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Abstract– Wireless Body Area Network (WBAN) is widely applied in various fields, including healthcare, sports, wellness,
and assistive technologies, by offering the benefits of convenience, reliability, low latency, privacy, and customization.
However, the propagation characteristics of the WBAN channel can impact the reliability of transmission, which is
particularly crucial in healthcare systems. To address this issue, this article presents a novel approach using deep learning-
based cooperative Multiple-Input Multiple-Output (MIMO) systems that leverage the autoencoder (AE) technique. In our
proposed approach, we utilize the AE-based cooperative MIMO systems with two different techniques: Amplify-and-Forward
(AE-AF) and Decode-and-Forward (AE-DF). The AE-AF scheme operates without needing training parameters at the relay
node, whereas the AE-DF scheme necessitates training parameters at the relay node. Both schemes aim to overcome challenges
such as multipath propagation phenomena, thereby enhancing the performance of on-body communication systems.
Additionally, we introduce two combinators, Minimum Mean Square Error (MMSE) scheme and Radio Transformation
Network (RTN), to effectively mitigate co-channel interference (CCI) in the received signal streams and improve the bit
error rate (BER) performance of the AE-AF and AE-DF systems. We assess the performance of these systems in scenarios
with and without direct links. Simulation results demonstrate significant performance improvements compared to baseline
cooperative MIMO systems using MMSE combining, namely AF-MMSE and DF-MMSE systems. Notably, the proposed
systems employing RTN combination, including both direct and relay paths, achieve a 7.5 dB gain over the baseline when
all nodes are equipped with two transceiver antennas.

Keywords– WBAN, cooperative MIMO, deep learning, autoencoder.

1 Introduction

Wireless Body Area Networks (WBANs) are recognized
as networks designed to gather and transmit human
body-related data, such as heart rate, blood pressure,
electroencephalogram (EEG), and electrocardiogram
(ECG), to healthcare centres or doctors for monitoring
purposes and delivering timely health alerts to users.
These networks are rapidly developing in various fields
of life, particularly in medicine and healthcare [1]. The
signal transmission process in WBAN complies with
the IEEE 802.15.6 standard, which includes various fre-
quency bands, including narrowband bands such as the
Human Body Communication (HBC), Medical Implant
Communication System (MICS), Industrial, Scientific
and Medical (ISM), and wideband Ultra-Wide Band
(UWB) band. Additionally, WBAN incorporates five
main channel models classified based on the communi-
cation links between nodes placed inside, on, and near
the body (CM1-CM5) [2, 3]. In healthcare and wellness
applications, WBAN demonstrates several advantages,
including continuous monitoring of vital signs, timely
health status alerts, and allowing individuals to main-
tain their normal activities.

However, WBAN also faces communication chal-
lenges such as transmission loss, multipath chan-

nels, and shadowing phenomena [3]. Additionally,
WBAN applications impose network quality require-
ments such as reliable transmission, prolonged energy-
saving for network longevity, and user information
security, etc. [1, 4]. When assessing the performance of
WBAN systems, reliability emerges as one of the most
critical communication metrics, especially in health-
care applications. Therefore, to overcome the chal-
lenges and meet the network’s performance require-
ments, numerous studies proposed various communi-
cation solutions, such as error correction codes, inter-
ference suppression codes to improve reliability [5, 6],
energy-efficient routing solutions to prolong network
lifetime [7], information security [8], cooperative com-
munication [9], multiple-antenna transmission [10]. Sig-
nificantly, the explosive growth of artificial intelligence,
deep learning, and machine learning techniques ap-
plied in communication systems has helped optimize
the parameters of functional blocks or the entire system
through the training process, enhancing the system’s
performance [11].

In addition, along with the development of technolo-
gies such as Microelectromechanical systems (MEMS),
research on applying antennas in the 60 GHz fre-
quency range [12], and the development of new
wearable sensors with lightweight, low power con-
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sumption, flexibility, and compactness using suitable
materials [13], they significantly contribute to the sub-
stantial advancement of WBAN in various areas of
life through the implementation of new communica-
tion techniques that enhance reliability while remaining
compact and user-friendly.

The nodes transmit information according to the star,
two-hop relay or mixed topologies based on the IEEE
802.15.6 standard. Due to body-worn nodes moving
based on user activities, sensor nodes can experience
obstruction by body parts, which can either block the
direct transmission path to the central node or cause
significant signal attenuation in the transmission path
to the central node due to transmission distance or tis-
sue absorption. This obstruction reduces the reliability
performance or leads to an escalation in the energy
consumption of the sensor nodes [4]. Cooperative trans-
mission solutions allow information to be transmitted
to the destination node through one or multiple relay
nodes. The destination node combines signals from
both the direct and relayed paths, thereby overcoming
obstruction issues and improving the reliability of in-
formation transmission in the WBAN [9, 14]. Aiming to
exploit the spatial diversity of distributed sensor nodes,
studies [14–16] proposed the utilization of coopera-
tive Single-Input Single-Output (SISO) communications
within WBANs to enhance the performance of error
rates and energy efficiency. Y. Zhang et al. introduced
a schedule for automatic dynamic switching between
direct and relay-assisted transmission of single antenna
systems based on channel conditions to improve trans-
mission reliability and save energy in relay nodes in
WBAN [9].

Multiple Input Multiple Output (MIMO) systems are
employed to enhance the reliability of WBANs because
this technique enables increased system capacity and
achieves spatial multiplexing gains. The works [17, 18]
show that using MIMO can help to reduce the im-
pact of shadowing and multipath fading to improve
transmission reliability. The study [19] proposes using
a 2×2 MIMO Spatial Division Multiplexing (SDM)
technique for on-body narrowband systems operating
at a frequency of 2.45 GHz using Planar Inverted-F An-
tennas (PIFAs). The study examines spatial correlation
matrices and demonstrates that the on-body antenna
movement generates significant decorrelation among
subchannels, even when LOS connections are present.
Additionally, the findings indicate that the capacity
achieved by the MIMO system is twice that of the SISO
system. The studies [20, 21] introduce MIMO antennas
designed for the frequency range of 2.4 GHz - 30 GHz
and Terahertz, intended for WBAN applications. The
research results indicate that the proposed antenna is
a good solution for WBAN applications. Additionally,
a work [22] proposes the use of a cooperative sensor
scheme employing network coding to create a virtual
MIMO system for monitoring sleep apnea. This solu-
tion allows for energy efficiency and reduces the impact
of phase dispersion. A work [23] proposes an MIMO
system operating in the 5.8 GHz ISM frequency band
to mitigate fading.

A work [10] proposes a cooperative MIMO trans-
mission system (with and without a direct path) be-
tween implantable and wearable sensors equipped with
a single antenna and a receiver device placed near
the body with two antennas. The solution uses an
index modulation technique to counteract inter-channel
interference (ICI) and save energy consumption for
the network. A cooperative massive MIMO-SDM sys-
tem is proposed for body-centric communication to
increase the channel capacity in [24]. Another approach
to improving the system throughput and transmis-
sion reliability of WBANs network coding is combined
with MIMO cooperative communication in [25]. In the
study [8], researchers put forward a dynamic configura-
tion and virtual cooperative MIMO approach grounded
in game theory. The objective is to ensure the secu-
rity of transmitted information while achieving energy
savings. Based on simulation results, it is evident that
the virtual cooperative MIMO configuration method
proposed, which is grounded in game theory, can
enhance the security capabilities of individual devices
and extend the lifespan of the network when compared
to non-cooperative approaches. Moreover, a study [26]
proposes the use of a cooperative MIMO system for
the body channel. Research results indicate that the
proposed scheme reduces energy consumption and en-
ables long-distance transmission compared to a cooper-
ative SISO system. Other studies [27–29] concentrate on
signal combination techniques applied to cooperative
MIMO-SDM systems employing Amplify-and-Forward
(AF) and Decode-and-Forward (DF) methods.

In recent years, deep learning (DL) techniques
have garnered significant research interest and found
application in communication systems at large,
including WBANs, to enhance overall system
performance [4, 30–35]. The reinforcement learning
(RL) algorithm is introduced to enhance secure
transmission with minimal eavesdropping rates [34]
and to ensure reliable transmission of emergency
data from sensors to the central unit [35] in WBANs.
A study [33] introduces the Frame Aggregation
Organization method based on a Deep Q-learning
Network, abbreviated as DQN-FATOA, significantly
reduced latency and energy consumption, improving
the data transmission capability of WBANs compared
to traditional scheduling methods. The DeepBAN
system utilizes a deep learning approach, specifically
the Time Convolutional Network (TCN), for channel
prediction, as demonstrated in work cited as [31].
The results show that DeepBAN improves the
system’s energy efficiency by up to 15% compared to
random scheduling. In addition, a channel prediction
model for MIMO transmission in WBAN using DL
is proposed in the research [30] for underground
mining environments.

The solution of applying deep learning techniques
based on the autoencoder (AE) for communication
systems is a research direction that has attracted the
interest of many research groups [11, 32, 36]. In this
approach, the entire system, including the transmitter,
receiver and channel, is represented by neural networks
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similar to an AE architecture. Furthermore, this solution
improves system reliability through the automatic syn-
chronization learning capability of the system’s train-
able parameters, achieved through the training process
to minimize transmitted symbol errors and estimation
errors at the receiver.

Several studies have proposed the use of AE
for point-to-point single-antenna communication
systems [11, 32, 37], abbreviated as AE-SISO, or with
the support of relay nodes [36, 38]. A new optimized
architecture for the HBC system to achieve high data
transmission speed is designed and deployed through
the autoencoder technique in work [32]. By adopting an
AE-based approach, the HBC system design surpasses
the traditional method, significantly improving up
to 2 dB in the block error rate. On the one hand,
the AE-SISO system’s performance surpasses the
traditional SISO system with Hamming encoding and
the maximum likelihood (MLD) estimator with a single
training phase thanks to the simultaneous modulation
and encoding solution in work [11]. On the other
hand, in work [37], the AE-SISO system tackles the
challenges of imperfect channel information estimation
by implementing two consecutive training phases.
This approach aims to enhance the AE-SISO system’s
performance while dealing with the transmission
channel’s effects and outperforms the conventional
QPSK modulation system.

In the study [36], Yuxi Lu et al. proposed a cooper-
ative DF based AE-SISO system, in which the source,
destination and relay nodes are represented by neural
networks. The channel estimation and equalization are
performed by both the relay and destination nodes
using a Radio Transformation Network (RTN) network
simultaneously, liked in [11]. The system is trained
in two sequential phases at a fixed Signal to Noise
(SNR) value or a range of SNR values over the fading
channel. When modulation and encoding techniques
are combined, the performance of the proposed AE
system, which lacks channel state information (CSI),
closely matches that of a conventional cooperative SISO
system utilizing DF with a 1-bit pilot. Likewise, a
study [38] demonstrates that utilizing the AE technique
in an AF relay system yields better results than the
traditional system employing Hamming encoding and
an MLD estimator. When utilizing gray code formatting
for the symbols, the bit-wise AE scheme outperforms
the symbol-wise AE scheme.

The studies [39–42] proposed employing the AE tech-
nique for MIMO systems to enhance the error rate per-
formance. In their study [39], T. Erpek et al. presented a
closed-loop SWAE-MIMO Nt × Nr system featuring Nt
transmitting antennas and Nr receiving antennas. When
employing two transceiver antennas, the simulation
results reveal that the AE-MIMO system with constant
CSI exhibits a significant performance advantage of
over 10 dB compared to the conventional MIMO system
that utilizes an MMSE estimator at a symbol error rate
(SER) of 10−2. Similarly, the works [40, 41] propose
the structure of symbol-wise AE-MIMO systems over
fading channels, the AE-MIMO 2 × 1 using Space-

Time Block Code (STBC) and SDM AE-MIMO 2 × 2
schemes. In the study [40], where full CSI knowledge
was assumed, the AE-MIMO system outperformed
the conventional MIMO system employing the Sin-
gular Value Decomposition (SVD) technique in terms
of performance.

The proposed STBC systems also outperform the
conventional STBC systems in [40, 41]. Additionally,
the study [42] proposes open-loop AE-MIMO-SDM
schemes using symbol and bit-wise labeling methods
with different detectors. The simulation results clearly
indicate that the proposed schemes exhibit significantly
superior performance compared to conventional MIMO
systems that utilize MMSE estimation. Remarkably,
when equipped with two transceiver antennas, the AE-
MIMO-RTN system demonstrates comparable BER per-
formance to the conventional MIMO system utilizing
Maximum Likelihood Detection.

In previous studies, communication within WBANs
has primarily utilized cooperative single-antenna,
MIMO and virtual MIMO systems to reduce fading
effects and enhance communication performance. The
research on cooperative MIMO with space division
multiplexing in WBANs is still limited, and there have
been no studies on cooperative MIMO with space di-
vision multiplexing using DL techniques for communi-
cation between nodes over the on-body channel. Based
on the MIMO systems using AE as proposed in [42],
we propose AE-based cooperative MIMO systems for
two-hop communication links within WBAN. In tradi-
tional MIMO cooperative systems, the parameters of
the source node, destination node, and relay node are
pre-computed, while in AE-based MIMO cooperative
systems, these parameters can be automatically learned
partially or entirely during training to optimize the
performance of the bit error rate. Compared to previous
research, we can summarize our main contributions
as follows:

• We propose two AE-based cooperative MIMO
systems (AE-AF) for on-body communication to
achieve optimal performance. These systems uti-
lize MMSE and RTN combinators at the destination
nodes, denoted as AE-AF-MMSE and AE-AF-RTN.
They undergo a single-phase training process to
jointly optimize parameters from the source node,
relay node, and destination node.

• We also introduce two DF-based cooperative
MIMO systems using the AE technique with
MMSE and RTN combining schemes, abbreviated
as AE-DF-MMSE and AE-DF-RTN. The AE-DF sys-
tems exhibit superior error performance compared
to AE-AF, thanks to their ability to avoid noise
amplification at the relay node. Furthermore, two
sets of parameters, θRxR and θTxR, at the relay node
are trained synchronously with the entire system.

• Simultaneously, we present the training algorithms
for AE-based cooperative systems, which combine
signals from a direct transmission and a relay
transmission to improve BER performance.

• Finally, simulation results demonstrate that the
proposed systems outperform the AF-based
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cooperative MIMO using MMSE combinator
in work [27], abbreviated as AF-MMSE, DF-
based cooperative MIMO using MMSE and ZF
combinator [29], abbreviated as DF-MMSE, DF-ZF,
respectively. The BER of AF-MMSE, DF-MMSE
and DF-ZF are called baselines.

Paper outline: The conventional cooperative MIMO-
SDM system model is presented in Section 2. We
introduce the proposed AE-based cooperative MIMO
WBAN system using AF and DF techniques in
Section 3. Section 4 analyzes the simulation results, and
finally, we summarize the conclusions in Section 5.

Notations: Lower and upper case bold letters, a
and A, denote vectors and matrices, respectively;
A ∈ CN×N , A ∈ RN×N refer to matrix A belongs to
the set of complex and real matrices with a size of N
rows and N columns, respectively; ∥a∥2 denotes the
Euclidean norm-2 of a vector a, (·)H ,(·)T , (·)−1 denote
the conjugate transpose, the transpose inverse of the
matrix, respectively.

2 System Model

A WBAN typically has a 3-tier structure, each with
its functions and characteristics [1]. The first tier, the
intra-WBAN, comprises sensors positioned inside, on,
and around the body, along with a personal device.
Sensors can be interconnected to transmit information
to the personal device acted as a gateway connect-
ing the intra-WBAN to the second tier of the net-
work. Transmission reliability is a critical criterion for
ensuring the effectiveness of WBAN, particularly in
healthcare applications [43]. However, due to users’
activities and positions, some nodes may become ob-
structed by body parts, leading to occasional failures
in the direct transmission of signals from sensors to
personal devices (single-hop link) [44, 45]. Therefore,
a cooperative MIMO communication system is pro-
posed for intra-WBAN, abbreviated as WBAN, as pre-
sented in Figure 1. This scheme, supported by the IEEE
802.15.6 standard, aims to alleviate the impacts of mul-
tipath channels, enhance capacity, and improve error
rate performance.

The on-body communication system comprises sen-
sors transmit data, called source nodes (S1, S2), sensors
perform the signal forwarding function, called relay
nodes (R1, R2, R3) and a personal device/destination
node (PD/D) receives signals from the sensors within
the WBAN. The source nodes can transmit to the
destination node through either a single-hop model
(S1 → D, S2 → D) or a two-hop cooperative model.
The sensor S2, worn on the right wrist, should be able
to transmit cooperatively to the destination node, worn
on the left waist, through both a direct and a relay
path, represented by blue arrows, or relay paths in
case user movements obstruct the direct transmission,
represented by red arrows.

Figure 2 illustrates a detailed diagram of the coopera-
tive MIMO transmission protocol from the source node
to the destination node using both a direct path and

relay paths. The source, destination, and relay nodes
are outfitted with N antennas to facilitate receiving
and transmitting. According to this model, the channel
matrices between the source and destination, between
the source and relay node, and between the relay node
and destination are Hc

sd ∈ CN×N , Hc
sr ∈ CN×N and

Hc
rd ∈ CN×N , respectively. In this context, the indices s,

r, and d refer to the source node, the relay node, and
the destination node, respectively; the index c signifies
complex-valued matrices and vectors.

Figure 1. An intra-WBAN system.

Figure 2. A cooperative MIMO communication system.

The communication protocol in the cooperative net-
work is implemented on two time slots [29]. In the first
time slot, the source node simultaneously transmits sig-
nals sc to the relay and destination nodes. The received
signal vector at the destination node and relay node can
be expressed as follows:

yc
1 = Hc

sdsc + zc
d,1, (1)

yc
r = Hc

srsc + zc
r,1, (2)

where sc ∈ CN×1, where sc
i for i = 1, 2, . . . , N is

the symbol transmitted from the i-th antenna of the
source node; zc

r,1 ∈ CN×1 and zc
d,1 ∈ CN×1 represents

the noise vector at the relay node and the destination
node, respectively.

During the second time slot, the relay node processes
the signal from the source node using either AF or
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DF methods. The signal received at the destination
node through the relay-aided transmission path can be
described as follows

yc
2 = Hc

rd fr(yc
r) + zc

d,2 (3)

where fr(·) denotes the processing function applied to
the vector yc

r at the relay node prior to its transmission
to the destination node; zc

d,2 ∈ CN×1 represents the
noise vector at the destination node.

The destination node has a combined receiving vector

yc =

[
yc

1
yc

2

]
. At the destination node, the transmitted

signal is recovered using a linear detector according to
the following equation

ŝc = (Wc)Hyc (4)

where the weight matrix Wc is employed to detect
the combined received signal yc. The estimated signal
vector ŝc is compared to the transmitted signal vector
sc to calculate the BER.

3 The Proposed AE-Based Cooperative

MIMO WBAN System

To meet the high reliability requirements of WBAN ap-
plications in healthcare systems and mitigate the effects
of fading in the WBAN channel, we propose the use
of cooperative MIMO systems employing AF and DF
methods using AE techniques. Based on the study [42],
we extend the solution using the AE technique for the
cooperative MIMO-SDM communication system for the
link S2 to D with the aided relay node R1. Accordingly,
a source node, a relay node, a destination node and
channels are prensented by neural network layers. The
weights and biases of neural network layers are deter-
mined through training using a labelled symbol set and
channel state information with a known distribution.
Furthermore, this study introduces two AE-based coop-
erative MIMO communication system structures using
the AF and DF methods based on the bit-wise labelling
method [38]. In this study, we represent mathematical
expressions in the complex domain using a real-valued
neural network with doubled size, i.e., two real values
represent each complex number.

Figure 3. The AE-AF system using MMSE combinator.

3.1 The AF-Based Cooperative MIMO Systems
Using AE Technology

In many WBAN applications, especially in health
monitoring systems, communication reliability is a cru-
cial parameter that affects the system’s performance.

Hence, in this section, we present two AF-based coop-
erative MIMO systems utilizing the AE technique for
on-body communications, aimed at alleviating fading
effects and enhancing BER performance with modest
computational complexity. Based on the principle of
operation of the cooperative MIMO system presented
in Section 2, we introduce AF-based cooperative MIMO
systems using AE technology with two different de-
tectors at the destination node; those use the MMSE
combinator (AE-AF-MMSE) and the combination of
RTN networks (AE-AF-RTN) for WBAN.

3.1.1 The AE-AF System Using MMSE Combinator:
As depicted in Figure 3, the AE-AF-MMSE consists
of a source node (TxS), a relay node (Relay), and a
destination node (RxD), respectively. At source node,
the transmitted symbol vector s is bit-wise labelled
as a vector b consisting of binary bits 0 and 1,
b = [b1, b2, . . . , bP]

T , with P = N × k, k = log2(M),
M is order modulation. Table I represents an example of
bit-wise labelling signals for the AE-AF-MMSE system
with two transmitting antennas using BPSK modula-
tion. The vector b is encoded into a transmitted signal
vector as follows

xam = fTxS(b; θam
TxS), (5)

where fTxS(·), θam
TxS denotes the processing function

and the trainable parameters of the layers at the
source node, respectively, the am index represents the
AF method using the MMSE detector. The transmit
vector xam is power-normalized through the normal-
ization layer in the encoder. A transmitted vector
xam = [xam

1 , xam
2 , . . . , xam

2N ]
T be a real signal vector, in-

cludes [xam
1 , . . . , xam

N ]T and [xam
N+1, . . . , xam

2N ]
T represents

the real part and the imaginary part of the complex
signal vector, respectively. Each element of the vector
xam is a function of the label b, xam

i = fTxS(b; θam
TxS,i),

i = 1, · · · , 2N, so the constellation on each transmit-
ting antenna has 2k×N points. In the first time slot,
the received signal vectors at the relay node and the
destination node are given, respectively, as follows:

yam
sr = fchan(Hsr, xam, zr,1) = Hsrxam + zr,1, (6)

yam
1 = fchan(Hsd, xam, zd,1) = Hsdxam + zd,1, (7)

where fchan(·) is the transformation function at the
channel layers, and this layer does not have any training
parameters; the channel matrices and noise vectors are
all represented by matrices and real-valued vectors,
Hsr ∈ R2N×2N , Hsd ∈ R2N×2N , zr,1 ∈ R2N×1, zd,1 ∈
R2N×1. The relationship between complex channel ma-
trices, noise vectors and real-value channel matrices,
noise vectors as follows:

Hsr =

[
Re(Hc

sr) −Im(Hc
sr)

Im(Hc
sr) Re(Hc

sr)

]
,

Hsd =

[
Re(Hc

sd) −Im(Hc
sd)

Im(Hc
sd) Re(Hc

sd)

]
,

zr,1 =

[
Re(zc

r,1)
Im(zc

r,1)

]
, zd,1 =

[
Re(zc

d,1)

Im(zc
d,1)

]
.
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The relay node amplifies the signal yam
sr by uti-

lizing the amplification matrix F ∈ R2N×2N , where
F = diag{ f1, f2, . . . , f2N}, and subsequently relays
the amplified signal to the destination. In which, fi,
(i = 1, 2, ..., 2N), is the amplification coefficient corre-
sponding to the i-th neural of output layer of the relay
node, f c

i is calculated in [27] as follows

fi =

√
PT

N( PT
N ∥hsr,i∥2 + 1)

, (8)

where PT is the transmission power of the source node
and the relay node, and the power transmitted on each
antenna is normalized by using a factor of 1/N. Vector
hsr,i represents the i-th row of the channel matrix from
the source node to the relay node. In the second time
slot, the destination node received signal vector from
the relay path, denoted as yam

2 , can be expressed as

yam
2 = HrdFyam

sr + zd,2 = Hsrdxam + z̃2, (9)

where Hrd =

[
Re(Hc

rd) −Im(Hc
rd)

Im(Hc
rd) Re(Hc

rd)

]
;

zd,2 =

[
Re(zc

d,2)

Im(zc
d,2)

]
; Hsrd = HrdFHsr and z̃2 = HrdFzd,2.

The vector of combined signals at the destination node
is represented as follows[

yam
1

yam
2

]
=

[
Hsd
Hsrd

]
xam +

[
z1
z̃2

]
. (10)

Destination node recover the signal vector x̂am,
as follows

x̂am = (Wam)Hyam, (11)

where Wam is the weight matrix of the MMSE combi-
nation calculated as follows [27]

Wam = (Ra)
−1Rc, (12)

where Rc = PT
N

[
Hsd
Hsrd

]
, Ra =

[
A 0
0 B

]
, A and B are

respectively calculated as follows:

A =
PT
N

Hsd(Hsd)
H + σ2

z,1I2N

B =
PT
N

Hsrd(Hsrd)
H + σ2

r Hrd(F)
2(Hrd)

H + σ2
z,2I2N

The label vector is recovered b̂am at the destination
node (RxD)

b̂am = fRxD(x̂am; θdes,am
dec ), (13)

where fRxD(·), θdes,am
dec represents the processing func-

tion and the trainable parameters of the decoder net-
work, respectively. The MMSE weight matrix Wam in
equation (12) can be split into two matrices, Wam

1 and
Wam

2 , representing the weight matrix of the direct trans-
mission signal and the weight matrix of the forward
path, respectively.

Wam =

[
Wam

1
Wam

2

]
, (14)

where Wam
1 and Wam

2 matrices, can be calculated as
follows [27]:

Wam
1 =

[
A
]−1 PT

N
Hsd, (15)

Wam
2 =

[
B
]−1 PT

N
Hsrd. (16)

However, in some cases, due to the influence of activ-
ities and the positioning of the WBAN user, the source
node on the right wrist cannot transmit directly to the
destination node on the left waist. In such scenarios, the
system maintains communication through a relay path
or cooperates with additional relays to transmit data
to the destination node using MMSE weight matrices,
similar to equations (14), (15), and (16). The number
of network layers, activation functions, and number of
output nodes per layer of the AE-AF-MMSE system are
listed in Table II.

Table I
Transmitted Symbol Streams Are Mapped Bit-wise Labelling

Vectors

s = [s1, s2] 00 01 10 11
b = [b1, b2] 00 01 10 11

Table II
The Structure of the AE-AF System Using MMSE Combinator

Layer × Activation Output
layer No. function neurons
Source node (TxS)

input - P
Encoder FC × 3 relu 64

(Enc) FC linear 2N
Normalization - 2N

Channel Rayleigh - 2N
Noise - 2N

Relay Amplify - 2N
Destination node (RxD)

Combinator MMSE - 2N
Decoder FC × 3 relu 64

(Dec) FC sigmoid P

The source node consists of an input layer and hid-
den layers, which utilize fully connected (FC) layers
with the activation functions of relu/linear. The last
layer performs power normalization. The channel layer
and relay nodes have no training parameters. The
destination node includes an MMSE detector and a
decoder (Dec). The decoder employs FC layers with
the activation functions of relu/linear, while the output
layer of the decoder utilizes the sigmoid function as its
activation function.

3.1.2 The AE-AF System Using the RTN Combinator:
The impact of radio transmission channels leads to a
decrease in the performance of communication sys-
tems. Hence, in several studies [11, 36], communication
systems based on Autoencoder (AE) propose the adop-
tion of a Radio Transformer Network (RTN) served
the purpose of channel estimation and mitigating the
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impact of fading channels to enhance the system’s over-
all performance. Furthermore, AE-based MIMO sys-
tems, which suggested utilizing an RTN network as a
detector, significantly outperform conventional MIMO
systems in work [42].

Hence, we suggest incorporating RTN networks as a
combinator of the AE-AF system (AE-AF-RTN). While
the weight matrix of MMSE combinator W is deter-
mined using the equation (12), the weights and biases
of RTN are automatically learned and updated during a
training phase by minimizing the binary cross-entropy
loss. The destination node structure of the AE-AF-RTN
is represented in Figure 4.

At the first time slot, the signals received at the
destination node and the relay node, yar

1 and yar
sr , re-

spectively, are calculated similarly to (6) and (7), the ar
index represents the AF method using the RTN com-
binator. Within this system, the relay node utilizes the
normalization layer to normalize the power of yar

sr and
transmits it to the destination node during the second
time slot. The relay signal received at the destination
node can be described as follows

yar
2 = Hrd f r

nor(y
ar
sr ) + zd,2 (17)

where the function f r
nor(·) is the normalization function

at the relay node. It is important to note that the relay
node has no training parameters.

Figure 4. The destination node structure of the AE-AF-RTN system.

The RTN1 and RTN2 networks estimate signals x̂ar
1

and x̂ar
2 from received signals yar

1 and yar
2 , respectively,

as follows:

x̂ar
1 = frtn1(yar

1 , Hsd; θar
rtn1)y

ar
1 , (18)

x̂ar
2 = frtn2(yar

2 , Hsr, Hrd; θar
rtn2)y

ar
2 , (19)

where frtn1(·), frtn2(·), θar
rtn1, θar

rtn2 denote the processing
function and the trainable parameters of the RTN1 and
RTN2 networks, respectively. The estimated signals x̂ar

1
and x̂ar

2 are simultaneously inputted into the decoder

via the concatenate layer, and the label b̂ar is estimated:

b̂ar = fdec(x̂
ar
1 , x̂ar

2 ; θdes,ar
dec ), (20)

where fdec(·), θdes,ar
dec denote the processing function and

the trainable parameters of the decoder network at the
destination node, respectively.

3.1.3 Training Procedure of AE-AF Systems: The AE-
AF systems are trained using a dataset that includes
transmitted symbols, noise at the receiver and channel
state information, denoted as s, z = {zr,1, zd,1, zd,2},
and H = {Hsd, Hsr, Hrd}. A set of M-ary modulated
symbols s is randomly generated and labelled by the
bit-wise method as a vector b, fed into the source node’s
encoder. To achieve the best performance for the sys-
tem, the dataset for channels, z and H, should closely
resemble the practical realizations, ideally measured on
an actual channel [46], [37]. However, these methods
require data to be collected in various user activity
conditions, and the data collection time needs to be
sufficiently long. Therefore, to facilitate the evaluation
of the proposed solution in research, datasets are often
generated using Python simulation. The realizations
of H are generated with a Rayleigh distribution, and the
dataset z consists of Gaussian random variables with
a variance of σ2 and a mean value of 0. In addition,
H and z are fed into the transmission channel layer.
The AE-AF systems employ a bit-labelling approach
that incorporates the use of the BCE loss function [33]

LBCE = − 1
B

B

∑
q=1

P

∑
p=1

(bq,p log b̂q,p +(1− bq,p) log(1− b̂q,p)),

(21)
where bq,p denotes the q-th element of label vector
and the p-th label vector of the batch size B; b̂q,p
denotes estimated label vector. The Stochastic Gradient
Descent (SGD) approach is the most popular algo-
rithm for locating optimal parameter sets, θAE, and the
backpropagation method is employed to calculate the
gradient [33]. The parameter set θAE = (θTxS, θRxD) is
updated iteratively in SGD as follows

θn+1
AE = θn

AE − η
∂Ln

BCE
∂θn

AE
, (22)

where η, ∂Ln
BCE

∂θn
AE

denote learning rate, gradient operator
of the n-th iteration, respectively.

The training process stops when the system meets
one of two conditions, either reaching a threshold
value for the loss function (Lth

BCE) or completing a
specified number of iterations (Niter). Upon comple-
tion of the training process, the training parameters
from the transmitter to the receiver are synchronously
optimized. The relay node of the AE-AF system am-
plifies and forwards signals to the destination node,
lacking any training parameters. Consequently, only a
single training phase is required for the entire system,
as described in Algorithm 1. In which SNR is the
range of values of the ratio between signal power
and noise power; θ

a f
TxS is the training parameters of

source node, the a f index represents the AF method;
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θam
RxD = θdes,am

dec and θar
RxD = (θar

rtn1, θar
rtn2, θdes,ar

dec ) respec-
tively represent the receiver nodes’ parameters in the
AE-AF-MMSE and AE-AF-RTN systems, as abbreviated
θ

a f
RxD for both systems.

Algorithm 1 Training AE-AF systems.

Input: b, H, z, SNR, Lth
BCE, Niter.

1 : count = 0
2 : While count ≤ Niter :
3 : for k in range (SNR):
4 : Train AE-AFsrd, calculate LBCE

5 : LBCE = AE-AFsrd. train
(

in =
[
b, H, z;

θ
a f
TxS, θ

a f
RxD

]
, out =

[
b̂
])

6 : end for
7 : if LBCE ≤ Lth

BCE :
8 : break
9 : end if
10 : count+ = 1
11 : end While
Output: Trained parameters: θ

a f
TxS, θ

a f
RxD

3.2 The DF-Based Cooperative MIMO Systems
Using AE Technology

To further enhance performance for on-body com-
munication, we propose DF-based cooperative MIMO
systems using the AE technique with the MMSE com-
binator and the RTN combinator, abbreviated AE-DF-
MMSE and AE-DF-RTN, respectively. The AE-DF sys-
tems offer improved BER performance, but it comes
at the cost of a significant increase in computational
complexity compared to AE-AF systems.

3.2.1 The AE-DF System Using MMSE Combinator:
The AE-DF-MMSE system consists of a source node
(TxS), a destination node (RxD), and a relay node; the
relay node comprises a receiver (RxR) and a transmitter
(TxR), as depicted in Figure 5. The encoder encodes the
bit-wise labelled vector b into the transmitted signal
vector xdm according to equation (5) with the dm index
denotes the DF method using the MMSE combinator.

During the first time slot, the source node simul-
taneously transmits the signal vector xdm to both the
relay and destination nodes. Equations (6) and (7)
respectively represent the received signal vectors ydm

sr
at the relay node and ydm

1 at the destination node.
During the second time slot, the source node ceases

transmission, and the relay node utilizes the MMSE
detector to estimate the transmitted signal b̂dm

r , as
outlined below

b̂dm
r = fRxR(WH

r ydm
sr ; θdm

RxR), (23)

where fRxR(·), θdm
RxR denote the processing function and

the trainable parameters of the decoder at the relay
node, respectively; WH

r is the MMSE detection matrix
calculated using the expression:

Wr =

[
PT
N

Hsr(Hsr)
H + σ2

r,1I2N

]−1 PT
N

Hsr. (24)

Then, the encoder of the relay node (TxR) encodes b̂dm
r

into the signal vector xdm
r as follows

xdm
r = fTxR(b̂dm

r ; θdm
TxR), (25)

where fTxR(·), θdm
TxR denote the processing function of

layers and the trainable parameters of TxR, respectively.

Figure 5. The AE-DF system using MMSE combinator.

Afterward, the vector xdm
r is transmitted to the des-

tination node. The relay signal vector received at the
destination node is given by

ydm
2 = fchan(Hrd, xdm

r , zd,2) = Hrdxdm
r + zd,2. (26)

The destination node combines two received signal
vectors ydm

1 and ydm
2 , then estimated signal vector is

x̂dm = (Wdm)Hydm, (27)

where Wdm =

[
Wdm

1
Wdm

2

]
, the weight matrices Wdm

1 and

Wdm
2 are the weight matrix detector for direct and

forwarding paths, calculated as follows:

Wdm
1 =

[
PT
N

Hsd(Hsd)
H + σ2

d,1I2N

]−1 PT
N

Hsd, (28)

Wdm
2 =

[
PT
N

Hrd(Hrd)
H + σ2

d,2I2N

]−1 PT
N

Hrd. (29)

Vector label estimated b̂ at the destination node is
given by

b̂ = fRxD((Wdm)Hydm; θdm
RxD) = fRxD(x̂dm; θdm

RxD). (30)

Vector b̂ is unlabelled to obtain estimated vector ŝ.
The structural configurations of the source node and
destination node in the AE-DF-MMSE system are anal-
ogous to those of the AE-AF-MMSE system, as pre-
sented in Table II. The difference from the AE-AF-
MMSE system is that the relay node of the AE-DF-
MMSE includes a receiver and a transmitter. The struc-
ture of this relay node is listed in Table III.

3.2.2 The AE-DF System Using RTN Combinator:
Like the AE-DF-MMSE system, the AE-DF-RTN system
employs two time slots for transmitting signals from
the source node to the destination node, involving
both direct and transmission through a relay node, as
depicted in Figure 5. At the relay node, the received
signal is decoded by the relay node, then re-encoded
and forwarded to the destination node.

During the first time slot, the received signal vectors
at the relay node (ydr

sr ) and the destination node (ydr
1 )

can be expressed using equations (6) and (7), respec-
tively, with the dr index represents the DF method
using the RTN detector. The difference between the AE-
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Table III
The Structure of the Relay Node

Layer × Activation Output
layer No. function neurons
Relay receiver (RxR)

Detector MMSE - 2N
Decoder FC × 3 relu 64

(dec) FC sigmoid P
Relay transmitter (TxR)

input - P
Encoder FC × 3 relu 64

(enc) FC linear 2N
Normalization - 2N

Figure 6. The AE-DF system using RTN combinator.

DF-RTN system and the AE-DF-MMSE system is that
the MMSE detectors at the relay and destination nodes
are replaced with RTN networks.

In the second time slot, the vector label b̂dr
r

is estimated

b̂dr
r = f re

dec
(

frtn2
(
ydr

sr , Hsr; θdr
rtn2

)
ydr

sr ; θre,dr
dec

)
, (31)

where frtn2(·), f re
dec(·), θdr

rtn2, θre,dr
dec denote the process-

ing functions and trainable parameters of the RTN2
network and decoder at the relay node, respectively.
Then, the encoder of the relay node encode vector b̂dr

r ,
as follows

xdr
r = fTxR(b̂dr

r ; θdr
TxR). (32)

At the destination node, the estimated signals are re-
ceived via both the direct path and the relay path, as
given by:

x̂dr
1 = frtn1(ydr

1 , Hsd; θdr
rtn1)y

dr
1 , (33)

x̂dr
2 = frtn3(ydr

2 , Hrd; θdr
rtn3)y

dr
2 , (34)

where frtn1(·), frtn3(·), θdr
rtn1, θdr

rtn3 denote the processing
functions and trainable parameters of the RTN1 and the
RTN3 networks at the destination node, respectively.
The signal vectors x̂dr

1 and x̂dr
2 are decoded by the de-

coder of the destination node and unlabelled to obtain
the estimated vector ŝ:

ŝ = Unlabelling( f des
dec(x̂

dr
1 , x̂dr

2 ; θdes,dr
dec )). (35)

3.2.3 Training Procedure of AE-DF Systems: The AE-
DF systems are trained using a dataset that includes
transmitted symbols, noise at the receiver and channel
state information, denoted as s, z = {zr,1, zd,1, zd,2},
and H = {Hsd, Hsr, Hrd}. A set of M-ary modulated
symbols s is randomly generated and labelled by the
bit-wise method as a vector b, fed into the source node’s

encoder. To attain the optimum performance for the
system, the channel datasets, z and H, should closely
mirror the practical realizations, ideally measured on
a real-world channel. However, to ease the evalua-
tion of the suggested approach, datasets, H and z,
with Rayleigh and Gaussian distributions, respectively,
are generated using Python simulation. In addition,
H and z are fed into the transmission channel layer.
The AE-DF systems, which include a direct path and
a relay path, are trained in two sequential phases.
However, when the system only consists of relay paths,
the system only needs to be trained in a single phase,
as in Algorithm 1.

The training phases minimize the function loss BCE,
as in equation (21), and the training parameters are up-
dated according to equation (22) for the SGD method.
The phase training process stops when the system
meets one of two conditions: either the value of the
loss variable reaches a threshold value or the number
of training iterations reaches a predetermined value.
When the training process ends, the system’s parame-
ters are optimized synchronously from the source node
through the relay node to the destination node.

The relay node of the AE-DF system decodes the re-
ceived signal and then re-encodes it for transmission to
the destination node with two training parameters, θRxR
and θTxR. Additionally, the study [36] suggests that
the AE-based cooperative system, employing the DF
method, undergoes training in a single phase, resulting
in suboptimal performance due to the lack of informa-
tion about the estimated signal at the relay node b̂r.
Therefore, to attain optimal performance, we suggest a
two-phase sequential training approach for the AE-DF
system: the first phase optimizes training from TxS to
RxR, and the second phase encompasses training for
the entire system, as described in Algorithm 2. The
parameters and variables of the AE-DF systems are
as follows:

• SNR is the range of values of the ratio between
signal and noise powers;

• Niter is the number of training;
• Lth

BCE1 and Lth
BCE2 are the threshold values of LBCE1

and LBCE2, respectively;
• θ

d f
TxS is the training parameter set of source node of

AE-DF system;
• θdm

RxR = θre,dm
dec and θdr

RxR = (θdr
rtn2, θre,dr

dec ) respectively
represent the parameter set of the relay node’s
receiver of the AE-DF-MMSE system and AE-DF-
RTN system, as abbreviated θ

d f
RxR for both systems;

• θ
d f
TxR is the transmitter’s training parameter set of

relay node;
• θdr

RxD = (θdr
rtn1, θdr

rtn3, θdes,dr
dec ) and θdm

RxD = θdes,dm
dec re-

spectively represent the destination node’s param-
eters of the AE-DF-MMSE system and AE-DF-RTN
system, as abbreviated θ

d f
RxD for both systems.

During the first training phase, the AE-DF system
focuses on training the relay path, including the source
node and receiver of the relay node. In the second
training phase, we train the entire system, both the relay
and direct paths synchronously.
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Algorithm 2 Training AE-DF system.

Input: b, H, z, SNR, Lth
BCE1, Lth

BCE2, Niter.
1 : count = 0
2 : While count ≤ Niter :
3 : for k in range (SNR):
4 : Phase 1: Train AE-DFsr, calculate LBCE1
5 : if LBCE1 > Lth

BCE1 :

6 : LBCE1 = AE-DFsr. train
(

in =
[
b, Hsr,

zr,1; θ
d f
TxS, θ

d f
RxR

]
, out =

[
b̂r

])
7 : end if
8 : Phase 2: Train AE-DFsrd, calculate LBCE2

9 : LBCE2 = AE-DFsrd. train
(

in =
[
b, H, z;

θ
d f
TxS, θ

d f
RxR, θ

d f
TxR, θ

d f
RxD

]
, out =

[
b̂
])

10 : end for
11 : if LBCE2 ≤ Lth

BCE2 :
12 : break
13 : end if
14 : count+ = 1
15 : end While
Output: Trained parameters: θ

d f
TxS, θ

d f
RxR, θ

d f
TxR, θ

d f
RxD

Cooperative DF systems are more complex than AF
systems because they detect and re-modulate at the
relay node. Nevertheless, DF systems outperform AF
systems because they can avoid amplifying noise in
the relay path. Some simulation results in Section 4
illustrate the improvement in DF systems achieved in
specific cases.

4 Simulation Results

This section focuses on simulating and evaluating the
BER performance of the AE-based cooperative MIMO
system in WBAN to mitigate the effects of multi-
path propagation and enhance the link’s reliability. The
transmission channel for the WBAN depends on the
placement of the sensors on the human body. Many
channel models have been proposed for intra-WBAN
networks in specific cases, such as the Lognormal,
Weibull, Rice, and Rayleigh distributions [47–49]. The
Rice and Rayleigh distributions suit narrowband MICS
and ISM in environments with multiple scattering and
reflections. In this research scope, we employ a Rayleigh
channel to simulate and evaluate the performance of
cooperative MIMO systems on the body. This channel
model represents the most challenging scenario among
fading channels [50], when the proposed system per-
forms effectively on the Rayleigh channel, it is expected
to perform well on all other channels.

Furthermore, the system utilizes BPSK modulation
for two-hop communication links supported by the
IEEE 802.15.6 standard. The performance of the pro-
posed AE-AF systems is compared to the performance
of AF-based MIMO systems using the MMSE com-

binator proposed in the study [27], referred to as
baselines called AF-MMSE. Additionally, the perfor-
mance of the proposed AE-DF system is compared to
the performance of the DF-based MIMO system using
the ZF combinator (DF-ZF) in the study [29] and the
MMSE combinator (DF-MMSE), which are referred to
as baselines. The baseline BER performance curves are
simulated using MATLAB R2019b software.

The single-hop communication link (from S1 to D)
can utilize the AE-based MIMO schemes (AE-MIMO),
as presented in the study [42]. Furthermore, the per-
formance of the AE-MIMO system also establishes a
baseline for comparing the performance of the pro-
posed cooperative AE-AF and AE-DF systems. The
performance of the proposed systems is simulated
utilizing Python 3.6 software accompanied by the
Tensorflow 1.14 and Keras 2.0 libraries. All source, relay,
and destination nodes are equipped with equal anten-
nas. Furthermore, the transmit power is normalized
to 1 across the N antennas. For training the proposed
systems, we employ the Adam optimizer [51] having a
learning rate of 0.001. The batch size B is set to 1024 and
the training process is conducted over 50,000 epochs.
Additionally, we consider an SNR range from 5 dB
to 25 dB with a 5 dB interval. Depending on each
system, the threshold values are determined based on
experience. The BER of the baseline and proposed
systems is simulated and evaluated over 104 frames,
each containing 100 symbols.

Figure 7. BER comparison between AE-AF-MMSE and the conven-
tional AF-MMSE for N = 2, 3, 4.

First, we simulate the proposed systems in the sce-
nario where the signal is transmitted from the source
node to the destination node through direct and relay
paths. The performance of the AE-AF-MMSE, AE-AF-
RTN, AE-DF-MMSE, and AE-DF-RTN systems is de-
picted in Figures 7, 8, 10 and 11, respectively.

Figure 7 compares the BER performance of the AE-
AF-MMSE system and the AF-MMSE system [27], the
conventional MIMO using MMSE detector system with
N = 2, 3, 4, the Lth

BCE threshold value of these systems is
equal to 10−6. Specifically, with N = 2, the BER perfor-
mance of the AE-AF-MMSE system allows for an 8 dB
gain compared to the BER performance of the MIMO-
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Figure 8. BER comparison between AE-AF-RTN and AE-AF-MMSE
systems with N = 2, 3.

Figure 9. BER comparison between AE-AF-RTN and the conventional
AF-MMSE with N = 2 and L = 1, 2, 3.

MMSE system at a BER of 10−3. Meanwhile, compared
to the AF-MMSE system, the proposed system allows
for respective improvements of 2 dB and 3 dB when
using 2 and 4 antennas at BER = 10−3.

Next, we simulate and compare the BER performance
of the AE-AF-RTN and AE-AF-MMSE systems with
N = 2, 3 as shown in Figure 8. The BER curves of the
AE-AF-RTN system exhibit steeper slopes compared to
the AF-MMSE, AE-AF-MMSE, and AE-MIMO systems,
indicating that AE-AF-RTN achieves higher diversity
gain than the other systems. The BER performance of
the AE-AF-RTN system is compared to the AE-MIMO-
RTN [42], AE-AF-MMSE and AF-MMSE systems. With
N = 2, the BER performance of the AE-AF-RTN sys-
tem improves by 4 dB, 5.5 dB and 7.5 dB compared
to AE-MIMO-RTN, AE-AF-MMSE and AF-MMSE sys-
tems, respectively, at the BER of 10−3. Similarly, at
BER = 10−3, the AE-AF-RTN system outperforms AE-
AF-MMSE and AF-MMSE systems with gains of 3.5 dB
and 6 dB, respectively, when all systems are equipped
with three transceive antennas. However, the quantity
of points in the constellations increases quickly as AE-
AF-RTN increases the number of transmit antennas.
As a result, when the system encounters interferences
such as low SNR and fading channels, there are more

mistakes in estimated signals at the receiver, which
causes a rapid fall in system performance. Additionally,
we note that whereas the weight matrix of the MMSE
combinator in the base system and the proposed AE-
AF-MMSE system are computed based on specific SNR
values, as in equal (12), the learning parameters of
the RTN combinator in the AE-AF-RTN system are
automatically learnt through training over a range of
SNRs. Therefore, the simulation results show that the
BERs of AE-AF-MMSE and AF-MMSE with N = 3 are
better than with N = 2, while the BERs of AE-AF-RTN
with N = 3 are worse than with N = 2. simultaneously,
at a low SNR range (SNR < 5 dB), the performance
of AE-AF-RTN with N = 3 is poorer than the other
two systems.

Figure 10. BER comparison between AE-DF-MMSE and DF-MMSE
with N = 2.

When the direct transmission is severely affected
by extensive propagation loss due to the influence of
activities and the position of the WBAN user, the signal
from the source to the destination can only rely on the
assistance of one or several relay nodes. In this scenario,
the BER performance of the proposed systems, AE-AF-
RTN and AE-DF-RTN, is illustrated in Figures 9 and 12,
respectively.

We simulate the AE-AF-RTN system with N = 2,
where the system communicates through L relay paths
with and without a direct path. With L = 1, 2, 3, the BER
performance of the proposed system is compared with
that of the AF-MMSE system, as shown in Figure 9. The
BER curves of the AE-AF-RTN systems exhibit steeper
slopes compared to the BER curves of the AF-MMSE
systems in cases with and without a direct link. This
indicates that the proposed systems using AE technique
achieve higher diversity gain compared to baseline
systems that do not use AE technique. With L = 1,
meaning the system only uses a relay path, abbreviated
as 1relay, the BER of the system using RTN improves
by about 10 dB compared to the AE-AF-MMSE at
BER = 2.10−2 and Lth

BCE = 2.10−3. When the
systems use 2 and 3 relay paths, abbreviated as
2relay and 3relay, respectively, Lth

BCE = 10−4, the pro-
posed system improves by 9.5 dB and 6.5 dB at
BER = 10−3, respectively, compared to the AF-MMSE
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system. The AE-AF-RTN cooperative system with 3relay
achieves a BER performance close to that of the system
using one direct path and one relay path. When the
systems have the number of relay paths L = 1, 2, 3,
respectively, the BER curve gradually decreases, which
means the performance of the systems improves. How-
ever, the system will have to pay the cost of computa-
tional complexity and energy consumption. Assuming
that the transmission power of the source node and
relay nodes is normalized to 1, the system’s power
consumption will increase as the number of relay nodes
increases. Table IV lists the total transmission power of
the system in various simulation scenarios. It is clear
that the cooperative system with one direct transmis-
sion path and one relay path, which provides the best
BER performance and the lowest power consumption, is
the best-case situation. In the specific case where there
is no direct path, depending on the requirements of
each application, we choose the system configuration
with the most suitable value of L.

Table IV
Total Power Consumption of Both Baseline and the Proposed

Systems in Different Cases

w/direct 1relay 2relay 3relay
Number of 1 source, 1 source, 1 source 1 source,

Node 1 relay 1 relay 2 relay 3 relay
Total power 2 2 3 4

Next, we will simulate and compare the AE-DF-
MMSE system’s performance with conventional sys-
tems’ performance with the same number of receiv-
ing/transmitting antennas equal to 2, as shown in
Figure 10. As a result, the BER of the AE-DF-MMSE
system achieves a gain of 1.5 dB compared to the
BER of the AE-AF-MMSE and DF-MMSE systems at
BER = 10−3. At the same time, the BER of AE-DF-
MMSE is respectively better than the BER of AF-MMSE
and DF-ZF [29] by 3 dB and 12 dB at the BER of 2.10−3.

Figure 11 compares the BER performance of the
AE-DF-MMSE system and the DF-MMSE system in
cases where the system uses different numbers of
antennas, N = 2, 3, 4, the threshold values of these
systems, Lth

BCE1 and Lth
BCE2, are equal to 10−3 and 10−6,

respectively. As the number of receiving/transmitting
antennas increases, the performance of both DF-MMSE
and AE-DF-MMSE systems improves because the sys-
tems receive spatial multiplexing gain. Specifically, at
BER = 10−3, the performance of the proposed systems
achieves gains of 2 dB, 3 dB, and 4 dB, respectively,
compared to the performance of the conventional sys-
tems with N = 2, 3, 4.

Figure 12 compares the BER of AE-DF-RTN and
DF-MMSE systems equipped with two transmit-receive
antennas in cases with and without direct transmission
paths. In the case where the system uses only one relay
(1relay) and cooperates directly with the relay (w/direct),
the AE-DF-RTN system achieves higher diversity gain
than the DF-MMSE system, as the BER curve of the

Figure 11. BER comparison between AE-DF-MMSE and conventional
DF-MMSE with N = 2, 3, 4.

Figure 12. BER comparison between AE-DF-RTN and conventional
DF-MMSE with and without direct paths.

system using AE is steeper than that of the baseline
system. Meanwhile, in the case of using two relays and
three relays, the proposed system achieves increased
utility without increasing diversity gain because all sys-
tems have the same BER curve slopes. When there is no
direct transmission path, the system can use different
numbers of relay paths, L = 1, 2, 3. Specifically, for
L = 2, 3, Lth

BCE = 5.10−6 the performance of the pro-
posed system achieves gains of 3 dB and 5 dB, respec-
tively, compared to the BER of the DF-MMSE system at
BER = 10−3. In addition, for L = 1, the BER of the pro-
posed system is 11 dB better than the BER of DF-MMSE
at BER = 8.10−3 and Lth

BCE = 3.10−4. Additionally, The
AE-DF-RTN system that uses one direct transmission
path and one relay path (w/direct), trained with two
sequential phases with Lth

BCE1 = 2.10−5, Lth
BCE2 = 5.10−7,

achieves a better BER performance than the system us-
ing three relay paths (3relay). The system’s performance
is greatly enhanced when numerous relay paths are
used. However, as shown in Table IV, the system must
pay a price in the form of higher computing complexity
and power consumption.
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5 Conclusion

The paper introduces AE-AF and AE-DF systems in-
corporating MMSE and RTN combinators, operating
over a flat Rayleigh fading channel for on-body com-
munication, in compliance with the IEEE 802.15.6 stan-
dard. Trained and synchronized learning parameters
from the transmitter to the receiver, optimizing training
parameters in a single phase or two sequential phases,
the proposed schemes enhance the BER performance
compared to conventional schemes such as AF-MMSE,
DF-ZF, and DF-MMSE, assuming perfect CSI.

Additionally, the AE-DF systems demonstrate en-
hanced Bit Error Rate (BER) performance compared
to the AE-AF systems, attributed to the absence of
noise amplification at the relay node. However, the AE-
DF systems incur increased computational complexity
and more learning parameters at the relay node as
trade-offs.

Moreover, the shadowing phenomenon is an impor-
tant factor in shaping the characteristics of the body
channel and significantly impacts the reliability of the
communication process. Therefore, we continue to re-
search solutions to reduce the computational complex-
ity of the system and to address shadowing in WBANs.
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