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Abstract– Alzheimer’s Disease (AD) is the most common type of neurodegenerative brain disease in elderly people. Early
diagnosis of AD is crucial for providing suitable care. Positron Emission Tomography (PET) images and machine learning
can be used to support this purpose. In this paper, we present a method for ranking the effectiveness of brain regions of
interest (ROIs) to distinguish between stable mild cognitive impairment (sMCI) from progressive mild cognitive impairment
(pMCI) in brain PET images based on AutoEncoder (AE). Experiments on the ADNI dataset show that our proposed method
significantly improves classifier performance when compared to other popular feature ranking methods such as Fisher score,
t-score, and LASSO. Our results suggest that instead of focusing on designing a complex AE structure, we can also use
simple-but-multiple AEs for feature ranking. The proposed method could be easily applied to any image dataset where a
feature selection is needed.

Keywords– AutoEncoder, feature ranking, Alzheimer’s disease, mild cognitive impairment, positron emission tomography.

1 Introduction

Alzheimer Disease (AD) is the most common form
of neurodegenerative brain disease in elderly people.
According to a recent study, 50 million people world-
wide were living with AD in 2018, and this number
is expected to triple by 2050 [1]. Unfortunately, AD
is incurable, and there are no vaccines or effective
treatments currently available. However, early detection
of AD is crucial to providing appropriate care for pa-
tients. Biomarkers such as Fluorodeoxyglucose Positron
Emission Tomography (FDG-PET), a nuclear medicine
functional imaging that uses 18F-FDG as a radiotracer,
have been found to be effective in the early diagnosis
of AD. In recent years, a variety of studies have been
interested in using machine learning and FDG-PET to
distinguish AD from non-AD group (Normal Control –
NC) [2] or to predict Mild Cognitive Impairment (MCI)
conversion [3–5]. While it is easy to observe differences
between AD and NC in FDG-PET brain images, distin-
guishing between stable MCI (sMCI) and progressive
MCI (pMCI) is a more challenging task since typical
changes are subtle. Nevertheless, diagnosing AD at an
early stage is still a crucial task in order to provide a
more reliable diagnosis, and early interventions to slow
down AD progression.

When using FDG-PET images for AD diagnosis,
previous studies used either voxel-based (whole brain)
approach or region-based approach. The first approach
uses all voxels as features, as studied in [6, 7]. Mean-

while the second one segments the brain into dif-
ferent regions and then extracts features from those
regions, as studied in [8, 9]. The region-based approach
is preferable, since it can help reduce the dimension
of data and the effect of noise as well as facilitate
further image analysis. When working with an ROI-
based approach and a classification task, in order to
achieve a good performance, a classifier should be
trained on informative features which capture different
patterns of structural degeneration [10]. To obtain such
an informative feature set, either feature extraction or
feature selection can be used. In clinical applications,
feature selection is preferable since its ability to retain
the physical meanings of original features.

The literature on feature selection shows a variety
of approaches, which can be categorized into: filter,
wrapper and embedded methods, depending on their
selection strategies [11]. Filter methods rely on a rank-
ing criterion to measure the importance of each feature.
Wrapper methods usually select different subsets of
features, measure their performance by a classifier to
find the best subset, while embedded methods inte-
grate feature selection into the learning process of the
model. Recently, with developments of deep learning,
there have been a lot of studies using neural networks
for feature selections, particular the Autoencoder (AE).
In [12], authors have incorporated autoencoder regres-
sion and ℓ2,1 regularization to select a subset of most
useful features. In [13], authors proposed the Agnostic
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Figure 1. Flow chart of the proposed method.

feature selection algorithm, combining an AE with
structural regularizations to perform feature selection.
In [14], authors have replaced the first hidden layer
of AE with a "concrete selector" layer, which is the
relaxation of a discrete distribution, and features are
selected based on their probability of connecting to
the nodes of the concrete layer. Instead of embedding
feature selection in the learning process of AE, in a
recent work [15], a two-phase AE-based feature rank-
ing (AEFR) method was proposed, in which feature
ranking is performed based on learning capabilities
of different simple AE structures. While the obtained
results were quite interesting, the proposed methods
still need to be validated on other datasets. Moreover,
it also has limitations in the second phase of the ranking
algorithm, as one needs to specify several parameters.

To overcome these limitations and verify the ef-
ficiency of the proposed method, in this work, we
propose several improvements for our feature ranking
method, and apply it to a more challenging task – MCI
conversion diagnosis. More specifically, our contribu-
tions are:

• Improving the second phase of the ranking algo-
rithm of [15] (parameter-free version).

• Improving the way for training AE, making the
learning process more dependent on AE structures.

• Applying our method to MCI classification, which
is a more challenging task.

Part of this work was presented in [16].

The remainder of this paper is organized as follows.
Section 2 describes the proposed method and the used
dataset. Section 3 presents experimental results and
comparisons. Conclusions and future work are then
given in Section 4.

2 Proposed Method

The flowchart of the proposed method is shown in
Figure 1. This flowchart can be divided into several
blocks:

• Training Autoencoder models (in red).
• Two-phase feature ranking method (in green).
• Performance Evaluation (in blue).

In the following subsections, we introduce the proposed
method in detail.

2.1 Dataset
Data used in the experiment is 18F-FDG PET images

downloaded from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database. In the ADNI dataset,
participants can take several scans at different time
points, the first time of scan refers to a baseline scan.
Time points after baseline are considered as follow-up
time. In this work, we only focus on predicting MCI
conversion, data is selected based on following criteria:

• sMCI - subjects diagnosed as MCI at the baseline
and did not convert to AD in the follow-up period
at least 24 months.

• pMCI - subjects diagnosed as MCI at the baseline
and progressed to AD in the available scan time.

After downloading the data, images are spatially
normalized to MNI template using SPM12 [17] with
2 × 2 × 2 mm3 voxel size, 91 × 109 × 91 tensor
dimension. The intensity normalization is then per-
formed through dividing each voxel intensity by the
average value of the cerebellum region. After that,
images are further smoothed by a Gaussian kernel
with a full width at half maximum of 8 mm. All the
procedures above are implemented with SPM12. After
the preprocessing phase, we have a total 569 FDG-
PET images for later experiments, including 209 pMCI
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Table I
Demographic and Clinical Information

Characteristic sMCI pMCI
Number of subjects 360 209

Female/Male 153/207 87/122
Age (Mean ± std.) 71.73 ± 7.66 73.89 ± 6.88

MMSE (Mean ± std.) 28.20 ± 1.59 27.13 ± 1.71

subjects, and 360 sMCI subjects. The demographic and
clinical information of subjects is provided in Table I,
in which MMSE stands for the Mini-Mental State Ex-
amination. After that, each subject image is segmented
into 120 ROIs using AAL atlas [18]. Each region is then
characterized by mean value. Since cerebellum is used
for normalizing data, we will remove those regions
from our data, after this step for each image, we obtain
a vector with 94 features, corresponding to the mean
intensity of 94 ROIs.

2.2 Two-phase Feature Ranking Method
2.2.1 Autoencoder Training:

An autoencoder [19] is a type of neural network used
for learning efficient representation of unlabelled data,
in compressed or sparse form. An AE usually consists
of an input layer, an output layer and at least one
hidden layer. The complexity of the AE network de-
pends on the number of hidden layers and learning
techniques. In our work, we only use simple AEs with
one hidden layer. Instead of designing a single complex
AE structure, we focus on single-but-multiple AEs. This
approach allows us to evaluate the stability of the
features within minor changes in the network architec-
ture during the feature ranking phase. Specifically, we
train 94 AE models with the number of hidden units
varying from 1 to 94 on compression tasks. After that,
we replace the output layer of AEs by softmax layer
and fine-tuned autoencoder models on the sMCI/pMCI
classification task.

In comparison to the previous work in [15], to ensure
that the ranking results are more heavily dependent
on the structure of AE models, we fix the connection
weights between the hidden-output layers during the
AE training phase for the compression task. This con-
straint ensures that the learning process for compres-
sion tasks only happens between input-hidden layers.
Therefore, in the finetuning phase, we can replace the
output layer of AEs with a softmax layer without losing
any learned information from the compression phase.
By this approach, we expect that the learned weights
will be more dependent on AE structures, as well as
more adapted for ranking problems.

2.2.2 Ranking Methods:
In order to rank all features, we follow a ranking
pipeline that involves two phases: (i) performing rank-
ing process on each AE model, and (ii) integrating
ranking results from multiple AE models. Specifically,
after training AE models on compression tasks and
finetuning them on MCI classification problems, we
perform the first phase in our ranking algorithm. For
each finetuned AE model, we use their learned connec-
tion weights and modified version of connection weight

algorithm [15] to rank all features, given by

ci =
p

∑
j=1

|W1
ij| ×

m

∑
k=1

|W2
jk|, (1)

where ci is the contribution of the i-th feature made to
the output layer, n, p and m are the number of units
in the input layer, hidden layer, and output layer, re-
spectively, W1

ij denotes the parameter of the connection
between the i-th neuron in the input layer and the j-th
neuron in the hidden layer, W2

jk denotes the parameter
of the connection between the j-th neuron in the hidden
layer and the k-th neuron in the output layer. The higher
value of ci indicates the higher importance of the i-th
feature. After this step, for 94 AE models, we obtained a
ranking matrix R in which its element rij corresponds to
the j-th most important feature ranked by the finetuned
model AEi.

In order to combine results from multiple AEs into a
single outcome, we continue with the second phase of
our ranking algorithm. We make several improvements
to this phase compared to the previous work in [15],
resulting in a parameter-free version of our algorithm.
Specifically, we propose a cumulative feature ranking
algorithm, which is described in Algorithm 1. Given
the ranking matrix R of size n × n, where n is the
total number of features, we extract the first j columns
of R to form the submatrix Rj. Firstly, we compute
the frequency matrix F in which its element fij equals
to frequency of the i-th feature in the submatrix Rj.
After this step, we compute the cumulative frequency
for each feature, C = {ci}, where ci = ∑n

j=1 fij. Then,
we rank the features in the descending order according
to their corresponding cumulative frequency. A higher
value of the cumulative frequency indicates a higher
rank of the feature.

Algorithm 1 Parameter-free version of the 2nd phase
in the ranking algorithm

Input: Matrix Rn×n corresponds to ranking order of n
features given by n AutoEncoder models, submatrix
Rj contains first j columns of R
Output: Feature ranking list

Algorithm:
1. Compute frequency matrix Fn×n = { fij} where fij
is the frequency of i-th feature in the submatrix Rj
2. Compute cumulative frequency C = {ci} where
ci = ∑n

j=1 fij
3. Ranking n features in descending order according
to their cumulative frequency.

The second phase of the ranking algorithm is based
on the concept of cumulative information, designed
to aggregate information from multiple autoencoder
models. The motivation is to make the ranking re-
sults more accurate and robust. By leveraging cumu-
lative frequency concepts, our algorithm evolves into
a parameter-free approach. The complexity of the algo-
rithm is less than O(n2), since we only need to compute
the frequency of features in every submatrix Rj.



22 REV Journal on Electronics and Communications, Vol. 14, No. 2, April–June, 2024

Table II
Performance on sMCI/pMCI Classification Task

Original Fisher t-score LASSO AEFR Proposed method
ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

k = 5 63.27 64.50 69.68 74.53 69.82 74.59 66.64 76.45 67.63 75.13 70.19 75.30
k = 10 63.27 65.00 70.93 74.76 70.95 74.80 68.60 77.12 69.79 75.35 70.92 76.33
k = 20 63.28 64.33 71.52 76.23 71.52 76.12 71.16 77.73 71.57 76.86 73.01 78.57
k = 30 63.31 62.38 71.77 76.64 71.80 76.58 71.93 77.79 73.02 78.12 73.93 79.21
k = 40 64.55 68.31 71.80 76.55 71.76 76.51 72.23 77.96 74.27 79.07 74.13 79.39
k = 50 65.73 71.57 71.76 76.56 71.92 76.60 72.56 77.90 74.29 79.24 74.11 79.32
k = 60 66.51 72.32 72.09 76.56 72.08 76.60 72.94 77.91 74.45 79.30 74.24 79.21
k = 70 73.12 78.28 72.33 76.64 72.38 76.68 73.21 78.08 74.37 79.18 74.32 79.23
k = 80 73.70 78.66 73.28 77.40 73.29 77.37 74.04 78.60 74.39 79.16 74.22 79.11
k = 90 73.83 78.60 74.19 78.70 74.16 78.70 74.26 78.83 74.36 79.00 74.20 78.98
k = 94 74.26 78.95 74.26 78.95 74.26 78.95 74.26 78.95 74.26 78.95 74.26 78.95

2.3 Experimental Design and Evaluation Metrics

To evaluate the effectiveness of our proposed method,
we compare the performance between our method and
other feature ranking methods on the ADNI dataset.
We choose Fisher, t-score, and LASSO [11] as the com-
parative methods, since they are well-known methods
for feature ranking. After the ranking phase, for each
ranking method, the top k ROIs are selected as can-
didate features for the classification task. We choose
the linear Support Vector Machine (SVM) [20] as the
classifier, since SVM is a well-known and widely used
technique for AD diagnosis in previous studies. Given
by the classifier are the true positive (TP), true negative
(TN), false positive (FP) and false negative (FN). The
performance is measured in terms of accuracy (ACC),
specificity (SPE), sensitivity (SEN) and the area un-
der the Receiver Operating Characteristic curve (AUC),
where

ACC =
TP + TN

TP + TN + FP + FN
, (2)

SEN =
TP

TP + FN
, (3)

SPE =
TN

TN + FP
, (4)

and AUC is determined by SEN and 1 − SPE.
The higher value of these metrics indicates better
performance.

Concerning data allocation, we divide data randomly
into two subsets corresponding to two phases: half for
feature ranking phase the other half for performance
evaluation. Therefore, these two phases are indepen-
dent learning processes. 5-folds cross validation is used
for training and evaluating a classifier. To avoid bias,
experiments are repeated for 50 times, and the reported
results are averaged values of these different runtimes.

Finally, all experiments are implemented using scikit-
learn [21] and Keras. To train the Autoencoders, we
utilized the Adam optimizer with a mini-batch size
of 32 and conducted training over 1500 epochs. For
other experimental parameters, default values set by
the libraries were used if not specified.

3 Results and Discussion

3.1 Results

The use of ranking methods significantly improved
classifier performance, as shown in Table II and Fig-
ure 2. When comparing accuracy of linear SVM clas-
sifiers with and without using ranking methods, we
observe that feature ranking methods gave a better
average accuracy. This is most noticeable in the range
from 20 to 40 features, the use of the ranking methods
improved ACC by about 8% on average compared
to no ranking. Fisher and t-score gave very similar
performance and they were the best methods in the
range from 1 to 20 features, with an average ACC
improvement of approximately 7% compared to no
ranking. However, with more than 20 features, LASSO
was the better one. Therefore, we chose t-score and
LASSO as the baseline when comparing cases with less
than 20 features, and more than 20 features, respec-
tively. Here, we expect that a good ranking method
should give either similar or better performance than
t-score or LASSO when using less or more than 20
features, respectively.

The AE-based ranking methods significantly im-
proved classifier performance, as shown in Figure 3
and Table II. In many cases, ACC was improved by
up to 10% as compared to no ranking (e.g., the case
with 30 features). AE-based ranking methods also gave
better results when compared to the baseline methods,
especially for AE models with fixed weights. Interest-
ingly, after more than 30 features, the performance of
the classifiers seemed to reach a stable state with AE-
based ranking methods, adding features almost did
not change the performance much. It means that the
AE-based ranking methods showed better convergence
results as compared to the baseline ones. Moreover, in
the range from 40 to 60 features, there were many cases
in which our proposed ranking methods gave better
results than using either all 94 features or voxel-based
approaches.

The ranking method with fixed AEs gave better
performance as compared to normal AEs, and out-
performed the baseline methods. More specifically, the
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Figure 2. Accuracy of the linear SVM classifiers with and without
ranking methods.

Figure 3. Accuracy of the linear SVM classifiers between our proposed
methods and the baseline ones.

top-1 feature selected by the fixed AE models gives
a similar performance compared to t-score, and much
better than LASSO, and the normal AE method. The
performance of the fixed AE models was always ap-
proximately or better than t-score in the range from 1
to 20 features. With more than 20 features the obtained
results are much better as compared to LASSO. At the
threshold of 30 features, the result converged faster
than all the baseline methods. In other words, by using
fixed AE models, we can achieve remarkable results
with the number of features being only 1:3 of the
total number of features, and approximately 1:1850 of
features when compared to the voxel based approach.

Our proposed method not only significantly im-
proved ACC but also AUC, as shown in Table II and
Figure 4. We can observe that ranking methods such
as t-score and LASSO improved AUC as compared to
original order by an average of 4.6%. The averaged
differences in AUC between t-score and LASSO did

Figure 4. AUC of the linear SVM classifiers between our proposed
methods and the baseline ones.

not differ too much. Meanwhile, the ranking methods
using fixed AE and normal AE models, respectively, im-
proved AUC approximately 1.5% and 1%, respectively,
when compared to t-score. All these observations lead
us to a conclusion that the AE-based ranking methods
are suitable for feature selection on MCI classification
tasks, and the ideas of fixed AE models can significantly
improve the overall performance.

In order to explain the improvements of our pro-
posed methods over the others, we consider the over-
lapped rate between obtained results by each ranking
method. Figure 5 compares the overlapped rate be-
tween different ranking methods with various numbers
of selected features. We only focused on the range from
5 to 60 features. With the range from 5 to 40 features,
the overlapped rate between LASSO and t-score was
around 35%, and these values increased to reach 60%
within the range from 40 to 60 features. Obviously,
these observations corresponded to the differences in
performances between the two methods. With less
than 15 features, the overlapped rates between fixed
AE-based and the baseline methods were above 60%
compared to t-score, and lower than 50% as compared
to LASSO. As the number of features increased in the
range from 1 to 15 features, we also observed that
overlapped rates between fixed AE-based models and
t-score decreased while the values between AE models
and LASSO increased. In other words, the ranking
results obtained by fixed AE-based modes are quite
similar to t-score with a small number of features,
and become similar to LASSO in the cases of much
larger numbers of features. This observation confirms
our early expectation about a good ranking method,
which should give either similar or better performance
than t-score or LASSO when using less or more than 20
features, respectively. This result also suggests that our
fixed-AE method shows good qualities similar to those
of both t-score and LASSO.

Moreover, the fixed AE method has its own capabili-
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Figure 5. Overlapped rates for different ranking methods.

ties that the baseline methods do not have. Specifically,
overlapped rates between the fixed AE method and the
baselines were always less than 60% within the range
from 20 to 60 features. Meanwhile, the fixed AE method
gave a faster convergence results at the threshold of 30
features. It suggests that the fixed-AE method could
select some effective features that baselines are not able
to do. These effective features not only improve the
overall performance, but also contribute to stability and
earlier convergence of results.

Fixing connection during training AE models sig-
nificantly contributed to the improvement of obtained
results. Comparing overlapped rates between fixed AE
and normal AE models, we observe that the overlapped
rate was around 50% in the range from 5 to 20 features.
Meanwhile, with more than 20 features, the overlaps
were always greater than 65% and continued to increase
with the number of features. This observation not only

explains the performance differences between the two
methods within the range from 1 to 20 features, but
also explains why the performance between them is
quite similar and converges together with more than 30
selected features. This result seems to support our early
expectation of using fixed connection when training
AEs for compression tasks. By using fixed connection
weights, the learned weights will be more dependent
on the AE structures and more adapted for ranking
problems.

3.2 Discussion

In this study, we proposed two improvements to
our previous AE-based feature ranking work: (i) fixing
connection weights during AE training for compres-
sion tasks and (ii) enhancing the second phase of
the ranking algorithm. Our proposed methods outper-
formed the baseline methods such as t-score, Fisher,
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Figure 6. An illustration for the top-20 ROIs selected by our proposed
method (with fixing connections).

and LASSO. In particular, fixing connection weights
approach significantly improveed ACC and AUC, with
early convergence and greater stability compared to
both baseline methods and training AEs without fixing.
This improvement confirms that restricting the learning
process to happening only between input-hidden layers
enables the connection weights between input-hidden
layers to encode more information. As a result, more
knowledge is transferred which leading to improved
performance on the MCI classification task and rank-
ing results.

Figure 6 and Table III show the top-20 regions consid-
ered most effective in differentiating sMCI from pMCI,
this obtained result is consistent with previous studies.
More specifically, the top-20 regions mainly belong
to the temporal and parietal lobes. These lobes are
considered as the standard FDG-PET finding, which
are highly correlated to AD pathology [22, 23]. Top-
ROIs such as Temporal_Inf, Angular, Precuneus are
also selected in previous studies of Pan et al. on MCI
conversion diagnosis [3], of Tuan et al. on AD [15].
Therefore, our results once again confirm the important
role of these regions, and suggest that brain ROIs such
as Angular, Precuneus can be considered as effective
regions for tracking development and changes of AD
in different stages.

In addition to similarity in the top-20 ROIs, there
were also some significant differences between our
obtained results and those of previous studies [3, 15].
Despite sharing several common ROIs, our method
gives a different ranking order for each ROI. Specifi-
cally, regions such as Angular_L, Angular_R, and Cin-
gulate_Post_L are ranked in the top-3 by our proposed
method. However, Angular_L and Angular_R were
ranked quite low in [3], while the Cingulate region did
not appear in [15]. It is noteworthy that many studies
have reported a high association between these brain
ROIs and the conversion of MCI to AD [5, 24, 25]. More
specifically, with Angular_L and Angular_R belong to
the Parietal lobe, which are located in the posterior
part of the inferior parietal lobule [26], in [23], au-
thors have reported that hypometabolism in the inferior
parietal lobules could be used to predict most reliably
the progression from amnestic MCI to AD. Regarding
Cingulate, in a recent study, the authors pointed out

Table III
Top 20 ROIs Selected by the Proposed Method

Top ROIs
1 Angular_L
2 Angular_R
3 Cingulate_Post_L
4 Amygdala_L
5 Temporal_Inf_L
6 Precuneus_R
7 Parietal_Inf_R
8 Parietal_Inf_L
9 Putamen_R
10 ParaHippocampal_L
11 Precuneus_L
12 Pallidum_L
13 Cingulate_Post_R
14 Putamen_L
15 Postcentral_R
16 Paracentral_Lobule_L
17 ParaHippocampal_R
18 Temporal_Inf_R
19 Paracentral_Lobule_R
20 Postcentral_L

a correlation between Cingulate and apathy among
MCI patients with and without apathy [27]. Meanwhile,
apathy can be considered as a powerful risk factor for
conversion to AD in MCI patients [28], especially when
it occurs at the early stage of MCI [29]. Therefore, our
obtained top-k regions seem consistent and coherent
when compared to previous studies concerning MCI
conversion.

In this study, we used multiple AEs for feature
ranking. Experimental results suggest that we can use
simple-but-multiple AE models to perform feature se-
lection instead of focusing on single-but-complex ones.
By making several small changes in the AE architec-
ture (such as changing the number of neurons, fixing
connection weights), and taking these changes into
account for the feature ranking, the classifier perfor-
mance was significantly improved. The improvements
can be explained as follows: (i) training AE through
two steps, the first one on compression task (unsu-
pervised learning), the next one on classification task
(supervised learning), which gives AEs the capability
to filter out features that effectively represent both
internal properties of the data and external properties
related knowledge about classification problem, and (ii)
subtle changes between AEs are enough to learn sim-
ilar knowledge while creating variations for selecting
important features with high stability. Together with
previous results on ranking using AEs for AD [15],
the obtained results suggest: (i) AEs could be used
for selecting the most effective ROIs for distinguishing
between NC, MCI and AD, and (ii) instead of focusing
on complex structures, we can also use simple-but-
multiple AE models for feature selection with expec-
tation that the obtained result is still very comparable
to traditional feature ranking methods.
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In comparison to our previous work, here, we pro-
posed an enhancement to our ranking algorithm, re-
sulting in a parameter-free version, making it easier to
apply. While the obtained results are very promising,
the approach has a limitation that may hinder its broad
application, that is, multiple AE models need to be
trained, which raises concerns regarding computational
resources. Nonetheless, due to the simple architecture
of the AE models, consisting of only one hidden layer,
the computational demand is low. Furthermore, fixing
connection weights reduces the number of parameters
required for training, resulting in a significant decrease
in training costs. Moreover, AE models training can
be performed in parallel, thereby reducing the training
time. So, in general, our proposed method still has a
broad applicability.

4 Conclusions and Future Work

In this paper, we have made some improvements to our
previous work on AE-based feature ranking. Specifi-
cally, we fixed the connection weights between hidden-
output layers when training AEs on compression tasks,
and improved the second phase of the ranking algo-
rithm. We applied our method to a very challenging
task – MCI conversion prediction. Experimental results
on the ADNI dataset showed that our method outper-
forms baseline methods such as t-score and LASSO.
For feature selection, these results suggest that instead
of focusing on designing a single-but-complex AE ar-
chitecture, we can also take advantage of the simple-
but-multiple AE models to perform the same task.
Our proposed method could be easily applied to a
dataset where a feature selection is needed. For future
work, it is important to apply our proposed method to
different datasets to better understand the limitations
and strengths of the method. Additionally, considering
the influence of other factors such as dropout and
activation functions on the obtained results would be
an interesting research direction.
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