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Abstract– Semantic segmentation of aerial and satellite images is crucial for applications in environmental management,
urban planning, and traffic safety. While deep learning techniques with convolutional neural networks (CNNs) and attention
mechanisms have achieved superior accuracy compared to traditional methods, they often struggle with model complexity
and resource constraints. This paper introduces two novel techniques - pruning and quantization - to enhance the efficiency
of semantic segmentation models for remote sensing images (RSIs) by reducing computational complexity while preserving
accuracy. Pruning reduces model complexity by eliminating less significant weights, while quantization decreases memory
usage by converting weights into a more compact format. We applied these techniques to the DeepLabV3+ model with
ResNet18 and ResNet50 backbones and assessed their performance across multiple RSI datasets. Our results show that
pruning and quantization effectively reduce computational efficiency but still achieve a mean IoU of 81.24% with a memory
footprint of 135.19 MB for pruning, and 81.04% mean IoU with a memory footprint of 33.79 MB for quantization on
the ISPRS Vaihingen dataset. These methods offer a promising solution for deploying semantic segmentation models on
resource-constrained hardware.

Keywords– Image segmentation, network pruning, network quantization, object recognition, remote sensing.

1 Introduction

Semantic segmentation, which involves classifying ev-
ery pixel in an image, is both a critical and compu-
tationally intensive task in image-based remote sens-
ing applications. The primary goal is to accurately
assign each pixel in a remote sensing image to its
corresponding semantic category. This task has gained
importance with the advent of very high-resolution
and large-scale images, impacting various applications
related to land cover observations. Consequently, exten-
sive research has been conducted, broadly categorized
into two approaches: (i) traditional methods relying on
handcrafted feature extraction with machine learning
(ML) support; and (ii) deep learning (DL)-based meth-
ods, particularly using convolutional neural networks
(CNNs) and attention mechanisms.

Traditional methods for remote sensing image (RSI)
segmentation primarily involve handcrafted feature
extraction techniques. These methods use manually
designed features and classifiers, with empirical line
methods (ELM) based on image characteristics being
a notable example. As highlighted in [1], accuracy
improves when empirical calibration is applied to pro-
cessed rasters rather than raw images. Although ELM
is intuitive and easy to implement, its effectiveness
diminishes significantly if the number of ground cali-
bration targets is insufficient to extract. To address this,
some studies have explored ML-based methods to sup-
port feature extraction. For instance, Radman et al. [2]
investigated a robust model combining histograms of

oriented gradients (HOG) and support vector machines
(SVM) as feature descriptors and classifiers, respec-
tively, using GrowCut segmentation to capture hand-
crafted features. Recent research has employed deep
neural networks (DNNs) to enhance feature under-
standing through input variables and hidden layer
nodes, thereby reducing the reliance on human inter-
pretation of RSI characteristics. Notably, backpropaga-
tion neural network (BPNN) is one of the DNNs-based
methods that demonstrate the feasibility and potential
of DNN-based methods for radiometric correction of
unmanned aerial vehicle (UAV) multispectral images,
showing promise compared to previous studies [3].
However, the complex spectral characteristics of very
high-resolution and large-scale remote sensing images
often lead to increased intra-class variance and reduced
inter-class variance, posing challenges to the effective-
ness of traditional methods.

Building on the success of DL in various computer vi-
sion tasks, DL-based semantic segmentation techniques
have made notable progress in both natural and remote
sensing domains. However, unlike natural images cap-
tured at close range, RSIs present unique challenges
due to scale differences. Small-scale land cover features
are often lost as spatial resolution decreases, which can
lead to reduced segmentation accuracy. To tackle this
issue, research has concentrated on developing deep
networks with architectures that facilitate multi-scale
feature aggregation [4, 5]. Notably, the study in [6] in-
troduced dilated convolutions to enhance context infor-
mation during feature aggregation, combining multi-
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scale features from various network layers to boost fea-
ture representation and learning efficiency. Addition-
ally, to improve boundary detection in RSIs, the authors
in [7] recently proposed a boundary attention module
(BA-module) designed to capture land-cover boundary
information through hierarchical feature aggregations.

Research in remote sensing image segmentation has
increasingly turned to DL models to enhance perfor-
mance, marking a shift from traditional approaches
to more advanced methods. Semantic segmentation
models firstly based on CNNs have introduced key
innovations that have significantly impacted the field.
One such innovation is atrous convolution, which ex-
pands the receptive field to capture more contextual
information without increasing the computational com-
plexity [8]. Building on this, the development of atrous
spatial pyramid pooling (ASPP) in [9] further advanced
the capabilities of CNNs. ASPP leverages atrous convo-
lution to extract features at multiple scales, enabling
better segmentation across a variety of object sizes,
which is particularly important in remote sensing. In
addition to these techniques, the introduction of the
adaptive feature selection (AFS) module marked a sig-
nificant improvement in feature extraction [10]. AFS
acts as dynamically learning the importance of features
at different scales, which enhances the model’s ability
to capture high-level abstractions from the data. This
not only improves the extraction of relevant features but
also enhances the decoding process, resulting in more
accurate and reliable segmentation outcomes. These
advancements established CNNs as a highly effective
solution for remote sensing image segmentation tasks.

However, the pursuit of greater accuracy did not stop
with CNNs. Researchers began exploring alternative
architectures, particularly the self-attention mechanism
within Transformer models [11]. Transformers excel at
capturing long-range dependencies and contextual rela-
tionships, making them well-suited for remote sensing
segmentation tasks. This exploration led to the devel-
opment of numerous semantic segmentation models
based on Transformers, including the discovery and
integration of Swin blocks [12–15], significantly im-
proving segmentation performance. Furthermore, the
combination of Transformers and CNNs resulted in
hybrid models that capitalize on the strengths of both
architectures [16, 17]. These models leverage the spatial
hierarchies inherent in CNNs and the global context
awareness of Transformers, achieving remarkable seg-
mentation accuracy. The resulting models have con-
sistently outperformed earlier approaches, highlighting
the substantial potential of these advanced techniques
for semantic segmentation in remote sensing imagery.

Despite the advancements of DL-based methods
in RSI semantic segmentation, several significant chal-
lenges remain. One major issue is the increasing de-
mand for hardware efficiency, particularly in UAVs,
which imposes constraints on deploying highly com-
plex models. The high computational and memory
requirements of these advanced models often make
them unsuitable for UAVs and other low-resource en-
vironments. To address this, researchers have started

developing models with lighter architectures that are
more compatible with low-cost hardware. For exam-
ple, in [18], a lightweight CNN is proposed, featuring
fewer channels per layer, which significantly reduces
the number of parameters and, consequently, the com-
putational load. Additionally, other networks have fo-
cused on constructing bilateral architectures [19, 20],
leveraging two-branch structures to exploit hardware’s
parallel processing capabilities effectively. It can be
observed that the field of DL for semantic segmentation
of remote sensing images is witnessing an increasing
number of breakthroughs. To summarize the review
of existing related works in this interested topic, we
present their technical highlights, advantages, and lim-
itations in Table I. While the trend toward optimizing
model complexity remains strong, it is not without
challenges. Firstly, developing innovative methods is
inherently difficult and requires significant time to train
new models to adapt to the RSIs data. Secondly, bal-
ancing model accuracy with complexity is a persistent
challenge. This trade-off often results in low-cost meth-
ods being associated with lower accuracy, highlighting
the difficulty in achieving both high performance and
efficiency simultaneously.

To address these challenges, we propose semantic
segmentation methods for RSIs by employing prun-
ing and quantization techniques. We begin by se-
lecting a CNN model, which offers an optimiza-
tion between accuracy and complexity in the field
of semantic segmentation. Specifically, we utilize
DeepLabV3+ [9] with various backbones, such as
ResNet18 and ResNet50 [21], as the standard frame-
work for our approach. To optimize the model’s per-
formance in terms of both accuracy and complexity, we
leverage Taylor approximation to evaluate the trained
model, selectively disabling the least significant weights
in the network, thereby implementing our pruning
method. Additionally, we convert the network’s weights
to a new data type with a lower memory footprint,
reducing memory usage and enhancing the model’s
adaptability to low-cost hardware.

In summary, the main contributions of our work are
as follows:

• We introduce a novel approach to reducing the
number of weights in a remote sensing image
segmentation model by estimating and removing
unnecessary weights, resulting in a model we refer
to as pruning.

• We propose a method for optimizing memory
usage by converting network weights to a more
resource-efficient data type, leading to a model
referred to as quantization.

• Through extensive simulations, both pruning and
quantization demonstrate superior performance in
terms of accuracy and complexity across diverse
RSI datasets, highlighting the effectiveness of the
proposed network architecture.

The remainder of this paper is organized as fol-
lows: Section 2 describes the details of our proposed
method. Section 3 conducts the experimental validation
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Table I
The Summarization of Technical Highlights, Advantages, and Limitations of Related Works in the Field of Semantic Segmentation

Ref Technical highlights Advantages Limitations

[9]
Atrous convolution and atrous spatial pyra-
mid pooling for multi-scale feature extrac-
tion.

Archives high accuracy and efficient seg-
mentation performance.

High computational complexity, challenges
in resource-constrained hardware deploy-
ment.

[10]
Adaptive feature selection with attention
mechanism module.

Enhances segmentation of multi-scale re-
mote sensing data.

An improved method comes with increas-
ing the complexity.

[12]
Swin blocks, a global context fusion module
and a gate convolution module for refined
information processing.

Improves segmentation performance on
complex targets and boundaries.

Increased model complexity and potential
computational overhead.

[13]
Adaptive transformer fusion and fore-
ground saliency guided loss for enhanced
saliency modeling.

Effectively handles large-scale variation,
complex backgrounds, and imbalanced dis-
tributions.

Performance is potentially impacted by
foreground complexity and image resolu-
tion variability.

[14]
A group transformer, group convolution,
and a cross-feature fusion module to inte-
grate local and global features.

Enhances segmentation performance by
capturing global contextual information
from large-scale remote sensing images.

The architecture is very complex to inte-
grate with different models.

[15]
A transformer and encoder-decoder struc-
ture with a Swin backbone and a class-
guided Transformer block in the decoder.

Effectively captures long-range dependen-
cies for improved performance.

The architecture may potentially increase
complexity compared to CNN-based meth-
ods.

[18]
An light-weight architecture with fewer pa-
rameters and channels.

Reduces computational cost while main-
taining competitive performance.

Limitations in capturing fine details due to
reduced model capacity.

[19]
A bilateral segmentation network help bet-
ter parallel processing.

Balances high segmentation performance
with real-time inference speed.

Limitations in handling extremely fine de-
tails or very large-scale variations.

[20]
A shelf-shaped structure consisting of mul-
tiple branch pairs.

Archives faster inference speed compared
to non-real-time methods.

The shelf-shaped architecture may be more
complex to implement.

of the proposed method with comprehensive discus-
sions, along with a comparative assessment against
other methodologies. Finally, we discuss the conclu-
sions of the paper in Section 4.

2 Methodology

2.1 DeepLabV3+ Architecture

In this subsection, we intend to utilize a CNN for
remote sensing image segmentation. Currently, several
CNN architectures have proven effective in semantic
segmentation, such as U-Net [22], Mask R-CNN [23],
and particularly the various versions of DeepLab [8],
specifically DeepLabV3+ [9], which have made signif-
icant advances and have become state-of-the-art meth-
ods in semantic segmentation tasks. In addition to
using pre-trained backbones such as ResNet18 and
ResNet50 [21] to enhance recognition performance,
the contributions of DeepLabV3+ can be summarized
through its use of atrous convolutions and the atrous
spatial pyramid pooling (ASPP) architecture.

To learn features from a larger receptive field while
maintaining computational efficiency, DeepLab net-
works have been introduced by incorporating multiple
atrous convolution layers. These layers allow for the
extraction of spatial features with a larger receptive
field. Atrous convolution layers compute features to
produce output according to the following formula

Ya[i, j] = ∑
u,v

Xa[i + rHu, j + rWv]× Wa[u, v], (1)

where, the filter Wa has a size of u × v to extract
local features from the input Xa, rH and rW denote
the dilation rates in the height and width dimensions,
respectively, and Ya is the output of the atrous convolu-
tion. Interestingly, conventional convolution layers are
defined with rH = rW = 1.

Along with atrous convolution layers, the ASPP

module is designed to facilitate feature extraction at
multiple scales using atrous convolution layers with
different dilation rates r, meaning rH = rW = r
in DeepLabV3+ [9]. Thus, ASPP enriches the spatial
context information of feature maps by expanding the
receptive field (the area on the feature map that a
convolutional layer can scan at one time) without in-
creasing the number of weights or computational costs,
thereby making the model more suitable for segmenta-
tion tasks. The output of ASPP is a synthesis of multiple
feature maps obtained from atrous convolution layers
with different dilation rates through a depthwise con-
catenation layer as follows

F = ⟨A1×1
1,1 (X), A3×3

1,6 (X), A3×3
1,12 (X), A3×3

1,18 (X)⟩, (2)

where, An×n
s,r denotes a sequential operation, including

an atrous convolution layer (with the filter size n × n,
stride s, and dilation rate r), batch normalization (BN),
and ReLU (rectified linear unit) activation function.
Here, X and F are the input and output of ASPP,
respectively, and ⟨·⟩ denotes a depthwise concatenation
of feature maps.

Although DeepLabV3+ with atrous convolution and
ASPP has achieved significant advancements in seman-
tic segmentation, it still faces a drawback related to
model complexity. The high complexity of DeepLabV3+
makes it unsuitable for implementation on low-power
hardware resources, necessitating solutions that opti-
mize the model while maintaining accuracy.

2.2 Pruning Techniques

Network pruning emerges as a technique to address
the challenge of reducing the number of weights (a.k.a.,
network parameters or learnable parameters) while
preserving model performance. In detail, this approach
operates iteratively, during each iteration, weights with
minimal influence on the model’s output are identified
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and subsequently removed. Specifically, suppose a sin-
gular weight in the weight matrix D denoted by wi is
being considered for pruning. The impact of this weight
on the loss function L can be expressed by the following
equation

|∆L(D, wi)| = |L (D, wi = 0)−L (D, wi)| , (3)

where, L (D, wi) represents the value of the loss func-
tion evaluated on the weight matrix D with wi have
not been pruned, and L (D, wi = 0) is the value of the
loss function when wi is disabled. Thus, |∆L(D, wi)| is
the change in the loss function’s value before and after
pruning a weight.

To approximate L (D, wi), a first-order Taylor expan-
sion is used. For a function f (x), the Taylor expansion
at x = a is

f (x) =
f (n)(a)

∑
n=0

(x − a)n + Rn(x), (4)

where, f (n)(a) denotes the n-th derivative of f evalu-
ated at the point a, and Rn(x) is the remainder term of
the n-th order expansion, which is typically very small
(approximately zero) and can be neglected. Therefore,
the first-order Taylor expansion can be written as

f (x) = f (a) + f (1)(a)(x − a). (5)

Applying the first-order Taylor approximation rep-
resented by Equation 5, the value of the loss function
evaluated on the weight matrix D with wi has not been
pruned, L (D, wi) at wi = 0, can be approximated as
follows

L (D, wi) = L (D, wi = 0) +
δL
δwi

∣∣∣∣
wi=0

wi, (6)

where, δL
δwi

∣∣∣∣
wi=0

represents the value of the first deriva-

tive of the loss function with respect to wi, evaluated
at wi = 0.

By substituting Equation 6 into Equation 3, we can
obtain the change in the loss function value before and
after pruning a weight as follows

|∆L(D, wi)| =
∣∣∣∣∣ δL
δwi

∣∣∣∣
wi=0

wi

∣∣∣∣∣ . (7)

Thus, the change in the loss function resulting from
pruning a specific weight can be easily computed.
Leveraging this, we aim to identify weights that have
minimal impact on the output, with the goal of op-
timizing the network in terms of both accuracy and
complexity. However, pruning individual weights by
setting their values to zero is impossible, because even
zero weights contribute to the output computation,
making the reduction in computational cost nearly
meaningless. Therefore, we extend the pruning process
from singular weights to the filters in each layer, using
the concept of average objective function evaluation.
The comprehensive objective function for evaluating
the loss of all weights in a filter are pruned can be

mathematically represented as follows

Φ(Wi) =

∣∣∣∣∣ 1
M

M

∑
m

δL
δwi,m

∣∣∣∣
wi=0

wi,m

∣∣∣∣∣ , (8)

where, Φ(Wi) denotes the objective function calculated
over all weights of the filter Wi, M and is the total
number of weights within the filter Wi. Thus, network
pruning becomes more manageable as it allows for the
easy identification of filters with minimal impact on the
model’s output and their removal to optimize compu-
tational cost. For this reason, we propose integrating
the improved weight pruning method into the base
network and define this improvement as pruning.

Pruning implementation: To apply pruning as a
deep learning approach for image semantic segmen-
tation, particularly in the context of remote sensing
images, involves several key steps as follows. At first,
a deep convolutional neural network, specifically the
DeepLabV3+ model, is trained to ensure that its train-
able parameters adapt effectively to the image data.
During the training process, a loss function is utilized
to direct and optimize the model’s weights, enabling it
to generate outputs that closely approximate real-world
ground truth (a.k.a. segmentation mask). After training,
pruning is then applied to the trained DeepLabV3+
network, using Taylor expansion to assess the impact of
each weight in the trained network on the loss function,
as described in the preceding section. In this step, an
iterative process consisting of 60 loops is employed,
wherein each loop, the filters with the least influence
on the model are identified and removed. Following
each iteration, the network is recalibrated to remove
the pruned filters, and this process is repeated for
the subsequent iterations until the loop end. Finally,
the number of weights in the network is significantly
reduced, which inevitably impacts the model’s segmen-
tation performance to some extent. To address this, we
propose a retraining procedure to allow the weights in
the pruned network to better adapt to the data, thereby
enhancing the segmentation performance.

To effectively utilize pruning techniques in semantic
segmentation-based applications, it is crucial to con-
sider the relationship between the complexity of input
images and the number of parameters in the CNN
employed. Specifically, when input images are highly
complex—characterized by high resolution or the dense
presence of multiple objects with varying sizes, pruning
may not be optimal for CNNs with limited parameters.
Conversely, pruning demonstrates its effectiveness for
excessively large and complex models designed to han-
dle such inputs.

2.3 Quantizing Techniques
In digital hardware, data is stored in binary words,

which are fixed-length sequences of bits (0’s and 1’s).
The data type determines how these sequences are
interpreted by hardware components or software func-
tions. Typically, numerical data is represented in two
principal forms: 8-bit scaled integer (often referred to
as fixed-point) or 16-bit floating-point data types. Most
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Figure 1. Visualization of the dynamic ranges for select sample values, including weights and biases from the convolutional layers, as well as
activations across all layers within the network.

pre-trained neural networks utilize floating-point data
types. Even relatively small neural networks require
substantial memory and hardware capable of perform-
ing floating-point arithmetic. These requirements can
limit the deployment of DL capabilities to low-power
microcontrollers due to their constrained resources. To
address this limitation, we leverage the quantization
technique to convert 16-bit floating-point data to 8-
bit scaled integer data types. Although the network
quantization solution may lead to inaccuracies in model
predictions, it contributes to a significant reduction in
complexity, so in this work, we apply a quantization
network as a solution named quantization.

To achieve this, we start by analyzing the logged val-
ues of certain parameters during network operations.
For instance, some logged original values can be ob-
served in Figure 1. Next, we determine the optimal bi-
nary representation for each recorded parameter value.
This is typically represented by the most significant bit
(MSB), which is the left-most bit in the binary sequence
and has the greatest impact on the value. In our imple-
mentation, each MSB is highlighted in yellow for clarity.
By aligning these binary sequences, we can observe
the bit distribution for the logged parameter values.
Summing the MSBs in each column, highlighted in
green, provides a collective view of the logged values. A
heat map displays the MSB counts for each bit position,
with darker blue areas indicating higher MSB counts
at those positions. Based on the distributions of MSB
shown as a heat map, we determine the estimated 8-bit
range (including the sign bit), which must encompass
the majority of MSB bits within our selected range.
Once the range is assigned, any bits beyond this type
are discarded.

Notably, assigning a smaller fixed-length data type
may lead to issues such as precision loss, overflow, or

underflow for values that the data type cannot fully
represent. For instance, a value of 0.03125 experiences
underflow, resulting in a quantized value of 0. This
implies that all parameter values lower than 0.125 or
higher than −0.125 (the smallest positive and largest
negative value represented by our estimated range) will
be set to 0. On the other hand, a value of 2.1 incurs
a precision loss, leading to a quantized value of 2.125,
due to the lack of number of bits representing the value.
Furthermore, a value of 16.250 surpasses the maximum
representable value of the data type, resulting in an
overflow. This occurs because its MSB falls outside the
estimated range, leading to a situation where all bits,
except the sign bit, are set to 1, yielding a saturated
quantized value of 15.874.

Quantization implementation: Similar to pruning,
applying quantization as a solution for DL algorithms
in image semantic segmentation also employs the train-
ing of DeepLabV3+ network to learn features from
images. However, rather than using iterative loops to
remove filters that contribute minimally to the model’s
output, as in pruning, quantization uses a statistical
approach to convert the weights of the trained network
from 16-bit to 8-bit. This conversion substantially re-
duces the memory required to store and process the
model while preserving most of the information, as
no filters are removed. Consequently, quantization does
not necessitate an additional retraining phase.

To optimize quantization, it can be configured to only
apply to weights where the difference before and after
quantization is negligible, demonstrating its potential
to reduce model complexity while maintaining seg-
mentation performance. However, this approach may
introduce heterogeneity in the data types of weights
within the DL model, complicating image processing
computations. Therefore, in our study, we propose ap-
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plying quantization to all weights in the trained net-
work to ensure ease of implementation while exploring
the potential of quantization.

3 Results and Discussions

3.1 Datasets

UAVid [24]: This dataset is a significant resource for
aerial semantic segmentation, offering high-resolution
imagery of urban scenes captured by unmanned aerial
vehicles. UAVid contains 42 image sequences, divided
into three subsets: 20 sequences for training, 7 for
validation, and 15 for testing. Moreover, the dataset in-
cludes eight object categories: Building, Road, Static car,
Moving car, Tree, Low vegetation, Human, and Background
clutter. Both images and their segmented labels are ini-
tially provided at a 4K resolution and are downsampled
by a factor of four for computational efficiency in our
implementation. In detail, all images and labels will be
resized to a resolution of 540 × 960.

Vaihingen1: This dataset comprises 33 high-
resolution image patches, each with an average
resolution of around 2500 × 2000 pixels. The ground
truth data includes five object classes: Impervious
surfaces, Buildings, Low vegetation, Trees, and Cars, in
addition to Background clutters. In our experiments, we
use only the IRRG bands, excluding the digital surface
model (DSM) information. Notably, 11 image patches
(1, 3, 5, 7, 13, 17, 21, 23, 26, 32, 37) are used for training,
while the remaining five patches (11, 15, 28, 30, 40) are
reserved for testing, following previous works [18, 25].
Notably, we also resized the images and labels in this
dataset to a resolution of 512× 512 to suitably optimize
hardware resources.

3.2 Implementation Details

Training configurations: For the training configu-
ration, we employ weight initialization following the
pre-trained parameters on the ImageNet dataset [26].
During the training phase, all weights are iteratively
updated using stochastic gradient descent with mo-
mentum (SGDM) with a momentum parameter β = 0.9
and the cross-entropy loss function. The initial learning
rate is set to 1−3 and decays by a factor of 0.3 every 10
epochs. Additionally, L2 regularization with a coeffi-
cient of 0.001 is applied to mitigate model overfitting.
All network models are trained for 80 epochs to ensure
model convergence, with a mini-batch size of 8. Both
the training and evaluation phases are implemented in
MATLAB R2023b and trained on an RTX2080 GPU.

For the pruning configurations, we perform 60 itera-
tions to conduct network review, evaluation, and prun-
ing. The cross-entropy loss function value is computed
using the training set for both datasets. Following prun-
ing, we implement a retraining process to enhance the
pruned model’s adaptation to the dataset and improve
its performance. This retraining process uses the same

1https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-
sem-label-vaihingen.aspx

configurations as the initial training, with the exception
that the number of epochs is reduced to 20, as most
weight values have already adapted well during the
initial training phase.

For the quantization configurations, our implemen-
tation involves converting all training weights from 16-
bit floating-point to 8-bit scaled integer data types. This
approach is adopted to streamline the process and as-
sess the effectiveness and possibility of the quantization
technique.

Data augmentation: As previously mentioned, im-
ages are resized to a predetermined resolution of
540 × 960 for the UAVid dataset and 512 × 512 for the
ISPRS Vaihingen dataset to ensure compatibility with
the low-power hardware resource. This preprocessing
simplifies feature extraction and reduces computational
complexity.

For data augmentation, we apply random left-right
reflection, randomly flipping the image horizontally
along its vertical axis within a range of [−10, 10] pixels.
This augmentation enables the model to learn more
diversified features independent of the object’s orien-
tation in the image [27, 28]. In real-world scenarios,
objects can be viewed from various angles, and flipping
helps the model generalize better to unseen orienta-
tions.

Evaluation metrics: The segmentation results of all
models are evaluated using commonly adopted metrics
in the field of semantic segmentation [29]. Specifically,
we employ global accuracy, mean intersection-over-
union (IoU), and mean boundary-F1-score (BFScore) to
assess model accuracy.

For comparisons of the complexity of the model, we
use the number of parameters (Params) and estimated
memory usage metrics (Memory). All results represent
the average of each metric value over 5 executions. Our
complete segmentation results are based on the metric
values obtained during the evaluation process on the
validation set for the UAVid dataset (due to the absence
of a testing set) and on the testing set for the ISPRS
Vaihingen.

3.3 Ablation Study

In our first simulations, we provide a comprehen-
sive evaluation of improvement strategies implemented
including pruning and quantization. The evaluation
was conducted on an RTX2080 GPU, with a particular
focus on comparing different backbones, ResNet18 and
ResNet50. Table II highlights the performance in terms
of global accuracy, mean IoU, mean BFScore, memory
usage, and the number of parameters.

Ablation for pruning: For the backbone ResNet18,
when only the strategy pruning was activated, there
was a noticeable decline in performance metrics, with
global accuracy decreasing by 5.97%, mean IoU by
3.77%, and mean BFScore by 5.00%, compared to the
standard DeepLabV3+ model without any improve-
ment strategies. This reduction in performance, while
significant, was offset by a substantial gain in memory
efficiency. The memory usage decreased to 24.67 MB,
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Table II
Detailed Performance Comparison of Improvement Strategies

in Our Proposed Method. P: Pruning and Q: Quantization. The

Evaluation Is Implemented on an RTX2080 GPU

Backbone P Q Global Mean Mean Memory Params
Acc IoU BFScore (MB) (M)

ResNet18

✗ ✗ 81.09 53.06 62.19 59.75 20.6
✓ ✗ 76.25 51.06 59.08 24.67 9.2
✗ ✓ 75.63 51.02 58.97 14.96 20.6
✓ ✓ 72.14 50.27 58.88 6.24 9.2

ResNet50

✗ ✗ 84.65 59.26 69.11 148.32 43.9
✓ ✗ 84.79 59.53 69.47 127.85 37.8
✗ ✓ 84.23 59.41 69.13 37.08 43.9
✓ ✓ 83.96 58.54 68.88 31.94 37.8

due to the reduction of the number of parameters
to 9.2 millions. This demonstrates the trade-off inherent
in applying pruning to the model, while it enhances
memory efficiency, it simultaneously compromises the
model’s segmentation accuracy. When pruning and
quantization were combined, pruning must be applied
before quantization because quantization first alters the
weight values within the network, leading to inaccura-
cies in Taylor estimation calculations and subsequently
reducing network performance. The model’s perfor-
mance in this configuration showed a reduction in the
number of parameters by up to 55.34% and in memory
usage by 58.29% compared to the model with only the
quantization strategy applied. However, this reduction
in complexity came with a significant drop in global
accuracy, mean IoU, and mean BFScore fell to 72.14%,
50.27%, and 58.88%, respectively. Thus, while pruning
is effective in reducing model complexity and memory
usage, it also leads to a severe decline in performance,
particularly when applied to networks that already
have low complexity and a small number of parameters.

To further explore the effectiveness of pruning, we
implemented it in a standard DeepLabV3+ model with
a more complex backbone, ResNet50. The ResNet50
backbone generally demonstrated superior perfor-
mance in accuracy metrics compared to ResNet18,
though this came at the cost of higher memory con-
sumption and a larger number of parameters. Inter-
estingly, applying pruning to this configuration led to
a slight improvement in term of accuracy, while also
moderately reducing memory usage to 127.85 MB and
decreasing the number of parameters to 37.8 million.
The improvement in accuracy can be attributed to
the retraining process associated with pruning, which
allows the pruned network to better adapt to the data.
However, when both pruning and quantization were
combined to further minimize the model’s memory
requirements, there was a substantial decline in perfor-
mance. Global accuracy dropped to 83.96%, mean IoU
to 58.54%, and mean BFScore to 68.88%. This combi-
nation, however, resulted in a significant reduction in
memory usage to 31.94 MB, with the number of param-
eters decreasing to 37.8 millions. Despite the reduction
in memory usage, the combination of these strategies
did not yield further improvements in accuracy. The
reduction in complexity in this configuration was huge
so the model’s accuracy could no longer be sustained.

In summary, the advantages and disadvantages of the
pruning strategy are as follows:

• Reduces the number of parameters and decreases
memory usage.

• Particularly effective for high-complexity models
(e.g., ResNet50), with the potential for a slight
accuracy improvement after retraining.

• Leads to substantial degradation in model perfor-
mance (e.g., accuracy, mean IoU) when applied to
low-complexity models (e.g., ResNet18).

• When combined with quantization, pruning must
be performed first to prevent inaccuracies in
weight estimation, which may significantly impact
model performance.

Ablation for quantization: Activating the quantiza-
tion strategy for the ResNet18 backbone led to further
reductions in performance metrics, but it also resulted
in a substantial decrease in memory usage to 14.96 MB,
while the number of parameters remained constant at
20.6 million. This outcome is attributed to the focus
of quantization on reducing the memory required to
store the network by minimizing the memory footprint
of each individual weight. Consequently, the number
of parameters in the network remains unchanged, but
the overall memory required for storage is signifi-
cantly reduced. Pruning, which targets the complete
elimination of unnecessary weights, not only reduces
the number of parameters but also lowers memory
usage, however, this reduction is not as pronounced
as that achieved through quantization. While quanti-
zation optimizes memory usage, it also significantly
impacts the model’s segmentation performance. As
shown in Table II, the performance of the model with
quantization alone is approximately 75.63% for global
accuracy and 51.02% for mean IoU, which is lower
than that of both the pruning-based approach and the
standard network. When combining quantization with
pruning, the segmentation performance drops further,
reaching about 72.14% in global accuracy and 50.27% in
mean IoU. However, these results are still competitive
when considering the deployment of the model on low-
performance hardware, where the trade-off between
reduced complexity, minimal memory requirements,
and adequate accuracy is crucial.

For the ResNet50 backbone, the application of quan-
tization results in a slight reduction in global accuracy,
about 0.49%, but an interesting observation is that the
performance in terms of mean IoU and mean BFS-
core slightly improves. Although these increases are
marginal (approximately 0.25% for mean IoU and 0.02%
for mean BFScore compared to the standard network),
they demonstrate the potential benefits of employing
quantization in more complex models. This suggests
that quantization can be effectively leveraged in sce-
narios where memory efficiency is critical, without
substantially compromising model performance.

To summarize the discussion on the effectiveness of
the quantization strategy, the key points are as follows:

• Substantially reduces memory usage without alter-
ing the number of parameters, making it suitable
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Figure 2. Visualization results (as segmentation masks) of the proposed methods based on the UAVid dataset. The pink rectangles are used to
emphasize the regions that show a clear different in segmentation accuracy. Prune and Quantize denote the standard DeepLabV3+ with the
combination of pruning and quantization, respectively.

for deployment on low-performance hardware.
• For complex models (e.g., ResNet50), it may result

in slight improvements in mean IoU and mean
BFScore.

• Reduces model performance (e.g., accuracy, mean
IoU) when applied independently, with a more
pronounced decline when combined with pruning.

• Less appropriate when maintaining high model
performance is critical.

The results from our ablation study demonstrate a
trade-off between accuracy and resource efficiency. The
ResNet18 backbone shows higher efficiency in terms
of memory usage and the number of parameters, par-
ticularly when the improvement strategies are enabled.
However, this comes at the cost of reduced performance
metrics such as global accuracy, mean IoU, and mean
BFScore due to the lack of the number of parameters.
In contrast, the ResNet50 backbone generally provides
better accuracy but requires significantly more mem-
ory and parameters. The choice of configuration thus
depends on the specific requirements of the application,
balancing the need for high performance with resource
constraints.

Visualization results: To further illustrate the im-
pact of these strategies on segmentation accuracy, we
present the segmentation results as image overlays
in Figure 2. These results compare various configu-
rations of the model architecture, including the stan-
dard DeepLabV3+ network, and its variants with prun-
ing, quantization, and both strategies combined. Our
analysis highlights the effectiveness of each model in
producing accurate segmentation results, particularly
in the pink rectangle of the visualizations, where the
complete version of the model (with both pruning or
quantization) is slightly less accurate than the another
version. Notably, despite the application of pruning
and quantization separately, the segmentation accuracy
remains close to that of the standard DeepLabV3+
network, even though the model complexity is sig-
nificantly reduced. However, when both pruning and
quantization are applied together, there is a noticeable
decline in segmentation accuracy, particularly in small
classes such as vehicles and minor structures, where
misclassification becomes more prevalent. This obser-
vation suggests that while combining these strategies
is effective in reducing model complexity and resource
usage, it may not be ideal for tasks that require high

precision in identifying small or detailed objects.

3.4 Comparison Results

The performance of our proposed methods is thor-
oughly evaluated by analyzing each component and
comparing it against state-of-the-art image segmen-
tation models. This comparison is conducted on the
UAVid and ISPRS Vaihingen datasets, utilizing stan-
dard quantitative metrics such as global accuracy, mean
IoU, mean BFScore, and model size (i.e., the memory
usage and total number of trainable parameters). Fur-
thermore, class-wise performance analysis discussions
of the experimental results are provided to offer deeper
insights and analysis of our work.

Overall performance analysis: In our implementa-
tion, both of the compared models are trained to full
convergence to ensure the reliability of our approach.
To further validate the flexibility of our model across
different datasets, we present accuracy and complexity
metrics evaluated on both the UAVid and ISPRS Vai-
hingen datasets with varying image sizes. As shown in
Table III, our models consistently achieve superior seg-
mentation accuracy compared to other existing models
on the UAVid dataset, while also demonstrating com-
petitive performance on the ISPRS Vaihingen dataset.
This analysis underscores the effectiveness of pruning
and quantization strategies in accurately segmenting
objects within aerial and satellite imagery.

Firstly, the results from the UAVid dataset highlight
that the pruning technique excels in key performance
metrics related to accuracy, achieving a global accuracy
of 84.79%, a mean IoU of 59.53%, and a mean BFScore
of 69.47% (as shown in Table III). When combined with
other state-of-the-art methods, our approach surpasses
other models such as BiSeNet (which attained a global
accuracy of 83.02%, a mean IoU of 54.42%, and a mean
BFScore of 68.71%), ShelfNet (which recorded a global
accuracy of 84.24%, a mean IoU of 57.62%, and a mean
BFScore of 68.91%), and others, all while maintaining
lower memory usage and parameter counts. Notably,
several studies focus on developing methods suited for
real-time applications, such as LWN-A-F and BANet,
despite their focus on efficiency, these methods still
require a similar memory footprint to our quantization
approach, yet do not achieve the same level of accuracy.
This performance emphasizes the effectiveness of prun-
ing and quantization in accurately segmenting a variety
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Table III
Method Comparison Between the Proposed Models and Other

State-of-the-Art Models in Terms of Segmentation

Performance and Model Size

UAVid dataset at resolution of 540 × 960

Method Global Mean Mean Memory Params
Acc IoU BFScore (MB) (M)

LWN-A-F [18] 82.69 56.28 65.12 32.48 15.0
BANet [30] 81.98 55.18 65.87 39.22 10.5
BiSeNet [19] 83.02 54.42 68.71 51.34 49.0
ShelfNet [20] 84.24 57.62 68.91 129.05 35.6
DeepLabV3-AFS [10] 77.02 51.76 61.91 154.23 27.7
PSPNet-AFS [10] 76.89 51.64 61.64 167.92 34.9
CG-Swin [15] 83.72 57.18 66.27 886.12 197.1
Pruning 84.79 59.53 69.47 127.85 37.8
Quantization 83.96 58.54 68.88 31.94 37.8

ISPRS Vaihingen dataset at resolution of 512 × 512

Method Global Mean Mean Memory Params
Acc IoU BFScore (MB) (M)

DANet [31] 90.31 81.13 89.21 262.01 68.5
GFFNet [14] 91.26 81.82 89.93 417.23 74.3
RSSFormer [13] 90.94 81.57 89.40 512.21 72.9
STDSNet [12] 90.24 81.76 89.80 762.18 130.1
SwinCNN [16] 90.02 81.12 89.42 985.21 235.8
ST-UNet [17] 89.95 80.89 89.28 923.16 208.4
Pruning 91.18 81.24 90.13 135.19 39.1
Quantization 90.08 81.04 89.09 33.79 43.9

of objects like buildings, roads, vehicles, and people in
UAV imagery, while also keeping the model’s complex-
ity manageable. It’s also noteworthy that our proposed
models in the UAVid dataset are built on the ResNet50
backbone, indicating that ResNet50 is particularly well-
suited for semantic segmentation tasks involving aerial
imagery.

The second experiment, conducted on the ISPRS
Vaihingen dataset, reconfirms the strong performance
of pruning and quantization (as detailed in Table III).
The trends observed in the UAVid dataset are consis-
tent with those seen in the ISPRS Vaihingen dataset,
where pruning achieves high scores in global accu-
racy (91.18%), mean IoU (81.24%), and mean BFScore
(90.13%). While the accuracy of both pruning and
quantization-based methods is slightly lower compared
to some advanced models that utilize Transformer ar-
chitectures, such as GFFNet (which achieves a global
accuracy of 91.26%, a mean IoU of 81.82%, and a
mean BFScore of 89.93%). Pruning and quantization
still demonstrate their efficiency by achieving the low-
est memory usage (33.79 MB) with quantization and
the lowest number of parameters (37.8 million) with
pruning.

These results further solidify pruning and quanti-
zation as leading methods for semantic segmentation
in diverse aerial and satellite imagery applications.
Additionally, the table emphasizes the continued use
of our proposed network with ResNet50, highlighting
its adaptability and effectiveness across various archi-
tectures.

The discussion of our overall performance analysis
can be summarized as follows:

• Pruning and quantization surpassed other state-of-
the-art models in terms of memory usage and the
number of parameters, demonstrating their feasi-
bility for implementation in image segmentation

applications on resource-constrained hardware.
• On the UAVid dataset, our proposed strategies out-

performed models such as BiSeNet and ShelfNet,
indicating their effectiveness for overhead image
segmentation compared to other CNN models.

• On the ISPRS Vaihingen dataset, our model
achieved comparable segmentation performance
to more complex models based on transformers,
underscoring its suitability and modernity for seg-
menting different types of remote sensing images.

Class-wise performance analysis: To demonstrate
more detail about our proposed model capacity in
individual class recognition, we provide comprehensive
results about the comparison of mean IoU between our
method against other state-of-the-art methods.

UAVid dataset: In Table IV, the mean IoU metric
provides a detailed evaluation of accuracy across vari-
ous categories. Among all methods evaluated, pruning
stands out as the top performer in mean IoU across
most classes in the UAVid dataset. Specifically, prun-
ing achieves the highest mean IoU for several critical
classes, including Background Clutter with 56.86%, Trees
with 75.99%, Low Vegetation with 67.97%, Moving Car
with 62.87%, and Static Car with 45.89%. The only class
where pruning’s performance is slightly lower than CG-
Swin is Road. Notably, pruning also attains the highest
mean IoU for Buildings at 89.67%, surpassing both
quantization, ShelfNet, CG-Swin, and LWN-A-F, while
other methods yield significantly lower results, ranging
from 81.10% to 86.05%. This indicates that the model
excels in segmentation performance, demonstrating its
strong adaptation to large-sized objects. The model is
thus well-suited for object segmentation tasks in remote
sensing images, particularly those related to land obser-
vation. However, the pruning performs at only 5.11%
mean IoU for the Humans class. While this represents
the best performance compared to other state-of-the-
art methods, it still shows limited improvement in
segmenting small objects, revealing a notable weakness
in pruning capability for high-precision recognition
of small objects. Quantization also exhibits notable
performance, frequently surpassing other models in
segmentation accuracy and closely following pruning
in effectiveness. It achieves high mean IoU values of
88.95% for Buildings, 75.53% for Trees, and 67.11% for
Low Vegetation. This underscores the effectiveness of
both pruning and quantization in segmenting a variety
of objects within the UAVid dataset’s aerial imagery.
However, similar to pruning, quantization struggles
with small objects, achieving only 4.69% mean IoU for
the Human class. The results on the UAVid dataset
confirm the efficiency of our proposed methods for
remote sensing segmentation tasks.

ISPRS Vaihingen dataset: Table V offers a compre-
hensive class-wise performance comparison between
our proposed methods, pruning and quantization, and
several leading models on the ISPRS Vaihingen dataset.
Interestingly, the results illustrate that the current state-
of-the-art models excel in specific categories: GFFNet
leads in the Impervious Surface class with a mean IoU
of 87.39%, STDSNet tops the Building, Low Vegetation,
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Table IV
Class-Wise Performance Comparison Between the Proposed Models and Other State-of-the-Art Models on the UAVid Dataset

Method Bac. Clu. Building Road Tree Low Veg. Mov. Car Sta. Car Human
LWN-A-F [18] 52.32 87.38 71.73 65.43 62.25 61.71 44.42 4.92
BANet [30] 52.88 86.05 70.12 62.71 60.33 61.18 43.56 4.68
BiSeNet [19] 50.32 84.38 69.33 63.01 61.73 60.15 43.23 3.12
ShelfNet [20] 56.09 88.17 70.18 72.54 65.26 61.16 43.52 4.01
DeepLabV3-AFS [10] 47.53 82.95 64.68 59.02 57.12 56.79 42.74 3.38
PSPNet-AFS [10] 48.67 81.10 63.74 59.66 55.87 58.64 41.75 3.77
CG-Swin [15] 53.66 87.51 72.92 66.32 64.38 62.90 45.54 4.30
Pruning 56.86 89.67 71.86 75.99 67.97 62.87 45.89 5.11
Quantization 55.67 88.95 70.44 75.53 67.11 61.76 44.22 4.69

Table V
Class-Wise Performance Comparison Between the Proposed

Models and Other State-of-the-Art Models on the ISPRS
Vaihingen Dataset

Method Imp. Surf. Buil. Low Veg. Tree Car
DANet [31] 86.33 91.20 71.63 79.91 76.75
GFFNet [14] 87.39 92.11 71.71 80.68 77.23
RSSFormer [13] 86.75 91.81 71.18 80.42 77.53
STDSNet [12] 86.09 92.19 72.81 81.18 76.56
SwinCNN [16] 85.46 91.54 72.65 80.71 75.17
ST-UNet [17] 85.25 91.55 72.34 80.91 74.38
Pruning 86.14 90.98 72.01 80.53 76.56
Quantization 86.10 90.95 71.76 79.96 76.41

and Tree classes with mean IoUs of 92.19%, 72.81%,
and 81.18%, respectively, while DANet performs best
in the Car class with a mean IoU of 76.75%. Pruning
achieves a mean IoU of 86.14% for Impervious Surface,
90.98% for Building, 72.01% for Low Vegetation, 80.53%
for Tree, and 76.56% for Car. Although it does not
top any individual class, pruning delivers consistently
strong results, particularly in Low Vegetation, where it
ranks among the highest scores. Similarly, quantization
achieves mean IoUs of 86.10% for Impervious Surface,
90.95% for Building, 71.76% for Low Vegetation, 79.96%
for Tree, and 76.41% for Car. While slightly trailing
pruning in Impervious Surface and Building, quantization
remains competitive, especially in Low Vegetation and
Tree, though with slightly lower scores compared to the
leading models.

Overall, pruning and quantization demonstrate ro-
bust and consistent performance across all classes, un-
derscoring their effectiveness in semantic segmentation
tasks on the ISPRS Vaihingen dataset. This comparison
highlights the competitive standing of our proposed
methods in relation to the latest state-of-the-art models,
particularly in terms of class-wise performance.

In short, the discussion of our class-wise performance
analysis can be summarized as follows:

• Pruning and quantization demonstrate strong per-
formance in segmenting large objects. Notably, on
the UAVid dataset, pruning leads to improved
performance in some classes.

• However, the proposed solution shows limitations
in recognizing small-sized objects. While this is
a common challenge for existing DL models, the
proposed model particularly struggles with this
issue, highlighting significant potential for devel-
oping more effective solutions.

Visualization analysis: Building on the strong per-
formance of pruning and quantization as demonstrated

by quantitative metrics, we further explore their seg-
mentation capabilities through visual comparisons. We
evaluate the segmentation outputs of our methods
against state-of-the-art models that have shown high
performance in previous analyses.

For the UAVid dataset, we compare the segmenta-
tion results of pruning and quantization with those of
ShelfNet and CG-Swin. Similarly, for the ISPRS Vaihin-
gen dataset, we present segmentation masks generated
by STDSNet and SwinCNN alongside those produced
by our pruning and quantization methods. These com-
parisons are visually represented in Figure 3. Each
dataset includes two sets of images, focusing on the
ground truth and the segmentation masks produced by
the compared models. While methods like ShelfNet and
CG-Swin achieve effective object segmentation, they
often struggle with accurately delineating boundaries,
particularly for closely situated objects. In the UAVid
dataset, although our proposed models have lower
complexity compared to ShelfNet and CG-Swin, they
maintain a segmentation accuracy comparable to other
state-of-the-art models. However, there are instances
where large fields are misclassified, as indicated by
the pink rectangle, highlighting the challenges in de-
veloping efficient methods that adapt well to remote
sensing images.

In the ISPRS Vaihingen dataset, even advanced mod-
els like STDSNet and SwinCNN, which integrate con-
volutional layers with transformer self-attention mech-
anisms, encounter difficulties in achieving fine-grained
boundary delineation between high-resolution objects.
This issue is particularly evident in the pink rectangular
areas, where these models show reduced accuracy.
Interestingly, pruning and quantization follow closely
behind the compared models in terms of segmenta-
tion accuracy. However, there remains room for im-
provement, particularly in handling small-sized object
classes, where further refinement is needed to achieve
sharper segmentation mask borders.

4 Conclusion

In this paper, we have presented novel semantic seg-
mentation methods for RSIs, focusing on reducing com-
putational complexity while preserving accuracy. By
leveraging pruning and quantization techniques, we
have demonstrated that it is possible to significantly
reduce model complexity and memory usage without
compromising segmentation accuracy. Our proposed
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(a)

(b)

Figure 3. Visualization results (as segmentation masks) of our proposed methods and other state-of-the-art models based on different datasets:
(a) UAVid and (b) ISPRS Vaihingen. The pink rectangles are used to emphasize the regions that show a clear improvement in segmentation
accuracy. Prune and Quantize denote the standard DeepLabV3+ with the combination of pruning and quantization, respectively.

pruning method effectively identifies and eliminates
less significant weights in the network, leading to a
more efficient model that maintains high performance.
The quantization approach further optimizes memory
utilization by converting network weights into a more
compact data type, making our methods well-suited for
deployment on low-cost hardware.

Extensive experiments on diverse RSI datasets, in-
cluding UAVid and ISPRS Vaihingen, have shown
that our methods achieve superior performance com-
pared to state-of-the-art models, particularly in sce-
narios where computational resources are limited. The
results highlight the effectiveness of our approaches
in both urban and natural landscapes, reinforcing the
potential of pruning and quantization in practical re-
mote sensing applications. Future work could explore
further optimizations, such as integrating more ad-
vanced pruning strategies or combining our methods
with other lightweight architectures. Additionally, ex-
panding the application of these techniques to other
types of RSIs or integrating them into real-time pro-
cessing pipelines could further enhance their utility in
operational settings.
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