer than that for the other representations. It is the
reason why the execution time for the original Quine-
McCluskey method is so long compared to the mask-
based and bitarray-based method.

5.2 Execution Time
Table VIII shows the execution time in seconds for

step 1, step 2, and the total process of the Quine-
McCluskey method for different fill factors. In this
experiment, step 1 was executed in a single thread for
each of the three data representations. After that, it
was executed in multiple threads for the bitarray-based
representation. The results reveal that the mask-based
and bitarray-based data representations achieved much
higher performance than the ASCII-based did. The

Figure 2. L1 cache miss rate for different fill factors.

Figure 3. L2 cache miss rate for different fill factors.

Table VIII
Execution Time (s) For Different Fill Factor

Fill-factor Total
(ASCII)

Total
(Mask)

Total
(Bitarray)

Total
(Multi-thread)

Total Total Total Total
Step 1 Step 1 Step 1 Step 1
Step 2 Step 2 Step 2 Step 2

0.1
0.019 0.006 0.007 0.009
0.016 0.005 0.006 0.008
0.003 0.001 0.001 0.001

0.2
0.102 0.033 0.046 0.044
0.096 0.027 0.039 0.038
0.006 0.006 0.007 0.006

0.3
0.730 0.484 0.809 0.319
0.706 0.431 0.756 0.258
0.023 0.053 0.053 0.061

Table IX
Execution Time (s) For Different Number of Input Variables

Inputs
(fill-factor)

Total
(ASCII)

Total
(Mask)

Total
(Bitarray)

Total
(Bitarray

Multi-thread)
Total Total Total Total

Step 1 Step 1 Step 1 Step 1
Step 2 Step 2 Step 2 Step 2

12
(0.1)

0.157 0.055 0.061 0.062
0.137 0.040 0.047 0.046
0.020 0.015 0.014 0.015

16
(0.05)

7.550 2.434 2.471 2.527
6.455 1.681 1.712 1.567
1.095 0.753 0.759 0.960

20
(0.01)

54.351 17.977 15.470 16.399
44.079 13.162 10.588 9.029
10.272 4.815 4.882 7.370

24
(0.002)

616.62 169.15 149.08 144.86
493.18 118.80 97.14 84.21
123.44 50.35 51.94 60.65

same situation is presented in Table IX while scaling
the number of input variables. This higher performance
in the mask-based and bitarray-based methods comes
from the bit-level parallel execution and the smaller



26 REV Journal on Electronics and Communications, Vol. 14, No. 4, October–December, 2024

Figure 4. L3 cache miss rate for different fill factors.

numbers of cache load misses revealed in Section 5.1.
As can be seen in Table VIII and Table IX, the

bitarray-based method running on multiple threads
achieved not much higher performance compared to
running on a single thread. This is because the Quine-
McCluskey method is a memory-intensive application.
The majority of the execution time is consumed by
the memory access, but not the computation in the
CPU cores.

Table VIII also shows that the execution time of step 2
for the ASCII-based data representation are almost the
same as that for the two other data representations.
However, when scaling the input number, the time for
the ASCII-based data representation is much longer
than that for the two other data representations as in
Table IX. The increase in the input number leads to the
growth in the database for the prime implicant list as
the input data for step 2. The larger database may cause
more cache misses, thus extending the execution time.

5.3 Number of Essential Prime Implicants
Table X and Table XI show the number of prime im-

plicants before and after step 2 of the Quine-McCluskey
method. As can be seen from the tables, the number
of essential prime implicants achieved after step 2 de-
creases significantly compared to the number of prime
implicants. The number of essential prime implicants is
always smaller than the number of minterms and much
smaller than the number of total prime implicants. For
the high fill factors, the percentages are even lower than
2%, 1.4% at the fill factor 0.3 and 0.003% at the fill factor
0.4. Table VI reveals that the higher fill factor the lower
percentage of total prime implicants that are essential.

Table X
Number of Essential Prime Implicants for Different Fill

Factor

Fill-factor Minterms Primes Essential primes
0.1 104 146 72 (49.3%)
0.2 205 673 106 (15.8%)
0.3 308 7,952 110 (1.4%)
0.4 411 3,485,799 97 (0.003%)

6 Conclusion

In this paper, we address the performance bottleneck
of the Quine-McCluskey method in the memory access

Table XI
Number of Essential Prime Implicants for Different Number

of Input Variables

Inputs
(fill factor)

Minterms Primes Essential primes

12 (0.1) 409 697 276 (39.6%)
16 (0.05) 3277 4393 2451 (55.8%)
20 (0.01) 10485 10122 9610 (94.9%)
24 (0.002) 33554 32910 32799 (99.7%)

since the application is memory-intensive. We pro-
pose three data representations for prime implicants of
Boolean functions and recommend the bitarray-based
representation for the Boolean functions with large
numbers of inputs. The multithreading execution for
the method can achieve a higher performance for each
Boolean function, but the improvement is not signif-
icant. In this work, we also minimize the number of
essential prime implicants. The result show that the
percentage of prime implicants that becomes essential
is quite small, 0.003% for a 10-input Boolean function
with a fill factor of 0.4. This helps to reduce the hard-
ware utilization in the implementation of the Boolean
function. In future work, we will take into account
the minimization of multi-output Boolean functions as
well as a framework for design and verification of
Boolean functions. We will also consider logic functions
in the form of the product of sums to accelerate the
logic minimization.

References

[1] M. Karnaugh, “The map method for synthesis of com-
binational logic circuits,” Transactions of the American
Institute of Electrical Engineers, vol. 72, no. 1, pp. 593–598,
1953.

[2] E. J. McCluskey, “Minimization of boolean functions,”
Bell System Technical Journal, vol. 35, no. 6, pp. 1417–1444,
1956.

[3] W. V. Quine, “The problem of simplifying truth func-
tions,” The American Mathematical Monthly, vol. 59, no. 8,
pp. 521–531, 1952.

[4] W. V. Quine, “A way to simplify truth functions,” The
American Mathematical Monthly, vol. 62, no. 9, pp. 627–
631, 1955.

[5] S. P. Tomaszewski, I. U. Celik, and G. E. Antonious,
“WWW-based boolean function minimization,” Interna-
tional Journal of Applied Mathematics and Computer Science,
vol. 13, no. 4, pp. 577–583, 2003.

[6] I. Wegener, The complexity of boolean functions. New York,
NY, USA: John Wiley & Sons, 1987.

[7] P. W. C. Prasad, A. Beg, and A. K. Singh, “Effect of
Quine-McCluskey simplification on boolean space com-
plexity,” in Proceedings of the Innovative Technologies in
Intelligent Systems and Industrial Applications, CITISIA
2009. IEEE, 2009, pp. 99–102.

[8] A. Dua and A. Thien, “Enhancing the minimization of
boolean and multivalue output functions with QMC,”
The Journal of Mathematical Sociology, vol. 39, no. 2, pp.
92–108, 2015.

[9] B. Guruswamy and N. Srinivas, “An algorithm for multi-
ple output minimization,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 8,
no. 9, pp. 1007–1013, 1989.

[10] T. K. Jain, D. S. Kushwaha, and A. K. Misra, “Opti-
mization of the Quine-McCluskey method for the min-
imization of the boolean expressions,” in Proceedings of



Hoang-Gia Vu et al.: Performance Analysis of Quine-McCluskey Method on CPU 27

the ACOS’08: International Conference on Autonomous and
Autonomous Systems, 2008, pp. 165–168.

[11] A. Majumder, B. Chowdhury, J. J. Mondal, and R. Jain,
“Investigation on Quine-McCluskey method: A decimal
manipulation based novel approach for the minimization
of boolean functions,” in Proceedings of the International
Conference on Electronics Computer Networks & Automated
Systems, 2009, pp. 10–12.

[12] V. Siladi and T. Fifo, “Quine-McCluskey algorithm on
GPGPU,” in Proceedings of the NSODE-CSC International
Conference on Innovation and Computer Science, 2013, pp.
34–38.

[13] V. Siladi, M. Povinsky, and L. Trajtel, “Adapted parallel
Quine-McCluskey algorithm using GPGPU,” in Proceed-
ings of the 14th International Scientific Conference on Infor-
matics, 2017, pp. 327–331.

[14] H. G. Vu, N. D. .Bui, A. T. Nguyen, and ThanhBangLe,
“Performance evaluation of Quine-McCluskey Method
on Multi-core CPU,” in Proceedings of the 2014 5th In-
ternational Conference on Electronics and Automation, 2014,
pp. 60–64.

Hoang-Gia Vu received the B.E. and M.E.
degrees in Electrical Engineering from Le Quy
Don Technical University, Vietnam in 2007 and
2010, respectively. He received his PhD degree
in electrical engineering from Nara Institute
of Science and Technology, Japan, in 2018. He
now works as a lecturer and researcher in Le
Quy Don Technical University. His research
interests include re-configurable computing,
high-performance computing, and processor
architecture.

Thanh Bang Le currently serves as a lecturer
and researcher at Le Quy Don Technical Uni-
versity. He earned his Ph.D. in Electrical Engi-
neering from the Brno University of Defence
in the Czech Republic in 2019, following his
M.E. and B.E. degrees in Electrical Engineer-
ing from Le Quy Don Technical University,
Vietnam, in 2013 and 2006, respectively. His
research focuses on embedded system design,
IoT systems, and reconfigurable computing.

Dai-Do Tran is currently a lecturer at the
Faculty of Basics Training at Telecommuni-
cations University Vietnam. He obtained of
his Bachelor degree in electronic engineering
from Hanoi University of Science and Tech-
nology, Vietnam in 2015. He received his mas-
ter of Engineering in Electronic engineering
from Le Quy Don Technical University in
2023. His research interests are in the area of
microcontroller programming, electronics and
semiconductor.

Xuan Tien Do received the B.E. and PhD.
degrees in Electrical Engineering from St.
Petersburg State Electrotechnical University,
Russia in 1974 and 1987, respectively. He now
works as a lecturer and researcher in Elec-
tric Power University. His research interests
include parallel computing, high-performance
computing, and smart computing.


