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Abstract– Liver vessel segmentation in contrast-enhanced CT (CECT) images has a significant role in the planning stage
for liver cancer treatment, such as radiofrequency ablation (RFA). Lowering the radiation dose in CECT imaging to reduce
radiation risk to the patient degrades the quality of the image and potentially affects the liver vessel segmentation. In recent
years, the convolutional neural network (CNN) has shown significant achievement in medical image analysis, including
segmentation and denoising tasks. This paper presents a study on a new framework consisting of three well-known
denoising techniques, including vessel enhancing diffusion (VED), RED-CNN, and MAP-NN, along with the state-of-the-
art segmentation method (nnU-Net) to segment the liver vessels in CECT images. We quantitatively evaluate the impacts
of denoising techniques on the vessel segmentation on multi-level simulated low-dose CECT images of the liver. The
performances of the liver vessel segmentation method combined with the denoising techniques are evaluated using Dice
score, sensitivity metric, and processing time. In addition, the effect of denoising on the surface roughness of the segmented
liver vessel is also investigated. The experiments show that the image denoising techniques improve the quality of liver vessel
segmentation on high noisy CECT images while also reducing the segmentation accuracy on low-noise-level CECT images.

Keywords– Liver vessel segmentation, CNN, low-dose CECT, RFA, MAP-NN, VED, RED-CNN.

1 Introduction

Liver vascular analysis is an essential step in the di-
agnosis and treatment of liver-related diseases [1]. In
the functional anatomy of the liver, information about
the liver vascular system (especially the main branches)
helps divide the liver lobes, assisting in performing
several procedures such as resection and liver trans-
plantation [2]. Liver vessel segmentation also allows
rendering vascular information in 3D space, supporting
the planning and implementation of interventional pro-
cedures in the liver area [3]. Radiofrequency Ablation
(RFA) is a minimally invasive therapy used for liver
cancer treatment and conventionally suitable for early-
stage multi-tumor cases [4–6]. In clinical practice, the
interventionist, under the guidance of US/CT image
modality, inserts the ablator through the skin and right
at the center of the tumor [7]. After an intensity current
via the ablator is triggered, the tumor is destroyed by
the local heat radiated from the tip of the ablator. RFA
has several advantages, such as the low risk of death
from treatment. In addition, patients who received
treatment with RFA can return home on the same day
and recover in only a few days [5].

The limitation of RFA is a high local recurrence rate
for tumors larger than 3 cm and abutting large ves-
sels [8]. Since the early years of the 21st century, studies

on the influence of blood vessels on RFA therapy have
been investigated [9, 10]. It has been reported that the
rate of treatment failure is more significant than 40% in
cases with tumors abutting large vessels [11]. Indeed,
the major limitation of RFA is that the heat is affected by
the liver parenchyma and large vessels abutted tumors,
which is called the heat-sink effect [11]. Lu et al. [9]
determined that the appearance of blood vessels from
3 mm in diameter affects the failure to destroy the tu-
mor when intervening with RFA. Huang [12] simulated
the RFA heat treatment and suggested the RF cool-tip
electrode placement treat lesions abutting large vessels.
Loriaud et al. [11] investigated the comparison among
percutaneous ablation systems in the treatment of liver
tumors connecting large vessels (> 3 mm in diameter).
Therefore, analyzing the larger liver vessels near the
tumor is essential in the planning stage of RFA liver
cancer intervention.

CECT images are commonly used in the RFA proce-
dure, which provides information about liver anatomy
without invasive procedures [7, 13]. However, the radia-
tion dose of the CT images involves a particular risk for
the patient, such as radiation-induced cancer [14, 15].
Consequently, lowering the radiation dose is preferably
performed on the CECT image to reduce the risk for
the patient, which increases the low-dose noise in the
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CECT images. The low-dose noise affected the sub-
tle details in the CT image, including small vessels,
leading to a challenge of liver vessel segmentation.
In previous studies, vessels were manually identified
by radiologists in 2D slices [9]. This manual work
is often user dependent and has low reproducibility.
Therefore, (semi)automatic liver vessel segmentation
based on the computer-assisted approach has been
highly active in the research field. Nevertheless, liver
vessel segmentation is still challenging due to the vary-
ing and complicated vessel structure [3]. Image-related
challenges also increase the difficulty of liver vessel
segmentation, including diverse contrast between the
vessel and surrounding tissues and images with a low-
quality [16].

The rapid development of deep learning in medical
image analysis has recently created many practical tech-
niques for the segmentation task. However, research on
applying deep learning techniques to segment the liver
vessels in CECT images for the planning phase of the
ablation treatment is still limited. Through the literature
review, we found that although several liver vessel
segmentation methods have already been developed,
liver vessel segmentation for low-dose CECT images
needs to be investigated more thoroughly. Therefore,
this study aims to investigate the impact of low-dose
noise on the liver vessel segmentation performance; and
then further investigate the impact of the denoising
technique on the improvement of the liver vessel seg-
mentation with attention to the large liver vascular area.
This study is a further development of our previous
work published in conferences where we have already
compared several CNN-based liver vessel segmentation
methods and several denoising methods [13, 17]. To
achieve the aim above, we first simulate multiple levels
of low-dose noise on normal-dose CT images. Subse-
quently, we investigate the impact of several state-of-
the-art denoising techniques on liver vessel segmenta-
tion performance by a CNN-based method which was
verified in our previous study [17]. Finally, we assess
the roughness of the surface of the large vessel segmen-
tation under the impact of the denoising techniques.

2 Related Works

2.1 Vessel Segmentation Method

Several liver vessel segmentation methods have been
proposed in the literature and are potentially applica-
ble to clinical applications. In general, those methods
can fall into two main groups [3, 16]. The group of
classical image processing methods mainly uses fil-
ters to reduce noise and enhance the contrast of the
vessel with surrounding liver tissue, and then apply
morphological techniques to predict the liver vessel
segmentation [13, 18]. However, the classical methods
have limitations. They require the user to carefully
identify the dataset’s properties and select suitable
parameters for segmentation. With the vigorous de-
velopment of computer hardware in the past decade
and many published open-source datasets, the group

of methods for applying deep learning techniques has
shown its effectiveness in medical image analysis [19,
20]. Huang et al. [3] introduced 3D-UNet combination
with a variant of the Dice loss function and studied
the effect of data labeling on the accuracy of the liver
vessel segmentation. Yu et al. [21] combined ResNet
architecture with 3D UNet to create 3D ResUNet ar-
chitecture for liver vessel segmentation. Kitrungrot-
sakul et al. [19] proposed a liver vessel segmentation
method that uses three convolutional neural networks
for feature extraction from three different planes of CT
scans. Su et al. [20] also proposed a DV-Net architecture
for vessel segmentation. Isensee et al. [22] published a
robust framework for the task of image segmentation.
nnU-Net uses UNet architecture combined with an
automatic parameters configuration method, enabling
high accuracy in many image segmentation tasks.

2.2 Low-dose Denoising Method

Recently, denoising low-dose noise in CT images has
been dramatically interested to the research community.
Many low-dose noise reduction methods have been
published in the literature. Generally, the denoising
methods can be divided into two groups. The first
group removes the low-dose noise from the projection
image [23, 24], and the second group eliminates the
noise from the CT image [25–27]. In the first group,
filters are used to filter the projection images and
then reconstruct CT images using interactive techniques
or filter back-projection methods. However, the raw
projection image source is not often available since
it is embedded in the CT scan machine. Then, many
researchers attend to denoising the low-dose noise on
the CT image. Most classical methods defined the low-
dose noise on CT images as approximated Gaussian
distribution [28]. However, the low-dose noise in the
CT image is not easy to be precisely estimated, which
may affect the performance of the classical method.
Manniesing et al. [25] introduced the vessel enhancing
diffusion that used sparse representation to improve
the visualization of the vessels in low-dose CT scans.
Recently, The CNN has been investigated in the low-
dose CT scan denoising with the development of deep
learning techniques. Chen et al. [26] proposed the RED-
CNN, which is the first study on applying the deep
learning technique for low-dose denoising in CT im-
ages. Shan et al. [27] compare the performance of deep
learning techniques with a commercial algorithm for
reducing the low-dose noise in CT images. The results
show that deep learning has comparable performance
on low-dose noise reduction with the iterative recon-
struction algorithm.

3 Methods

This section briefly describes the techniques we use
in our framework for simulating the low-dose noise
in CECT images, denoising, and segmenting the
liver vessels.



L. Q. Anh et al.: Impact of Image Denoising Techniques on CNN-based Liver Vessel Segmentation. . . 73

D
o

se
 n

o
is

e 
si

m
u

la
ti

o
n

C
T 

im
ag

e 
re

co
n

st
ru

ct
io

n

P
ro

je
ct

io
n

 g
en

er
at

io
n

(a) (b) (c) (d)

Figure 1. The process of the low-dose noise simulation. (a) the normal-dose CECT image, (b) the simulated projection image from the normal-
dose CECT image, (c) the projection with the Poisson noise, (d) the simulated low-dose CECT image.

3.1 Low-dose Simulation Technique
To obtain multiple levels of low-dose noise on CECT

images, we simulate the number of photon counts
on normal-dose CECT images with the contrast-to-
noise (CNR) of the vessel area higher than 6.0 (see
Section 4.4). The low-dose noise simulation technique
is reused from the research of Leuschner et al. [29]; the
process of low-dose noise simulation is presented in
Figure 1. First, we utilized all CECT image sizes of
512 × 512 to create the projection image using Radon
transform:

Ax(s, φ) :=
∫

R
x
(

s
[

cos(φ)
sin(φ)

]
+ t

[
− sin(φ)

cos(φ)

])
dt,

(1)
where A is the linear ray transform, x denotes the
projection of attenuation coefficient along the ray path
s, where s is the distance from the origin, and φ is the
angle of the beam in the parallel beam CT model.

Subsequently, the projection images were added with
Poisson noise to simulate the low-dose noise level. The
number detector photon Ñ1 can be modeled as the
follows:

Ñ1(s, φ) ∼ Pois (N0 exp(−Ax(s, φ))) , (2)

where Pois(λ) is Poisson distributed; N0 represents the
mean number photon count; when changing the value
of N0, we obtain the corresponding low-dose noise level
in the simulated noisy CT image. Finally, a filtered
back-projection reconstructs the dose noise simulation
CECT images using Hann filter.

3.2 Denoising Techniques
3.2.1 Vessel Enhancing Diffusion: VED, introduced by

Manniesing et al. [25], is a Hessian-based diffusion filter
that was designed to enhance the vessel-like structure
in noisy images. It uses eigenvalues of the Hessian
matrix to establish a diffusion tensor DV to measure
curvature at the voxel level. The key idea of VED is
that it diffuses to smooth only along the vessel while
preserving the vessel wall. The vesselness function is
V ∈ [0, 1] as the output of the multiscale scale ves-
selness filter so that V reaches 1 at the voxels inside
vessel-like structures and 0 elsewhere. If |λ1|, |λ2| and
|λ3| are the eigenvalues of Hessian matrix H, such that
|λ1| < |λ2| < |λ3|, corresponding to the eigenvectors

Q1, Q2 and Q3 which satisfy H = Q.Λ.QT ; we then
have Q1 as the direction of the slightest curvature.
Subsequently, we can define the diffusion tensor as
DV = Q.Λ′.QT , in which the diagonal elements of
matrix Λ′ are defined as:{

λ′
1 = 1 + (ω − 1)V1/S,

λ′
2 = λ′

3 = 1 + (ε − 1)V1/S,
(3)

where ω is a parameter larger than 1 to guarantee that
Q1 is the largest diffusion direction; ε is a minimal value
that enables high isotropic diffusion when V ≈ 0 (at
non-vessel structure); and S is a predefined parameter
which moderates the impact of V on λ′

1.
3.2.2 The residual encoder-decoder convolutional neural

network: RED-CNN is one of the first techniques to
apply CNN to solve the problem of low-dose noise
reduction in CT images [26], also known as an inverse
problem. The basic idea of RED-CNN is to use a CNN
to use supervised learning to estimate the property of
the noise from low-dose CT images, given the corre-
sponding normal-dose CT images. RED-CNN contains
three main parts: autoencoder, deconvolution network,
and shortcut connections. The end-to-end network is
similar to the architecture of the UNet network in
the segmentation problem [30]. Unlike UNet, RED-
CNN only uses convolution blocks and ReLU units
instead of pooling layers to guarantee the essential
structural details. The training of the RED-CNN model
is to optimize a set of convolution and deconvolution
layer parameters Θ to construct a mapping function
M for low-dose noise reduction. Specifically, it min-
imizes the difference between the estimated CT im-
ages from the noisy CT images via the current state
of the on-training model and the reference normal-
dose CT images, called loss function F(Θ). Mathemat-
ically, given a set of N pair images used for training
P = {(X1, Y1) , (X2, Y2) , . . . , (XN , Y N)} where X and
Y represents for normal-dose CT image and low-dose
CT image, the loss function of RED-CNN is defined as
follows:

F(Θ) =
1
N

N

∑
i=1

∥X i − M (Y i)∥2 . (4)

3.2.3 The modularized adaptive processing neural net-
work: MAP-NN was introduced by Shan et al. for low-
dose denoising in CT images [31]. Similar to RED-CNN,
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Table I
The Properties of the Dataset for Training and Dose Simulation

Dataset
Number of
CT images

Number of
slices

In plane
resolution (mm)

Spacing between
slices (mm)

Pre-trained MSD 303 24 - 181 0.57 - 0.98 0.8 - 8.0

Training
IRCADB 12 76 - 249 0.56 - 0.81 1.0 - 2.0

EMC 18 44 - 99 0.60 - 0.86 2.0 -3.0
SLiver07 8 49 - 217 0.59 - 0.74 1.0 - 5.0

Low-dose
simulation

IRCADB 3 51 - 106 0.57 - 0.74 1.6 - 4.0
EMC 6 55 - 64 0.64 - 0.68 3.0

SLiver07 6 36 - 185 0.57 - 0.75 1.0 - 3.0

MAP-NN uses CNN to solve the inverse problem. The
architecture of MAP-NN is composed of multiple CPCE
blocks concatenated together and uses skip connections
to retrieve information from the previous block, called
the functional composition operation (◦). The denoised
image (Ŷ) of MAP-NN is defined as follows:

Ŷ = gT (Y) = (g ◦ g ◦ · · · ◦)g︸ ︷︷ ︸
T=#g

(Y) , (5)

where g denotes a CPCE block. The Wasserstein gener-
ative adversarial (WGAN) is used to improve stability
when training the MAP-NN model. The WGAN in-
cludes two networks (G, D), where G is utilized for
denoised image generation that most resembles the
reference image, while D is used to distinguish be-
tween the denoised and reference image. To update the
parameters of G, MAP-NN uses three loss functions,
including Adversarial loss (La), MSE loss (Lm), and
Edge incoherence loss (Le). The final object function
for optimizing the G parameters (θg) of MAP-NN is
defined as follows:

min
θg

L = La + λmLm + λeLe, (6)

where λm and λe denote the weight to balance the loss
terms.

3.3 Liver Vessel Segmentation
In this study, we use nnU-Net, published by

Isensee et al. [22], as the reference method for liver
vessel segmentation in CECT images as it obtained
a high ranking in a public liver vessel segmentation
challenge [32], and also was verified in our previous
study [17]. nnU-Net is an open-source CNN-based
framework for segmentation in medical images. Inher-
iting the success of UNet in the medical image seg-
mentation field, nnU-Net has a similar architecture to
UNet, which contains two parts: encoder and decoder.
nnU-Net haves some minor changes, including using
the activation function Leaky ReLU instead of ReLU
and using instance normalization instead of batch nor-
malization. The distinguished property of nnU-Net is
that the preprocessing stage can automatically be con-
figured depending on the training dataset. nnU-Net
allows using two types of networks based on 2D or
3D input for convenient and accurate segmentation. In
this study, to take advantage of inter-slice information,

we use 3D nnU-Net model to conduct the segmentation.
Before using nnU-Net for segmentating the liver vessel,
its model should be trained for specify data. In this
study we resused the pre-train model trained with a
public datasets and fine-turned with both public and
private datasets. The experimental details are described
in the experiment section (section 4).

4 Experiment

4.1 Dataset
The data used in this study was collected from mul-

tiple medical centers and cataloged into three subsets
with a total of 50 CT images containing 4327 2D CT
slices for training and 15 CT images with 1456 2D CT
slices for evaluating the dose simulation technique, the
denoising techniques, and the liver vessel segmenta-
tion technique. The properties of the dataset are listed
in Table I.

The first dataset is an open-source 3Dircadb-01 (IR-
CADB) widely used in studies on liver vessel segmen-
tation. We choose 12 CT scans for training the vessel
segmentation model and 3 CT scans for the simulation
phase. The second dataset was collected from the liver
segmentation challenge organized by MICCAI in 2007
(Sliver07), which was suggested for use by studies on
liver vessel segmentation; we selected 8 CT scans for
training and 6 CT scans for the simulation phase.

The remaining dataset was collected from Erasmus
Medical Center (EMC). The datasets were approved
for research by the local ethic committee. We used
30 CECT scans and 6 CECT scans collected during
the diagnosis and treatment of liver cancer using the
RFA technique at EMC for the training and simulation
stages, respectively.

The chosen images for the simulation stage have low
noise with contrast-to-noise (CNR) of the vessel areas
higher than 6.0, which are qualitatively determined
using the CNR criteria described in the experiment sec-
tion 4.4. The ground truth for liver vessel segmentation
is manually annotated by an experienced technician
and then verified by an expert.

Recently, Medical Segmentation Decathlon (MSD)
challenge has published a large amount of data,
including 303 CT scans for liver vessel segmentation
purposes with annotated liver vessel [32]. To take ad-
vantage of the CNN-based approach, we reuse the
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Level 12 Level 14 Level 16 Level 18

Figure 2. An example of dose level simulation on a normal-dose CECT images. The lower levels indicate more low-dose noise inducted
in the images.

nnU-Net model trained on MSD dataset [22] as the
pre-trained model and fine-tune the model using the
training dataset in this study.

4.2 Preprocessing
We limit the prediction area by using the liver mask

before putting the CT images into the model nnU-
Net to predict the liver vessel segmentation. The gen-
erated liver mask was investigated in our previous
study [17], which is the predicted liver segmentation
passes through the morphology operator with kernel
size (X, Y, Z) of (30, 30, 1). In addition, we exclude the
IVC region in this study since it is a large vessel and
could alter the evaluation of liver vessel segmentation
performance.

4.3 Implementation and Training
We deploy the vessel segmentation method, nnU-Net,

on Python 3.8 using Pytorch 1.7 on top of CUDA 11.2.
The nnU-Net was initialized from the pre-trained
model and fine-tuned with 500 epochs; the initial learn-
ing rate was set at 10−2, and decayed as in the default
setting. We use stochastic gradient descent optimizer
with Nesterov momentum of 0.99 for the training with
the total fine-tuning time around 12 hours.

For denoising techniques, we implement the VED
with ITK version 4.10 with the parameters suggested
by Luu et al. [13]. The implementation and the param-
eters of RED-CNN and MAP-NN are provided by the
authors [26, 31].

We identify the large liver vessels in section 4.6.1
uses the library VMTK1 integrated into the 3D Slicer
software package.

This study was carried out on an Ubuntu 20.04 oper-
ating system computer with an Intel® CoreTM i9 10900
processor, 64 GB DDR4. The training was performed
using an NVIDIA RTX 8000 (48 GB VRAM) and the
vessel segmentation was obtained using an NVIDIA
RTX 3090 GPU (24 GB VRAM).

4.4 Experiment 1: The image quality analysis on
simulated low-dose CT images

4.4.1 Experiment setup: The goal of this experiment is
to verify the dose simulation technique mentioned in

1http://www.vmtk.org/

section 3.1 via assessing the noise level. In the research
of Leuschner et al. [29], the mean photon count N0
was set at 4096 (i.e. 212) for ultra-low-dose simulation.
However, in clinical practice, the CT images with the
ultra-low-dose level are rare, so we define that as
the lowest dose simulation level (level 12). Next, we
increase the value of N0 to simulate the other eight low-
dose levels with the mean photon counts from 213 to
220, corresponding to the low-dose simulation level of
13 to 20, respectively. Subsequently, for each simulation
level, the generated noise is added to the projection
image before projecting back to the image space using
the invert Radon transform (see section 3.1). Figure 2
illustrates an example image with several generated
noise levels.

4.4.2 Evaluation criteria: To assess the image qual-
ity under the effect of low-dose simulation, we use
contrast-to-noise (CNR) metric that were suggested by
some of the researches on the quantitative quality of
low-dose CT images [13, 33]

CNR =
mv − ml√

1
2 × (sd2

ve + sd2
lp)

, (7)

where mve and mlp are the mean intensity of the vessel
and liver parenchyma region, respectively. sdve and sdlp
are the standard deviation of of the vessel and liver
parenchyma region, respectively.

4.5 Experiment 2: Segmentation score of the three
denoising techniques on simulated low-dose CT
images

4.5.1 Experiment setup: This section presents an ex-
periment to verify the effect of dose simulation and de-
noising the liver vessel segmentation. Firstly, this study
performs dose noise simulation using normal-dose CT
images, with nine noise levels based on the mean pho-
ton count presented in experiment 4.4. Subsequently,
we perform the three denoising techniques (VED, RED-
CNN and MAP-NN) to denoise the simulated low-dose
CECT images. Finally, the liver vessels on the denoised
CT images are extracted using nnU-Net.

4.5.2 Evaluation criteria: To evaluate the impact of
denoising techniques for the vessel segmentation, two
standard metrics in studies of vessel segmentation were
used [3, 20] including sensitivity (SEN) and Dice simi-
larity coefficient (DSC).
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Dice score:

DSC =
2 × TP

(TP + FP) + (TP + FN)
, (8)

Sensitivity:

SEN =
TP

TP + FN
, (9)

where TP, FP, and FN are the number of true positive,
false positive, and false negative of pixels, respectively.

4.6 Experiment 3: Surface roughness synthesis

4.6.1 Experiment setup: In this experiment, we evalu-
ate the effect of the denoising methods on the rough-
ness surface of large vessel segmentation from the dose
simulation CT images. We utilize the vessel segmen-
tation from the experiment 4.5 and limited the vessel
range using the large vessel mask extracted from the
ground truth. The process of large vessel extraction is
reused from our previous study [17]. First, the vessel’s
centerline is extracted using the start point and the
endpoint of the vessel branch. The vessel radius is
calculated by using an inscribed sphere. Subsequently,
for vessel branches which have a radius smaller than
3 mm, we create a sphere at the start point of this
branch and remove all pixels inside this sphere. Finally,
the large vessels are retrieved after keeping the largest
connected component.

4.6.2 Evaluation criteria: Surface roughness
The surface roughness is computed by using the rough-
ness estimation method introduced by Lavoue [34].
This method is efficient for estimating local roughness,
which is helpful for quality metrics. There are four
steps to estimate the roughness value of each vertex
in a mesh: (1) The original mesh is smoothed using the
adaptive smoothing filter based on the Taubin filter; (2)
The curvature value (kmax) of each vertex in two mesh
(original and smoothed) is calculated using the Normal
Cycle; (3) Each vertex’s average value (kav) is estimated
using the local window analysis; (4) The roughness
value of vertex v is estimated as follows:

R(v) =
{

kav(v)− kav (vs) if kav(v) > kav (vs) ,
0 else,

(10)
where v and vs correspond to the original and
smoothed mesh vertex; the average roughness metric
(Ra) is used to compare the roughness of different
meshes and calculated as the mean of the roughness
value of all the vertexes in its mesh.

5 Results

5.1 Result of experiment 1: The image quality
analysis on simulated low-dose CT images

Figure 3 presents the average CNR value of the
synthesis low-dose CECT images w.r.t dose simulation
level. It can be seen that for the original images, the
average CNR is higher than 6.0. Once the simulation
level decrease, i.e., the number of simulated photon
counts decreases, more noise is inducted into the image,

Figure 3. Average CNR score of liver vessel region on the simulated
dataset w.r.t dose level simulation.

Figure 4. Average DSC score of the liver vessel segmentation on the
simulated dataset w.r.t dose level simulation.

and the average CNR reduces to 1.67. According to
Hamard et al. [33], a normal-dose CECT image has a
CNR greater than 6.0 (or 7.78 dB). For ultra-low-dose
images with a CNR less than 4.0, our simulated noise
levels are 12 to 15 (CNR from 1.67 to 3.83), correspond-
ing to the ultra-low-dose level. The simulated noise
levels from 16 to 18 (CNR from 4.65 to 5.93) correspond
to moderate low-dose noise.

5.2 Result of experiment 2: Segmentation score of
three denoising techniques on synthesis low-dose
CT images

This experiment evaluates two segmentation metrics,
including DSC score and sensitivity, to assess the im-
pact of three denoising techniques on segmenting the
liver vessel. Figure 4 indicates that the vessel segmenta-
tion accuracy is proportional to the simulated low-dose
level. Evaluating the liver vessel segmentation on the
simulated low-dose CT images, the DSC score reaches
53.9% at the lowest simulated level and increases grad-
ually at the following levels. Additionally, applied de-
noising techniques improve the vessel segmentation
accuracy at the simulated level smaller than 18. MAP-
NN achieves better accuracy at levels 12 and 13 than the
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Dose simulation Dose simulation + VED

Dose simulation + RED-CNN Dose simulation + MAP-NN

Figure 5. An example of liver vessel segmentation on synthesis low-dose noise CECT slice at simulation level 14, with and without denoising
techniques.

Table II
Average Sensitivity of Vessel Segmentation on Simulated Dataset w.r.t Simulated Dose Level.

The Higher Simulation Level Means the Lower Noise Affection on the Images

Simulation level 12 13 14 15 16 17 18 19 20
Dose simulation 41.5% 52.3% 61.2% 67.5% 72.9% 76.5% 78.8% 80.5% 81.4%
Dose simulation + VED 45.6% 54.5% 61.5% 66.8% 71.4% 74.4% 76.4% 77.5% 78.0%
Dose simulation + RED-CNN 41.5% 53.8% 62.5% 68.5% 73.5% 76.7% 78.8% 80.3% 80.9%
Dose simulation + MAP-NN 44.8% 56.0% 63.2% 68.2% 72.1% 74.2% 76.0% 77.3% 78.1%

Table III
Average Processing Time of the Denoising and Vessel Segmentation Process. The Unit is in Seconds

Processing time Low-dose denoising Vessel segmentation
Dose simulation - 19.8
Dose simulation + VED 775.7 20.5
Dose simulation + RED-CNN 30.6 19.7
Dose simulation + MAP-NN 18.2 20

remainder denoising methods. Meanwhile, RED-CNN
shows more effectiveness in liver vessel segmentation at
levels 15 to 18. However, vessel segmentation accuracy
is reduced when the denoising methods are applied at
low-noise levels (i.e., levels 19 and 20).

Table III shows the sensitivity of liver vessel seg-
mentation that represents the ability to detect the liver
vessels in CT images. Figure 5 shows an example of
liver vessel segmentation on a noisy CECT image with
and without using the denoising techniques. It can be
seen that without applying the denoising technique,
the segmentation method ignores some of the vessel
regions that are affected by the low-dose noise.

Table II displays the average processing time of the
denoising techniques. It can be seen that VED is a
classic method and only uses a CPU, which makes the
average computation time up to 775.7 seconds to per-
form a CT scan. Meanwhile, RED-CNN and MAP-NN
have taken advantage of modern computer hardware

(GPU) and get an average processing time of 30.6 and
18.2 seconds. Additionally, the denoising techniques do
not affect the processing time of nnU-Net, which takes
about 20 seconds on average for segmenting the vessel.

5.3 Result of experiment 3: Surface roughness
From Table IV, VED shows better liver vessel seg-

mentation results on the lowest dose simulation level,
which achieved the SEN value and the roughness
surface of 45.6% and 0.341, respectively. However, the
performance of the CNN-based techniques on denois-
ing shows potential with the higher dose simulation
level, which achieved better results than the VED. From
Figure 6, it can be seen that if denoising is not applied,
the liver vessel segmentation method ignores some ves-
sel branches. Meanwhile, with the denoising methods
applied, some vascular areas are retained. However,
some vessel branches are still mislabeled due to the
significant low-dose effect.
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Ground truth Dose simulation
Dose simulation

VED
Dose simulation

RED-CNN
Dose simulation
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Figure 6. An example of liver vessel segmentation after excluding small vessel branches on synthesis CECT image at the simulation level 13. The
blue circle shows some mislabeling on the vessel segmentation. The black arrow shows that all denoising methods mislabeled a vessel branch
due to the significant noise.

Figure 7. An example of roughness estimation on a large liver vessel branch at simulation level 12: The gray images represent the mesh surface
generated from the binary vessel segmentation. The color images illustrate the roughness map of the corresponding meshing. The hot colors
indicate high roughness surface, while the cool colors account for a low roughness surface.

Table IV
Average Surface Roughness of the Large Vessel Segmentation

Simulation level 12 13 14 15 16 17 18 19 20
Dose simulation 0.358 0.324 0.288 0.265 0.251 0.257 0.236 0.242 0.239
Dose simulation + VED 0.341 0.292 0.294 0.282 0.260 0.247 0.259 0.261 0.252
Dose simulation + RED-CNN 0.348 0.300 0.270 0.261 0.238 0.249 0.237 0.239 0.247
Dose simulation + MAP-NN 0.345 0.274 0.287 0.258 0.267 0.251 0.233 0.241 0.250

6 Discussion

In the first experiment, we simulated multiple levels
of low-dose noise on normal-dose CECT images and
assessed the simulated image quality using the CNR
criteria. The CNR presents a ratio of the difference in
intensity value between two regions in the image over
the value of noises in the vessel and the background
areas. It relates to the ability to distinguish the liver
vessel region from the liver parenchyma area. Through
the experiment, the CNR value decreased when re-
ducing the simulated mean photon count. This result
is consistent with the result reported in the study of
Hamard et al. [33].

The second experiment investigated the effect of low-
dose noise on vessel segmentation. It can be seen that
under the heavily low-dose noise affection, the vessel
segmentation method achieves poor results. Comparing
the accuracy of liver vessel segmentation between the
synthesis of low-dose noise CECT images at the highest
and lowest level, the DSC score and sensitivity value
significantly reduce from 78% to 53.9% and 81.4% to

41.5%, respectively. It can be explained that the effect
of the low-dose noise might blur subtle details. As a
result, the liver vessel segmentation method can not
distinguish between the noise effect and the subtle
details. This phenomenon was also pointed out in the
study of Manniesing et al. [25].

The experiment results also showed that denoising
methods degrade vessel segmentation accuracy when
there is almost no low-dose noise (levels 19 and 20). We
can see from Figure 5 that the use of the VED method
decreases the variation of noise without much affecting
the large vessel wall. However, the diffusion operator
also blurs small vascular areas, causing a reduction
in vessel segmentation accuracy at low-noise levels.
Besides, the denoising method using deep learning is
trained on Mayo dataset with low-dose noise at quarter-
dose [35]. When applying the denoising techniques to
normal-dose imaging, vessel segmentation accuracy is
reduced. At the simulation level 15, with the denoising
technique using RED-CNN, the vessel segmentation on
the synthesis of low-dose noise CECT images achieved
a DSC of 72.8%, yielding a comparable performance to



L. Q. Anh et al.: Impact of Image Denoising Techniques on CNN-based Liver Vessel Segmentation. . . 79

most of the top-rank liver vessel segmentation methods
in MSD challenge [32]. Moreover, from Figure 4 and
Table III, we can indicate that the CNN-based denoising
techniques seem to perform a bit better than the VED
denoising technique at the moderate simulation levels.

Anatomically, the vessel wall is smooth, and thus
modeling the surface of blood vessels from CECT im-
ages is essential in liver vascular analysis. In the third
experiment, we evaluated the surface roughness of the
liver vessels on CECT images with multiple low-dose
noise levels. The influence of low-dose noise can be
seen on the surface roughness value (see Figure 7). We
hypothesize that the smaller surface roughness is, the
more closely similar the liver vessel can be modeled
to the actual liver vessel information is. By applying
the denoising methods, the surface roughness value has
been reduced compared to the highly simulated image,
indicating the potential to use the denoising method for
low-dose noise reduction on CT images.

This study still has some limitations. First, the denois-
ing methods used in this study were optimized with
the parameters for a single level of noise provided in
Mayo dataset. The analysis of parameters optimization
for each low-dose level may need to be studied more
in detail. Further more, training the denoising model
for each noise level may improve the efficiency of liver
vessel visualization and segmentation. In addition, we
only use 15 simulation images to investigate the effect
of low-dose noise on the liver vessel segmentation. We
expect the further study may include more data in the
evaluation stage to make the findings in this study
more solid.

7 Conclusion

In summary, this paper has addressed the impact of
denoising techniques on low-dose CT images for the
task of liver vessel segmentation using CNN. We simu-
lated multiple noise levels from 15 normal-dose CECT
images of the liver and then used denoising techniques
to suppress the low-dose noise independently. Subse-
quently, liver vessel segmentations were extracted using
nnU-Net model, which was pre-trained using a public
dataset and then fine-tuned using both public and pri-
vate datasets. Based on the results from the experiments
of liver segmentation and surface roughness evaluation,
we conclude that for the low-noise CECT images, direct
segmentation without denoising should be preferred.
In contrast, when the images contain a large amount
of low-dose noise, the CNN-based denoising methods
should be applied to improve the quality of liver vessel
segmentation.
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