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Abstract– A well-prepared abstract enables the reader to Small Cell (SC) models and unmanned aerial vehicles (UAVs)
acting as aerial relay stations (ARSs) are both promising advancements in the development of upcoming wireless networks
that contribute significantly to improving the overall service quality. In this work, we rely on the Multi-ARS Cell-Free (CF)
model, where a large number of ARS coordinated by the ground base station (GBS) and cooperate to serve a large number
of users within the same frequency and time resources, to develop the uplink of a multi-ARS SC system, in which each
user is served by only one ARS. The time division duplex (TDD) mechanism is used for the communication protocol, and
the Minimum Mean Square Error (MMSE) method is implemented to estimate the uplink channel. We derive a closed-form
expression for uplink user throughput. In addition, we introduce the ARS selection method based on channel conditions
and propose the Bisection algorithm to optimize uplink power. The system performance is evaluated by the cumulative
distribution function (CDF) of user throughput according to different parameters, such as the number of ARS, the number
of users, the number of antennas, and the length of pilot sequences with/without power optimization. The results reveal
that the ARS selection method is effectively resolved to reduce complexity and improve the practicality of the proposed
system, and the power optimization problem brings better throughput than non-optimization.

Keywords– Small cell, multi-ARS, power optimization, ARS selection.

1 Introduction

Wireless technology has undergone a significant evolu-
tion since inception. The future of wireless technology
is promising with the development of 5G networks, the
Internet of Things (IoT), and artificial intelligence (AI).
Advanced communication systems make a manifold
increase in the number of interconnected devices, offer
high-speed data transmission capabilities, near real-
time responsiveness [1]. The rapid development and
widespread adoption of 5G technology have promoted
the design of wireless systems beyond 5G (B5G), which
requires a higher network density and mobile data
usage than previously seen. To meet the requirements
of advanced communication systems, Small Cell (SC)
geometry is being considered to improve coverage and
capacity in dense urban [2].

The SC models consist of low-power cellular access
nodes which play a vital role in the architecture of
5G wireless networks. These nodes are designed to
enhance network coverage and capacity in areas with
high network traffic or limited coverage. As compared
to traditional cellular towers, SC is more cost-effective,
requires less space and consumes less power [3]. Effec-
tive SC deployment scenarios were examined in terms
of signal-to-interference-plus-noise ratio (SINR) perfor-
mance by Pak et al. [4]. The complexity of the deploy-
ment problem is increased by cross-cell interference
(between the macrocells and small cells) and inter-cell
interference (between small cells), which remains a sig-

nificant obstacle for the SC deployment. Moreover, the
implementation of the SC model suffers from a major
handover problem between cells [5]. 5G mobility man-
agement in ultra-dense small cells (UDSC) networks
using reinforcement learning techniques especially han-
dover (HO) management in UDSC scenario has been
studied and addressed the problem concisely [6].

With the ability to operate at high altitudes and adapt
to changing environmental conditions, ARSs systems
offer a unique platform for enhancing the performance
of wireless networks and providing users with a seam-
less, high-quality experience [7]. The utilization of ARSs
allows the greater spatial and time diversity of the wire-
less signals. The integration of ARSs communication
and the SC models is a promising solution for enhanc-
ing the coverage and quality of service in high mobility
environments and presents an innovative opportunity
for the communications technology industry.

The base stations of current cellular networks are
lack of flexibility and maneuverability. To address the
limitations, various technologies have been proposed in
the literature, and the use of ARSs communication has
emerged as a promising solution. Using ARSs offers
several benefits for terrestrial networks, such as cost-
effectiveness, efficient coverage of a large area, reliable
coordination with ground communication devices, a
robust backup network [8]. ARSs are proving to be
more effective than terrestrial relay stations in various
scenarios [9]. This is possible because ARSs are mobile,
flexible, and can access unreachable locations, increas-
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ing the Line-of-Sight (LoS) probability [10]. The practi-
cal matters such as analyzing the deployment, perfor-
mance, resource management, trajectory optimization,
channel modeling, and realizing aerial base stations
have been carefully examined [11]. A framework uti-
lizing stochastic geometry was presented to analyze
downlink coverage and ergodic capacity in an ARS-
assisted millimeter-wave cellular network [12].

In this paper, we present a novel SC model that
eliminates the "cell" concept and its negative impacts
by relying on the CF model. Simultaneously, ARSs
are utilized in our model to achieve better channel
conditions and enhance the system’s flexibility.

1.1 Motivation

From surveying the status of research that has been
carried out in the field of the SC and ARSs, we see that
combining the SC and ARSs is a new research direction
with great practical potential for the following reasons:

Firstly, although the conventional SC model brings
great efficiency in improving system quality, the model
faces to the problem of cell-to-cell handover and high
interference among cells when the number of separate
small cells grows too large. To address the issues,
there is a need for a new approach to advance the
conventional SC model. One possible solution is to
move away from the concept of "cells" and adopt a more
flexible approach to network design.

Secondly, the integration of the ARSs and the SC
model is a relatively new research area that has not
been extensively explored, especially, a completely new
SC model, which is developed taking into account the
absence of "cells" concept as CF models. Combining
ARS and the SC technology can create a new model
that offers several advantages over traditional wireless
communication systems including a high probability of
LoS communication, adaptable deployment, and effi-
cient signal processing.

Finally, one of the most particularly important prob-
lems is power optimization, especially with the advent
of the ARS communication. The primary goals of power
optimization are to minimize interference between dif-
ferent network components and extend the lifespan of
wireless networks.

1.2 Contribution

Summary of the principal contributions of this paper
follows as:
• We develop the uplink SC model based on the

CF system [13], in which each user is served by
a single ARS. ARSs select users based on optimal
channel conditions for effective communication.

• We design the channel model according to the
standard for Enhanced LTE Support for Aerial
Vehicles provided by International Telecommuni-
cation Union (ITU) and Generation Partnership
Project (3GPP) [14]. The TDD protocol is applied,
and the MMSE method is used for the uplink
channel estimation.

• We determine the closed-form expression for the
system in terms of the uplink throughput and
present a strategy for optimizing the power coeffi-
cient of the uplink.

• We evaluate system performance by comparing the
throughput achieved per user with and without
optimization. This evaluation is performed by ex-
amining the impact of system parameters, includ-
ing the number of ARS, the number of antennas
per ARS, the number of users, and the length of
the pilot sequences.

The rest of paper is organized as follows. In
Section 2, we describe the SC multi-ARS system model.
The uplink data transmission and ARS selection prob-
lems will be solved in Section 3. Section 4 presents
uplink power the optimization problem. Section 5
brings the numerical results and accompanying re-
marks, while the conclusion is presented in Section 6.
For ease of reference, Table I has been organized to
display the mathematical symbols’s notations.

Table I
Mathematical Symbols in This Paper

Notation Description
(.)∗ Conjugate
(.)H Conjugate-Transpose

E {·} Expectation operator
∥.∥ The Euclidean norm
IN The N × N identity matrix

Cm×n A vector or matrix with size of m× n
ηu

k Uplink data power control coefficient
ηk Pilot power control coefficient
K Number of Users
M Number of antennas at ARS
A Number of ARSs

2 System Model

We first deploy the Multi-ARS CF system with A ARSs
and K terrestrial users (K < A) [13], as displayed in
Figure 1. All ARSs are equipped with M antenna while
all users are equipped with a single antenna. They are
randomly located in a large area (S km2). Moreover,
ARSs are connected to the ground base station (GBS)
through an ideal backhaul which has infinite capacity.

The application of the TDD protocol is used in the
network-wide communication protocol [15]. The co-
herence interval is comprised of four distinct phases,
namely uplink training, uplink data transmission,
downlink training and downlink data transmission that
is displayed in Figure 2. Furthermore, the model is
implemented with the underlying assumption that all
ARSs efficiently serve users by utilizing the same time-
frequency resource concurrently. Depending on the
needs of the system, there are many different strategies
for selecting the active ARS set.

Then we introduce a new SC model based on the CF
model. In this model, instead of multiple ARS being
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Figure 1. The system model of multi-ARS SC.

Figure 2. Time-division duplex (TDD) protocol.

activated to serve users, each user selects only one
suitable ARS to communicate with at a certain time.
Therefore, in contrast to CF Massive MIMO, the channel
in SC systems does not harden [16]. That is the reason
for the need to have channel estimation in both uplink
and downlink, so the coherence interval must include
a total of four phases. We denote τc to be the coherence
interval length in frequency-time samples at which the
channel is stable, τp is the length of the uplink training
phase with τp ≤ τc. τu and τd are the uplink and
downlink transmission intervals, respectively.

The channel is affected by both small-scale fading
and large-scale fading. Large-scale fading in the deploy-
ment scenario where ARSs are located at a relatively
high altitude is mainly affected by path loss. During
each coherence interval, the small-scale fading is as-
sumed to remain static, while changing independently
from one coherence interval to the next. On the other
hand, the large-scale fading exhibits a much slower rate
of change and remains constant for several coherence
intervals [17].

In this work, the channel coefficient vector between
ath ARS and kth user is illustrated by gak ∈ CM×1.
Channel coefficient vector is determined as follows [18]

gak =
√

βlkhak, (1)

where βak is the large-scale fading coefficient and
hak ∈ CM×1 is a small-scale fading vector that is inde-
pendently and identically distributed (i.i.d.) CN (0, IM)
random variable (RV) vectors.

The value of βak is determined by the path loss
between the ARSs and the intended users. Large-scale
fading coefficient βak is written as [18]

βak = 10
PLak

10 , (2)

where PLak denotes the path loss in decibels. In this
paper, we consider PLak in the urban micro (UMi) sce-
nario, which is provided based on the 3GPP standard
support for aerial vehicle at [14, Table B-2]

PLak = (3)
PLLoS = max {PL′, 30.9+(

22.25− 0.5 log10 (hARS)
)

log10 (d3D) + 20 log10 ( fc)
}

PLNLoS = max {PLLoS, 32.4+(
43.2− 7.6 log10 (hARS)

)
log10 (d3D) + 20 log10 ( fc)

}
,

where PL′, PLLoS, and PLNLoS indicate respectively the
free space path loss, LoS/NLoS path loss of ARSs in the
UMi situation. fc is the carrier frequency and the height
of ARS is hARS with 22.5m ≤ hARS ≤ 300m. d3D is the
three-dimensional distance between the ARS and users.

In comparison with the ground-based CF model, the
communication channel between ARSs and users in the
ARSs-based system is generally better. The reason is
that LoS is consistently present in communication, and
shadow fading also can be disregarded in this scenario.
Additionally, unlike the ground-based CF models, the
ARSs-based model can be deployed flexibly and easily,
which makes our model suitable for several specific
communication scenarios such as search and rescue,
smart cities, disaster recovery, etc.

Compared with the Multi-ARS CF model, the Multi-
ARS SC model is more energy-saving and has a
lower backhaul overload probability. Moreover, the ARS
selection algorithms, power optimization algorithms,
and signal processing in the Multi-ARS SC model is
much simpler.

3 ARS Selection and Uplink Data

Transmission

3.1 ARS Selection

In the SC systems, each user is served exclusively
by a single ARS at a certain time. The criterion for the
selection is that ARSs select the user with the highest
average received useful signal power, the kth user is
only linked to the ARS with the largest large-scale
fading coefficients. That is completely reasonable in the
context that the channel under consideration is mainly
affected by βak in terms of expectation. Therefore, the
channel with the largest βak coefficient have the best
status for efficient communication.

The decisions of the uplink handshake are carried out
at each individual ARSs without the need to transmit
uplink CSI to the CPU. After the uplink training phase,
the ARSs obtained CSI from all users. At each ARSs, all
users are sorted in descending order of βak. The user
with the highest βak is selected to be paired with the
ARS. Selected user broadcasts its state information to
all of ARSs to announce that it have been selected and
the next ARSs need to remove it from the available list.
This process is sequentially carried out at all ARSs in
the system. We denote ka is the user chosen by ARS ath

ka ≜ max
k∈{available users}

βak. (4)
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Thus, to select effectively according to the above plan,
the ARS must estimate the channel accurately. The ARS-
user pairing process is demonstrated by the algorithm
as follows

Algorithm 1 ARS selection
1: Initialization: Set the selection order of ARSs,

a = 1.
2: Find optimal user: ath ARS finds appropriate user

from users set according to βak.
• Sort users in descending order of βak:
{βa1, βa2 · · · , βaK} →

{
β̂a1, β̂a2 · · · , β̂aK

}
where β̂a1 ≥ · · · ≥ β̂aK

• Choose a user whose Large scale
fading coefficient is determined as:
max

{
β̂a1, β̂a2 · · · , β̂aK

}
= β̂a1

3: Update: Increase the value of a ← a + 1. If a ≤ A,
return to Step 2. Otherwise, end the algorithm and
return the results.

The ARS selection algorithm described above is quite
simple and achieves local optimality at each ARSs. Suc-
cessfully addressing the ARS selection problem makes
the model simpler in signal processing and power op-
timization. The algorithm aims to design a flexible SC
model that performs well in various scenarios and can
be deployed quickly. However, the global optimal has
not been well addressed because the result is heavily
depended on the order in which ARSs select users.

3.2 Uplink Data Transmission

In the uplink, ARSs initially estimate the channels by
utilizing pilots transmitted from users. We use MMSE
technique [19] to detect pilot signals during the uplink
training phase. In this phase, all users simultaneously
send their pilots to ARSs and then ARSs utilize the
received pilot data to estimate the channel coefficients.
The so-obtained channel estimates are used to detect
the desired signals. The pilot sequence from kth user is
denoted by ϕk ∈ Cτp×1, assuming ∥ϕk∥

2 = 1 ∀k.
The AP that paired with the kth user is symbolized

as ak. The channel coefficients obtained after MMSE
estimation can be expressed as follows

ĝakk = gakk − εakk, (5)

where εakk denotes the channel estimation error vec-
tor. Due to the properties of MMSE estimation, εakk
is independent of the estimated channel coefficients
ĝakk. Besides, each element of the estimated channel
vector ĝakk is CN (0, ωakk) and each element of εakk is
CN (0, βakk −ωakk) where

ωakk ≜
τpρpβ2

akk

τpρp
K
∑

k′=1
βakk′

∥∥ϕH
k ϕk′

∥∥2
+ 1

. (6)

Let ρu be the normalized uplink SNR and ηu
k be

the power control coefficient at the kath user with
0 ⩽ ηu

k ⩽ 1.
√

ηu
k qk, where E

{
|qk|2

}
= 1, is the symbol

of kth user. The expression for the signal acquired at
the akth ARS can be formulated as

yu
ak
=

√
ρu

K

∑
k′=1

gakk′
√

ηu
k′qk′ + wu

ak

=
√

ρuĝakk

√
ηu

k qk +
√

ρu”akk

√
ηu

k qk (7)

+
√

ρu
K

∑
k′ ̸=k

gakk′
√

ηu
k′qk′ + wu

ak
,

where wu
ak

is additive Gauss noise. The first term of
equation (7) is the desired signal while the second and
the third terms are the error in channel estimation,
and the interference by other users, respectively. The
uncorrelated effective noise can be considered as the
last three terms of equation (7) in order to determine
the achievable uplink rate for the kth user.

Analyzed yu
ak

into four components as follows

yu
ak
= Dak qk + Cak qk +

K

∑
k′ ̸=k

Ikk′qk′ + wu
ak

(8)

where

Dak =
√

ρuĝakk

√
ηu

k

Cak =
√

ρuεakk

√
ηu

k

Ikk′ =
√

ρu gakk′
√

ηu
k′

Therefore, the uplink rate can be calculated at GBS as
follows

Ru
k = (9)

log2

1 +

∥∥Dak

∥∥2

E
{∥∥Cak

∥∥2
}
+

K
∑

k′ ̸=k
E
{
∥Ikk′∥2

}
+ 1



The GBS in the proposed system performs several
tasks such as signals receiving and demodulating, re-
source coordinating, implementing optimization algo-
rithms, etc. As a result, we derive the closed-form
equation to calculate the achievable uplink rate as
equation (10)

Although the channel is not harden,
∣∣∣[ĝakk

]
m

∣∣∣2 is
exponentially distributed with mean ωakk therefore the
uplink rate can be expressed in closed form in terms of
the exponential integral function Ei(.) as

Ru
k = − (log2e) e

1
ωakk Ei

(
− 1

ωakk

)
, (11)

where

ωakk ≜ (12)
Mρuηu

k ωakk

Mρuηu
k
(

βakk −ωakk
)
+ Mρu

K
∑

k′ ̸=k
ηu

k′βakk′ + 1
.
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Ru
k = E

log2

1 +
ρuηu

k

M
∑

m=1

[
ĝ∗akk

]
m

[
ĝakk

]
m

Mρuηu
k

(
βakk −ωakk

)
+ Mρu

K
∑

k′ ̸=k
ηu

k′βakk′ + 1


 . (10)

Ei(.) is defined at [20, Equation (8.211.1)] as

Ei (x) = −
∞∫
−x

e−t

t
dt =

−x∫
∞

e−t

t
dt = li (ex)

with x < 0. (13)

4 Uplink Power Optimization

Transmitting data at the same power at all users is
a limited solution that causes many negative impacts
on the performance of the system. One of the impacts
that we are most concerned is the energy issue of
users, especially in the context of users being com-
pact, economical and highly portable mobile devices.
Furthermore, uniform transmit power results in high
user interference levels. Therefore, we propose the up-
link power control algorithm to the solve above prob-
lems, max-min power control which can be formulated
as follows

max
{ηu

k }
min

k=1,...,K
Ru

k

θ ≤ ηk ≤ 1, ∀k = 1, . . . , K.
(14)

Because the value of Ru
k is a monotonically increasing

function of ω̄akk. Therefore, (14) is equivalent to

(P1) :max
{ηu

k }
min

k=1,...,K
ω̄akk (15a)

θ ≤ ηk ≤ 1, ∀k = 1, . . . , K, (15b)

(P1) problem is the maximum problem of min
k=1,...,K

ω̄akk

with respect to the ηu
k variable. To solve the (P1)

optimization problem, the objective function and con-
straints must be linear or quasi-linear. It can be seen
that (15b) is a linear function while the objective func-
tion in (15a) is not guaranteed to be linear. We trans-
form (15a) equation by using the slack variable t, where
t is upper bound of min

k=1,...,K
ω̄akk [21, Chapter 5, 6].

Therefore, the (P1) problem has an additional constraint
as t ≤ ω̄akk.

Thus, (P1) is rewritten as follows

(P2) : max
{ηu

k },t

t (16a)

t ≤ ω̄akk, k = 1, . . . , K (16b)
0 ≤ ηu

k ≤ 1, k = 1, . . . , K. (16c)

The (P2) problem is a quasi-linear program and
can be effectively addressed by using a Bisection
method [21, p.116].

Algorithm 2 Bisection Algorithm for Solving Quasi-
linear Problem

1: Initialization: Select the initial values of tmin and
tmax, where tmin and tmax determine a range of
relevant values of the objective function in (P2).
Define a tolerance value ϵ > 0

2: Solve the feasibility problem Set t← tmin+tmax
2 .

• Solve the feasibility of quasi-linear problem in
(P2).

3: Update : If the problem in (P2) is feasible: set
tmax ← t, else: set tmin ← t. end

4: Check: If tmax − tmin ≤ ϵ: Stop and return t̃ ←
tmin+tmax

2 . Else: return to step 2

The Bisection algorithm divides the interval into
two equal parts, gradually reducing the distance be-
tween the endpoints to find the optimal point. The
Bisection algorithm is a reliable technique for simple
functions, providing an approximate solution. The pre-
cision depends on the tolerance value, with a smaller
tolerance resulting in a closer approximation. However,
the consequence is increasing the number of iterations
making the system more complex and expand the
optimization process.

5 Numerical Results and Discussions

We evaluate the performance of the uplink SC multi-
ARS system by comparing the performance of the
system with and without power optimization under
the impact of varying the relevant parameters such as
the total number of ARSs (A), the total number of
users (K), the number of antennas at each ARS (M)
and uplink pilot length (τp). All users and ARSs are
randomly and consistently distributed within the same-
sized square S× S km2.

5.1 Parameters and Setup
The parameters shown in Table II are utilized in

all of the experiments. ARSs are randomly distributed
according to a Continuous Uniform Distribution in a 3D
space within a 1× 1 km2 area, and the heights range is
22.5m ≤ hARS ≤ 300m. The distance has been clearly
expressed and calculated in the Path Loss equation of
the channel model (LoS-NLoS). ARS selection strategy
based on large-scale fading coefficients is used in this
mode. For the case without power control: all users
communicate at full power, i.e., ηu

k = 1, k = 1,..., K,
while for the case with power control, each user flex-
ibly controls the transmit power based on the power
control coefficient. Coefficients are found according to
the algorithm presented previously in Section 4. In our
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Table II
Parameters of the System Used for Simulation

Parameter Value
Carrier frequency 1.9 GHz

Bandwidth (B) 20MHz
Coherence bandwidth (Bc) 200 KHz

Coherence time (Tc) 1 ms
The noise figure (NF) 9 dB

ARS height 22.5m ≤ hARS ≤ 300m
ρp, ρu 100, 100 mW

Coherence interval τc 200 samples
Area distribution of ARS and K users (S) 1 km2

experiments, we have computed the CDF for the uplink
throughput of each user. This has been achieved by
implementing the specified scenario.

5.2 Results and Discussions
In Figure 3, we illustrates the system performance of

the conventional SC model with an AP located on the
ground and the SC model with UAVs serving as ARSs.
The parameters for both systems are set to be the same:
A = 15, K = 10, L = 1, τp = 10. The simulation results
have clearly demonstrated that the system utilizing
UAVs exhibits better performance compared to the con-
ventional SC system. The reason for this improvement
is that UAVs flying at higher altitudes provide favorable
conditions for better channel transmission, as LoS is
consistently present and shadow fading is eliminated.
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Figure 3. CDFs of the per-user throughput for the cases of conven-
tional SC and Multi-SC SC, K = 10, A = 15, M = 1, and τp = 10.

In order to highlight more about the impact of the
number of users on the performance, we compare
the CDF of the per-user uplink throughput with and
without uplink data transmission power optimization
with parameters A = 15, M = 1 and τp = 10 , and
varying K = 8, 10, 12 in Figure 4.

It is clear to see that the system with power op-
timization provides superior performance compared
to the system without optimization. Specifically, when
K = 8, the 90%-likely throughput per user with power
optimization is approximately 3.6 Mbits/s. Meanwhile,
without for power optimization is 9 times lower at only
about 0.4 Mbits/s. The reasonable explanation is that
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Figure 4. CDFs of the per-user throughput for the cases of uplink data
transmission power optimization and without power optimization,
K = 8, 10, 12, A = 15, M = 1, and τp = 10.

in the models without uplink power control have large
interference levels at the receiver. Moreover, we also
see in Figure 4 that system quality decreases as the
number of users increases. The reason is that system
performance is evaluated based on per-user throughput
instead of total throughput. The smaller the number
of users compared to the number of ARS, the greater
the possibility of users having a good communication
channel. Because there will be additional backup paths
for bad channel conditions.
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Figure 5. CDFs of the per-user throughput for the cases of uplink data
transmission power optimization and without power optimization,
A = 13, 15, 17, K = 10, M = 1, and τp = 10.

Similar conclusions are also demonstrated in Figure 5
with the changed number of ARSs. As A increases,
the redundancy in channel selection becomes higher.
Therefore, the increasing probability of choosing a good
channel increases the overall performance.

In Figure 6, the variation in performances of the
systems with the changed number of antennas per
ARS M is illustrated. When the number of antennas
per ARS increases, the enhancement of diversity gain
leads to an improvement in throughput. The larger the
number of antennas at each ARS, the more significant
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the improvement is made. Specifically, as we can see
in Figure 6, the improvement in system performance
becomes very obvious with M = 3.
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Figure 6. CDFs of the per-user throughput for the cases of uplink data
transmission power optimization and without power optimization,
M = 1, 2, 3, A = 15, K = 10, and τp = 10.

Finally, we demonstrate the impact of pilot length
τp in Figure 7. Within a certain limit, increasing pilot
length helps improve per-user throughput because the
channel coefficient is estimated more accurately. As τp

increases, the number of orthogonal pilots in the pilot
set allocated to users increases. The result is that pilot
contamination is eliminated, leading to enhancement
in the quality of channel estimation and a reduction
in coherent interference simultaneously. This improve-
ment is shown to be the largest when raising τp = 5
to τp = 10. However, when τp increases further, the
improvement only marginally enhances. For example,
τp = 20 and τp = 25 show quite similar performance.
The reason is that when the pilot interval is excessively
long, it consequently shortens the uplink data interval,
leading to a reduction in data throughput.
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Figure 7. CDFs of the per-user throughput for the cases of uplink data
transmission power optimization and without power optimization,
τp = 5, 10, 15, 20, 25, A = 15, K = 10, and M = 1.

6 Conclusion

In this paper, we introduced the Multi-ARS SC model
with ARSs and users located randomly in a spe-
cific area. The proposed model achieves better per-
formance than conventional ground-based SC systems.
Morevover, the power optimization algorithm has also
been applied in our model to enhance total system per-
formance. The performance evaluation of the suggested
system was conducted in multiple scenarios with differ-
ent numbers of ARS, numbers of antennas at each ARS,
numbers of served users and length of pilot intervals.
The results show that the power optimization algorithm
gives superior performance. The pairing of the ARS and
user in the uplink is performed at the ARS based on the
principle of the highest large-scale fading coefficient.
The proposed ARS selection Algorithm is simple and
achieves local optimality. However, the global optimal
has not been well addressed. Therefore, several more
optimal selection algorithms will be investigated in the
future works.
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