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1 Introduction

The reliability and the maximum achievable data rate
of a communication system are heavily dependent on
the characteristics of the propagation channel. Hence,
during the design and test phase, it is of utmost im-
portance to have a realistic channel model to begin
with. A lot of research attention has been devoted to
the development of channel models the statistics of
which matches very closely that of a real propagation
environment. The most recent comprehensive survey
on existing modeling approaches is reported in [1], [2].

In general, sophisticated channel models are based
on wideband scenarios, which incorporate the fre-
quency selectivity of the physical channel. A widely
used approach to develop wideband channel models
is to represent the time-variant transfer function by a
finite sum of multipath propagation components [3],
[4]. The efficient development of wideband channel
models relies on a sophisticated method for deter-
mining the primary model parameters, which are the
path gains, Doppler frequencies, and propagation de-
lays. Hence, advanced and efficient parameter com-
putation methods are required to accurately estimate
these model parameters from the measured channels.
In last couple of decades, various high resolution pa-
rameter estimation methods have been proposed to

derive the reference models [5]–[8]. These methods
can also be used as parameter computation techniques
for designing measurement-based channel simulators.
In [5], e.g., the multiple signal classification (MUSIC)
algorithm has been applied for delay estimation. A joint
angle and delay estimation (JADE) technique is pro-
posed in [9]. A direction-of-arrival estimation method
using the estimation of signal parameters via rota-
tional invariance techniques (ESPRIT) algorithm has
been discussed in [6]. The unitary ESPRIT has been
proposed in [10] to improve the estimation accuracy
of the ESPRIT algorithm. The ESPRIT method has
further been extended in [11] to enable a joint delay
and azimuth estimation, while the unitary ESPRIT
technique has been used in [12] to perform a joint
azimuth and elevation estimation. An application of the
unitary ESPRIT algorithm to wide-band channel mea-
surements is presented in [13].Owing to the high imple-
mentation complexity of the aforementioned methods,
maximum-likelihood-based algorithms are preferable
for solving the channel parameter estimation problem.
These include the expectation maximization [7] and the
space alternating generalized expectation maximization
(SAGE) [8] algorithms. Particularly the SAGE algorithm
is widely used for channel parameter estimation due to
its excellent performance in most scenarios. However,
the SAGE algorithm often requires a large amount
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of specular components, which makes the estimation
process relatively complex. In [14], the authors re-
ported a initialization sensitivity problem of the SAGE
algorithm. Several approaches have been proposed
in [14]–[17] to mitigate the drawbacks of this algorithm.
In [17], the authors proposed the iterative nonlinear
least square approximation (INLSA) method for the
design of measurement-based wideband channel sim-
ulators. The authors showed that the INLSA algorithm
provides a good match to empirical data by keeping
the complexity lower than that of the SAGE algorithm.
The INLSA algorithm has further been refined in [18].

In this paper, we extend the INLSA method to allow a
joint estimation of the primary model parameters. The
INLSA algorithm is based on the expectation maximiza-
tion approach [7]. In order to reduce the computational
cost, the INLSA algorithm computes the maximum-
likelihood estimates of the channel model parameters
iteratively. The iterative approach, however, may lead to
a poor modeling of the TFCF of the measured channel
at the origin. The value at the origin of the TFCF
is of crucial importance for computing the character-
istic quantities describing the statistics of the fading
channel, such as the probability density function of
the envelope, the level-crossing rate, and the average
duration of fades. The original INLSA method [17]
offers two alternatives for optimizing the simulation
model parameters. The first alternative computes the
path gains together with the Doppler frequencies by
modeling the measured temporal autocorrelation func-
tion (TACF), and then computes the propagation delays
in a second step from the frequency correlation function
(FCF) of the measured channel. This variant of the
original INLSA algorithm will be called the INLSA-T-F
method. The second alternative computes first the path
gains jointly with the propagation delays by modeling
the measured FCF, whereas the Doppler frequencies
are obtained in a second step from the TACF of the
measured channel. The second variant of the INLSA
algorithm will be referred to as the INLSA-F-T method.
These kinds of separate optimizations of the simulation
model parameters may lead to erroneous parameter
estimations when evaluating the resulting channel sim-
ulator with respect to the TFCF. Moreover, the INLSA-
T-F and INLSA-F-T approaches result in different sets
of estimated parameters for identical measured data.

In order to overcome the aforementioned drawbacks
of the original INLSA algorithm, the proposed method
computes the simulation model parameters jointly by
fitting the TFCF of the simulation model to that of
the measured channel. The proposed method is called
INLSA-TF emphasizing the joint modeling of both
the temporal and frequency correlation functions of
real-world channels. The proposed algorithm includes
additional error compensation steps in the iterative
estimation procedure to guarantee a perfect fitting at
the origin of the measured TFCF. As a result, the
proposed method provides a unique set of optimized
model parameters while maintaining a perfect fitting
at the origin. In order to demonstrate the performance
of the proposed INLSA-TF method, we implemented

the algorithm in MATLAB R© and compared the new
approach with the two known variants of the original
INLSA method. We focused on a number of issues
which are of particular interest in channel modeling,
such as the fitting accuracy with respect to the most
important correlation functions and the scattering func-
tion of the measured channel. In addition to this, we
studied the performance of the measurement-based
simulation model as a function of the selected number
of propagation paths.

This paper is structured as follows. In Section 2, we
introduce the wideband channel simulation model. In
Section 3, the parameter estimation problem is formu-
lated. Section 4 describes the proposed parameter com-
putation method. The application to measurement data
is presented in Section 5. Finally, Section 6 concludes
this paper.

2 The Wideband Channel Simulation

Model

In this section, we describe the simulation model on
which we apply the parameter computation method
presented in this work. We also derive the TFCF of
the simulation model under the assumption that the
autocorrelation ergodicity conditions are fulfilled.

An important objective for the design of channel
simulation models is to guarantee that their statistical
properties are as close as possible to real-world chan-
nels. When using a measurement-based approach, we
have to consider that every measurement provides only
propagation area specific information for a short period
of time. This means we have to select a proper chan-
nel model the parameters of which can be estimated
from given snapshot measurements. For this reason,
we adopt the widely accepted model from [19], which
represents the time-variant frequency response (TVFR)
of multipath fading channel as a superposition of a
finite number of N propagation paths in the form

H( f ′, t) =
N

∑
n=1

cnej(2π fnt−2π f ′τ′n+θn), (1)

where t and f ′ are the time and frequency variables,
respectively. Each propagation path is characterized
by its path gain cn, propagation delay τ′n, Doppler
frequency fn, and the phase shift θn. The number of
propagation paths N determines the accuracy as well
as the complexity of the simulation model. We assume
that the elements of the set {θn} are independent and
identically distributed (i.i.d.) random variables, each
having a uniform distribution in the interval [0, 2π).
Our aim is to determine the remaining sets of param-
eters {cn}, { fn}, and {τ′n} of the channel simulation
model described in (1) such that the simulation model
has almost the same statistical characteristics as a given
measured channel. For our analysis, it will suffice
to consider the TVFR H( f ′, t) at discrete frequencies
f ′m = −B/2+ m∆ f ′ ∈ [−B/2, B/2], m = 0, 1, . . . , M− 1,
and at discrete time instances tk = k∆t ∈ [0, T], k =
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0, 1, . . . , K − 1, where B and T denote the measured
frequency bandwidth and the observation time inter-
val, respectively. The time sampling interval ∆t and
the frequency sampling interval ∆ f ′ are characteristic
quantities of the channel sounder used to collect the
measurement data. Consequently, the TVFR H( f ′, t)
can be represented as a discrete TVFR H[ f ′m, tk]. For
simplicity’s sake, it is assumed that the parameters
of the simulation model described by (1) fulfill the
following conditions

fn 6= fm, τ′n 6= τ′m, ∀ n 6= m, (2)

E{ej(θn−θm)} = 0, ∀ n 6= m, (3)

where E{·} represents the statistical averaging operator.
The condition (3) is always fulfilled as {θn} are i.i.d.
random variables, which are uniformly distributed over
the interval [0, 2π]. As a result of the imposed con-
straints (2) and (3), the channel model in (1) is autocor-
relation ergodic with respect to time and frequency [20].
In this case, the discrete TFCF R[ν′p, τq] of the simulation
model can be deduced from a single realization of the
discrete TVFR H[ f ′m, tk] as follows

R[ν′p, τq] = 〈H[ f ′m, tk]H∗[ f ′m + ν′p, tk + τq]〉

=
N

∑
n=1

c2
nej2π(τ′nν′p− fnτq), (4)

where τq = 0, ∆t, . . . , (K − 1)∆t and ν′p =
0, ∆ f ′, . . . , (M − 1)∆ f ′. The notation 〈·〉 denotes
averaging over time and frequency.

The preceding equation shows that R[ν′p, τq] depends
on the number of paths N, path gains cn, propagation
delays τ′n, and Doppler frequencies fn, but not on the
phase shifts θn. The TACF rtk [τq] is obtained from the
TFCF R[ν′p, τq] by setting ν′p to zero, i.e.,

rtk [τq] = R[0, τq] =
N

∑
n=1

c2
ne−j2π fnτq . (5)

The FCF r f ′m [ν
′
p] of the simulation model can be deter-

mined from the TFCF R[ν′p, τq] by setting τq to zero,
i.e.,

r f ′m [ν
′
p] = R[ν′p, 0] =

N

∑
n=1

c2
nej2πτ′nν′p . (6)

For mathematical convenience, the discrete TFCF
R[ν′p, τq] will be represented by an M × K time-
frequency correlation matrix (TFCM) R. It is straight-
forward to show that the TFCM R can be formulated
as

R =
N

∑
n=1

c2
nPn, (7)

where Pn is an M×K matrix and is defined as follows:

Pn =


N
∑

n=1
ej2π(τ′nν′0− fnτ0) · · ·

N
∑

n=1
ej2π(τ′nν′0− fnτK−1)

...
. . .

...
N
∑

n=1
ej2π(τ′nν′M−1− fnτ0) · · ·

N
∑

n=1
ej2π(τ′nν′M−1− fnτK−1)


(8)

3 Problem Formulation

In this section, we describe the measured channel and
discuss its correlation properties. We also formulate the
problem of determining the simulation model parame-
ters.

Let Ȟ( f ′, t) denote the TVFR of a real-world channel
measured at discrete frequencies fm, and at discrete
time instances tk. In this case, the TVFR Ȟ( f ′, t) can be
represented in the form of a discrete function, which
will be denoted by Ȟ[ f ′m, tk]. Further, we assume that
the measured TVFR Ȟ[ f ′m, tk] is wide-sense station-
ary [21] and autocorrelation ergodic with respect to
time and frequency. This allows us to obtain the discrete
TFCF Ř[ν′p, τq] of the measured channel from Ȟ[ f ′m, tk]
by averaging over time and frequency. Thus,

Ř[ν′p, τq] =
1

KM

K−1

∑
k=0

M−1

∑
m=0

Ȟ[ f ′m, tk]Ȟ∗[ f ′m + ν′p, tk + τq].

(9)
The TACF řtk [τq] and the FCF ř f ′m [ν

′
p] of the measured

channel are obtained from Ř[ν′p, τq] in (9) by setting
ν′p = 0 and τq = 0, respectively, i.e., řtk [τq] = Ř[0, τq]

and ř f ′m [ν
′
p] = Ř[ν′p, 0]. For mathematical convenience,

we represent the discrete TFCF Ȟ[ f ′m, tk] by an M× K
TFCM Ř.

With reference to the simulation model described
by (1), the problem at hand is to determine the set
of parameters P = {N, cn, fn, τ′n} in such a way that
the statistical properties of the simulation model match
those of the measured channel. Here, the desired sta-
tistical properties are described by the TFCM Ř of the
measured channel. The problem of determining the set
of parameters P can now be formulated as follows:

Given is the measured discrete TVFR Ȟ[ f ′m, tk] of a
real-world channel. Determine the set of parameters P =
{N, cn, fn, τ′n} of the channel simulation model described by
(1), such that the TFCM R of the simulation model is as
close as possible (in the Frobenius norm sense) to the TFCM
Ř of the measured channel, i.e.,

P = arg min
P

∥∥Ř− R
∥∥

F (10)

where ‖ · ‖F denotes the Frobenius norm.
As it was pointed out in [17], the problem for-

mulation in (10) is valid if the measured channel is
autocorrelation ergodic.

4 The Proposed Parameter Computation

Method

This section focuses on the description of the INLSA-TF
algorithm proposed for computing the parameters of
the measurement-based channel simulator. By referring
to the problem formulation discussed in Section 3 and
assuming that the discrete TFCM Ř of the measured
channel is known, we measure the model error between
the measured channel and the simulation model by

E(P) =
∥∥∥Ř−

N

∑
n=1

c2
nPn

∥∥∥
F
. (11)
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The objective is to minimize the Frobenius norm
in (11), such that the TFCM R of the simulation is
fitted as close as possible to the given TFCM Ř of
the measured channel. Owing to the complexity of
this optimization problem, the implementation of the
maximum-likelihood estimation of model parameters
that minimizes the error in (11) is intractable. Therefore,
the proposed method utilizes the iterative approach to
optimize the simulation model parameters. The itera-
tive parameter computation method starts with N = 1
and arbitrarily chosen initial values for f (0)1 and τ

′(0)
1 .

At every iteration i (i = 0, 1, 2, . . . ), the algorithm
computes the complete set of model parameters P .
The parameter computation procedure is carried out
separately for each path l (l = 1, 2, . . . , N) by using the
auxiliary error matrix as follows:

Y(i)
l = Ř−

N

∑
n=1,n 6=l

(
c(i)n

)2
P(i)

n (12)

c(i+1)
l = arg min

cl

∥∥∥Y(i)
l − c2

l P(i)
l

∥∥∥
F

(13)

f (i+1)
l = arg min

fl

∥∥∥∥Y(i)
l −

(
c(i+1)

l

)2
P(i)

l

∥∥∥∥
F

(14)

τ
′(i+1)
l = arg min

τ′l

∥∥∥∥Y(i)
l −

(
c(i+1)

l

)2
P(i+1)

l

∥∥∥∥
F

(15)

where the M × K matrix P(i+1)
l is recomputed by

substituting the optimized values of f (i+1)
l in (8). In

this algorithm, the iterative computation of the set of
parameters P continues as long as the relative change
in the model error E(P) is larger than a predefined
threshold level ε. When the threshold level ε is reached,
the iteration stops, and the number of propagation
paths N is increased by one, i.e., N + 1 → N. The
initial values of c(0)N , f (0)N , and τ

′(0)
N are set to zero. After

this, the iterative parameter computation procedure is
carried out again starting from (12). This process is
repeated until no perceptible progress can be made by
increasing N or the maximum number of paths Nmax
is reached.

It is straightforward to show that (13) results in a
minimum if c(i+1)

l is computed as

c(i+1)
l =

√√√√<
{

y(i)
l

}T
<
{

p(i)
l

}
+=

{
y(i)

l

}T
=
{

p(i)
l

}
(

p(i)
l

)H
p(i)

l

, (16)

where the operators {·}T and {·}H denote the trans-
pose and complex-conjugate transpose, respectively.
The symbol y(i)

l refers to a column vector formed by
mapping the elements in Y(i)

l such that all columns
in Y(i)

l are stacked on top of each other. Analogously,
the symbol p(i)

l denotes a column vector, which is
formed by applying the same mapping scheme to P(i)

l .
However, in order to guarantee a perfect fitting at the
origin ν′p = 0 and τq = 0 of the TFCF Ř[ν′p, τq], we

replace the optimization step in (13) by

c(i+1)
l =



√√√√<
{

y(i)
l

}T
<
{

p(i)
l

}
+=

{
y(i)

l

}T
=
{

p(i)
l

}
(

p(i)
l

)H
p(i)

l

, l 6= N

Ř[0, 0]−
N−1
∑

l=1

(
c(i+1)

l

)2
, l = N.

(17)
The preceding equation implies that the cN is computed
such that exact fitting of Ř[ν′p, τq] is always preserved
if ν′p = 0 and τq = 0.

The procedure above is coined INLSA-TF. It should
be pointed out here that when using the INLSA-TF
method, the path gains are optimized in combination
with the corresponding Doppler frequencies and prop-
agation delays, which result in an unambiguous and
unique triple (cn, fn, τ′n) for each propagation path
n = 1, 2, . . . , N. This is in contrast to the INLSA-T-F
and INLSA-F-T methods for which we obtain only the
unique tuples (cn, fn) and (cn, τ′n), respectively. Since the
optimization process in the proposed method is carried
out by modeling the TFCF of the measured channel, the
INLSA-TF method provides an excellent performance
when evaluating the channel simulator with respect to
the TFCF. As we will see, the INLSA-T-F and INLSA-
F-T methods cannot provide an accurate modeling of
the TFCF of the measured channel, especially close to
the origin. The results of a comparative study of these
three approaches are demonstrated in the next section.

5 Application to Measurement Data

In this section, we demonstrate the usefulness and the
performance of the proposed INLSA-TF algorithm. To
accomplish these two objectives, we used measurement
data collected in an urban area in the 2.1 GHz frequency
band. In the measurement campaign, the transmitter
antenna was mounted on a trolley and acted as a
mobile part. The receiver antenna was stationary and
mounted on the roof of a building at a height of 20 m.
The performed measurements were double-directional
multipath measurements conducted using a wideband
channel sounder. The key parameters of the measure-
ment equipment are:
• time sampling interval: ∆t = 0.02 s,
• frequency sampling interval: ∆ f ′ = 195 kHz,
• bandwidth: B = 100 MHz,
• observation time interval: T = 0.5 s.
For comparative purposes, we first demonstrate the

channel estimation capabilities of the proposed INLSA-
TF algorithm and the two original variants of the
INLSA method using the same measurement data. The
threshold level ε of the proposed algorithm was empir-
ically set to ε = 0.01 in all cases. Figure 1 illustrates the
normalized residual error norm ‖Ř− R‖F/‖Ř‖F versus
the number of propagation paths N.

As can be seen from the results shown in this figure,
the proposed INLSA-TF method performs significantly
better than the two original INLSA approaches. The
different performances of the INLSA-T-F and INLSA-
F-T originate from the fact that the estimated sets of
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Figure 1. Normalized residual error norm ‖Ř− R‖F/‖Ř‖F versus
the number of propagation paths N.
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Figure 2. Absolute value of the normalized TFCF |Ř[ν′p, τq]| of the
measured channel.

model parameters are not identical when these methods
are used. As an aside, we want to mention that the
INLSA-TF algorithm as well as the two original ver-
sions (INLSA-T-F and INLSA-F-T) are initialization in-
sensitive. This means that, for any chosen initial values
of the Doppler frequencies and path delays, we always
get the same graph for the normalized residual error
norm. We also realize from the inspection of Figure 1
that the normalized residual error norm associated with
the INLSA-TF method is approximately 10 % if N = 30,
whereas the error norm drops below 3 % if N = 80. By
referring to these results, the number of propagation
paths Nmax = 80 is considered to be sufficient and
adopted for further simulations as a stopping criterion
in the iterative optimization procedure.

The important difference between the proposed and
the original INLSA method is that the former one
aims to model the TFCF of real-world channels, while
the latter one focuses only on the behavior of the
TFCF along the principal axes, meaning the TACF and
the FCF. In order to demonstrate this difference, we
have plotted the TFCFs of the measured channel and
the simulation model by using the INLSA-TF and the
INLSA-T-F in Figures 2, 3, and 4, respectively. From
Figures 2–4, we can realize that the INLSA-TF method
performs significantly better than the original INLSA-
T-F. It is readily apparent from comparing the results in
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Figure 3. Absolute value of the normalized TFCF |R[ν′p, τq]| of
the simulation model with the parameters estimated by using the
proposed INLSA-TF method.
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Figure 4. Absolute value of the normalized TFCF |R[ν′p, τq]| of the
simulation model with the parameters estimated by using the INLSA-
T-F method.

Figure 2 and Figure 4 that the main focus of the original
INLSA algorithm falls only on the TACF and the FCF.

As mentioned in Section 1, the separate parameter
optimization approach implemented in the original
INLSA algorithm may lead to incorrect estimations of
the simulation model’s parameters. To highlight this
problem, we have illustrated the performance of the
two variants of the original INLSA method in Fig-
ures 5 and 6. As can be seen in those figures, if the
INLSA-F-T approach is used, the difference between
the TACF curves of the simulation model and the
measured channel is significant, whereas the FCF of
the simulation model closely matches the FCF of the
measured channel. However, there is a significant gap
between the FCFs close to the origin. The discrepancy
between the FCFs of the simulation model and the
measured channel is relatively small if the INLSA-T-
F method is applied. This characteristic feature of the
INLSA-F-T method close to the origin is a result of the
used iterative approach for simplifying the maximum-
likelihood optimization problem. We can also conclude
from the inspection of Figures 5 and 6 that the TACF
and the FCF of the simulation model are well fitted
to the corresponding correlation functions of the mea-
sured channel if the simulation model’s parameters are
computed by using the proposed INLSA-TF method.
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Impressively, the proposed method provides an exact
correspondence between the correlation functions of
the simulation model and the measured channel at the
origin, as it was expected from (17).

In our performance analysis, we have also incor-
porated the study of the scattering function S(τ′, f )
of the simulation model, which is obtained by ap-
plying the two-dimensional discrete Fourier transform
to the TFCF R[ν′p, τq]. In Figure 7, we have depicted
a comparison between the scattering function of the
measured channel and that of the simulation model
designed by using the proposed INLSA-TF algorithm.
The corresponding results obtained by applying the
original INLSA method are shown in Figure 8. An
excellent agreement between the scattering functions
of the measured channel and the simulation model is
observed if the proposed INLSA-TF method is used (see
Figure 7). The results presented in Figure 8 demonstrate
the poor performance of the INLSA-T-F and the INLSA-
F-T methods in terms of modeling the scattering func-
tion of the measured channel.
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Figure 7. Comparison between the scattering functions Š(τ′, f )
(measured channel) and S(τ′, f ) (simulation model) designed by
using the INLSA-TF method.
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Figure 8. Comparison between the scattering functions Š(τ′, f )
(measured channel) and S(τ′, f ) (simulation model) designed by
using the INLSA method.

6 Summary and Conclusions

In this paper, we introduced the INLSA-TF method
for designing measurement-based wideband channel
simulators. The proposed method is an extension of
the INLSA method. The INLSA-TF method aims to
iteratively compute an optimized set of parameters
describing the channel simulator by modeling the em-
pirical TFCF of the given measurement data.

A performance analysis of the proposed method has
been conducted by applying the INLSA-TF algorithm to
measurement data collected in an urban environment.
We have compared the correlation properties of the
simulation model with those of the measured channel.
A comparison has also been made with respect to the
scattering function.

The obtained results demonstrated that the INLSA-
TF algorithm precisely estimates the simulation model
parameters and provides an excellent fitting to the
statistics of real-world channels. Finally, it has been
shown that the INLSA-TF method significantly out-
performs the two original versions. Owing to the low
complexity and an excellent performance, the INLSA-
TF method can be considered as a powerful tool for syn-
thesizing real-world channels and can therefore be used
for the performance analysis of mobile communication
systems under real-world propagation conditions.
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