
REV Journal on Electronics and Communications, Vol. 12, No. 3–4, July–December, 2022 41

Regular Article

Deep Reinforcement Learning - based Bitrate Adaptations in
Dynamic Adaptive Streaming over HTTP

Long Minh Luu1,2, Nghia Trung Nguyen1,2, Phuong Luu Vo1,2, Tuan-Anh Le3

1 International University, Ho Chi Minh City, Vietnam
2 Vietnam National University, Ho Chi Minh City, Vietnam
3 Thu Dau Mot University, Binh Duong, Vietnam

Correspondence: Phuong Luu Vo, vtlphuong@hcmiu.edu.vn
Communication: received 18 February 2022, revised 04 October 2022, accepted 06 October 2022
Online publication: 10 October 2022, Digital Object Identifier: 10.21553/rev-jec.308
The associate editor coordinating the review of this article and recommending it for publication was Prof. Vo Nguyen Quoc Bao.

Abstract– Dynamic adaptive streaming over HTTP (DASH) has been a superior video streaming technology in recent years.
Bitrate adaptation function at video player plays a vital role in guaranteeing a high quality-of-experience for the users.
This work evaluates the performance of several advanced deep reinforcement learning algorithms, i.e., deep Q-learning,
actor-critic, and proximal policy optimization, applied in bitrate adaptations and compares them with other rate adaptation
methods with real-trace datasets.

Keywords– Dynamic adaptive streaming over http, bitrate adaptation, deep reinforcement learning.

1 Introduction

A significant part of Internet traffic today is video
streaming [1], in which dynamic adaptive streaming
over HTTP (DASH) [2] is an effective technique to
stream a video from the server to the client. A DASH’s
video is chunked into multiple chunks with equal play-
back time and encoded at different levels of quality.
A higher quality chunk results in a larger chunk size.
The video player requests video chunks one by one and
plays them in order. The chunk is not played until it is
fully downloaded.

With the variation of network conditions, the rate
adaptation function at the video player has an essen-
tial role in improving the user’s quality of experience
(QoE). The QoE metrics include the quality of the video,
the smoothness of the video chunks (small number
of quality fluctuations), and no video stalling. The
adaptation method chooses a quality level for each
chunk to request based on the current conditions, e.g.,
network speed, current buffer size, etc.

Despite the simplicity of DASH framework, there
are several challenges a rate adaptation algorithm must
address [3, 4]:

1) Varying network conditions: the network speed
depends on factors such as signal strength, the
number of users, time of day, etc. fluctuate fre-
quently; the video chunk sizes are different even
within a quality level, etc.

2) Multi-purpose balance: a rate adaptation algo-
rithm must balance between 1) maximizing video
quality, 2) minimizing rebuffering time, and
3) maintaining video smoothness. These prob-
lems are usually in conflict with each other. For

example, for a low-speed network, maximizing
video quality will increase the rebuffering time.

3) Long time horizon: a good rate adaptation algo-
rithm does not simply select the chunk which
yields the highest QoE for the subsequent request,
but all the upcoming chunks to maximize the
QoE of a whole episode. For example, choosing
high-quality chunks will increase the user’s QoE;
however, it has a long download delay and may
cause video rebuffering.

Various adaptation algorithms have been proposed to
improve rate adaptation algorithms. Throughput-based
adaptation algorithms choose the quality level for the
next chunk based on the estimated throughput from
downloading the previous chunks [2]. The buffer-based
algorithms observe the buffer level to decide the quality
level [5]. Some methods combine these approaches,
such as [6].

The success of deep Q-learning (DQN), which
achieved human-level playing in the Atari game [7]
has inspired the development of various deep reinforce-
ment learning (DRL) algorithms such as asynchronous
advantage actor-critic (A3C) [8], trust-region policy op-
timization (TRPO) [9], proximal policy optimization
(PPO) [10], etc. and the applications of DRL algorithms
in many fields. Recently, the works [11, 12] have applied
DRL algorithms to improve the performance of rate
adaptation in DASH. D-DASH in [12] uses deep Q-
learning (DQN), and Pensieve [11] uses asynchronous
advantage actor-critic (A3C). The state is a combina-
tion of several observations, e.g., estimated through-
put of the previous chunk, chunk sizes, remaining
chunks, delay, etc. Neuron networks map the state to
Q-values (DQN) or actions (A3C) in DRL algorithms.

1859-378X–2022-3402 © 2022 REV

42 REV Journal on Electronics and Communications, Vol. 12, No. 3–4, July–December, 2022

Figure 1. Features extractor network.

Both DRL-based methods achieve a higher QoE than
the traditional adaptation methods. However, DQN and
A3C are also known for their sensitivity to the variation
of the hyperparameters.

In this paper, we compare the performance of dif-
ferent DRL algorithms to enhance the performance
of DASH. DQN, actor-critic, and state-of-the-art PPO
algorithms are used in the framework. We build a
simulation environment to train and evaluate the mod-
els. It allows the agent to experience ten thousand
video episodes within hours. The real-world bandwidth
datasets from 4G LTE and Federal Communication
Commission (FCC) are used. To the best of our knowl-
edge, this is the first work comparing the performance
of DASH with various DRL algorithms.

The remaining paper has the following structure.
Section 2 presents the DRL framework applying to
DASH’s rate adaptation. The simulation environment,
datasets, and other environment setups are described
in Section 3. Sections 4 and 5 show the results and
conclude the work, respectively.

2 DRL-based Adaptive Video Streaming

Model

Assume that the video has N chunks and K quality lev-
els. In the DRL-based rate adaptation, step n is defined
as an event that the agent takes action downloading
chunk n. An episode includes N steps. Let Bn be the
bitrate of the quality level of chunk index n.

2.1 Action Space and State Space

Action space: Action space has K actions which corre-
sponding to the number of quality levels of the video.

State space: At the beginning of step n, a state is
observed from the environment, which includes:

• A vector of the estimated network speed
{Cn−1, . . . , Cn−6} in Mbps.

• A vector of the chunk’s size {σ(n,1), . . . , σ(n,K)} in
Mbps.

• A vector of previous download time {dn−1, . . . ,
dn−6} in seconds.

• A scalar value indicates current buffer size Gn,
normalized by 10.

• A scalar value indicates the number of remaining
chunks, normalized by the episode’s length.

• A categorical value indicates the last chunk quality
level.

Similar to [11], we also use a simple network to
extract features of a state into an embedding vector,
which is described in Figure 1. Particularly,

• The scalars are passed through feedforward layers
of 128 units with ReLU activation function.

• The arrays are passed through 1D-CNN layers of
128 filters with kernel size 4 and stride 1, followed
by ReLU.

• Except for the last chunk quality: it is encoded
to a one-hot vector and then is passed through a
feedforward layer of 128 units, followed by ReLU.

These output values are flattened, concatenated, and
then passed to two layers with Tanh activation function
in between. The output of the features extractor is an
embedding vector, which is the input of the policy
and the value networks. The feature extractor is shared
between the actor and value networks to accelerate
computing.

2.2 Reward Function

QoE is used as the reward of DASH model as in [5,
11, 12]. It combines the bitrate utility, the quality switch
penalty, and the rebuffering penalty.

Let q(Bn) be the function indicating the utility down-
loading chunk n at bitrate Bn. Following [5], we use
logarithm q(Bn) = ln(Bn/Bmin) for utility function. The
logarithm scale captures the notion that the marginal
improvement in perceived quality decreases at the
higher bitrates.

Let ϕn be the rebuffering time that results from
downloading chunk n at bitrate Bn. Assume that Gn
is the buffer size at the beginning of step n and dn is
the download time of chunk n. If dn > Gn, we have

L. M. Luu et al.: Deep Reinforcement Learning - based Bitrate Adaptations in Dynamic Adaptive Streaming over HTTP 43

ϕn = dn − Gn. Otherwise, the video have no rebuffering
when playing chunk n. Therefore, rebuffering time
corresponding to chunk n is calculated by the following
formula:

ϕn = max(0, dn − Gn).

The reward corresponding to chunk n is given by

rn = q(Bn)− µs|q(Bn)− q(Bn−1)| − µϕϕn, (1)

where the term µs|q(Bn) − q(Bn−1)| penalties the
switching in quality levels of two consecutive chunks
with weight µs.

3 Experiment Details

3.1 Environment
We build an event-driven simulation to train the DRL

agent. A simulated environment consists of two main
functions: step and reset. The reset function is called
when starting an episode to reset the environment to
the beginning of an episode. After that, step function is
called consecutively until the episode terminates. The
step function requires action as input and returns a
new state, reward, and a boolean value indicating if
the episode is terminated.

In DASH, the downloaded chunks are stored in
the client buffer before being played. Buffer size is
measured by the total playing time of the wait-to-be-
played chunks. The buffer follows the first-in-first-out
rule. When the buffer exceeds an upper threshold level
Gmax, the video player will stop requesting new chunks.
It must wait for the buffer level to decrease below Gmax

to send the request for a new chunk again. The video
player re-buffers when the chunk index going to be
played does not exist in the buffer. The video player
pauses playing and waits for the new chunk to be
completely downloaded. Re-buffering causes the video
to freeze.

To emulate the process of downloading and playing
video chunks in DASH, we use a list of events that
includes five types, i.e., DOWN, DOWNF, SLEEP, PLAY,
and REBUFFER. Every event is associated with a times-
tamp. Events are sorted in the order of timestamps.
Each event encountered generates a new one.

DOWN, DOWNF, and SLEEP events: A DOWN
event is generated when the video player requests a
new chunk, a DOWNF event is generated when a
chunk is completely downloaded, and a SLEEP event
is generated when the player pauses requesting a new
chunk when the current buffer size is higher than the
threshold Gmax.

• When a DOWN event requesting chunk n with
timestamp t is encountered, a DOWNF event is
generated at time t+ dn, in which dn is the chunk’s
download time.

• When a DOWNF event with timestamp t is en-
countered, a DOWN event associated with the next
chunk is appended to the event list if the buffer size
is less than Gmax; otherwise, a new SLEEP event is
generated at time t+ sample, where sample = 0.02.

Let G be the current buffer size when a DOWN
event associated with chunk n is encountered (re-
questing chunk n). The buffer size is updated at
DOWNF event by the formula:

G := max(0, G − dn) + T, (2)

where dn is the download time of chunk n, and T
is the playback time of chunk.

• When a SLEEP event with timestamp t is encoun-
tered, a new DOWN event associated with the
next chunk is generated with timestamp t+ sample
if G < Gmax; otherwise, a new SLEEP event is
appended. The buffer size is updated at the SLEEP
event as follows:

G := G − sample. (3)

PLAY and REBUFFER events: A PLAY event is
generated when the player starts playing a chunk,
and a REBUFFER event is generated when the chunk
intended to play is not in the buffer.

• When a PLAY event playing chunk n with times-
tamp t is encountered, a new PLAY event associ-
ated with chunk n+ 1 with timestamp t+ T is gen-
erated if chunk n + 1 is completely downloaded.
Otherwise, a REBUFFER event with timestamp
t + T + sample is generated.

• When a REBUFFER event with timestamp t is
encountered, a new PLAY event associated with
the next chunk index is appended to the event
list if the next-playing chunk index is completely
downloaded. Otherwise, a new REBUFFER event
with timestamp t + sample is appended.

An episode is initialized by reset function with a
DOWN event and a REBUFFER event at timestamp
0. A step of the environment is the period between
two consecutive DOWN events. The episode terminates
after the last chunk of the video player is played.

3.2 Datasets
Video and quality levels: We use the Elephant

Dream video dataset [13] encoded into 20 different
quality levels for each 4-second chunk. We choose 07 bi-
trate levels: Bn = (700, 900, 2000, 3000, 5000, 6000, 8000)
Kbps, following the guidelines by [14], which map
to approximately the following human-friendly qual-
ity levels: (240p, 360p, 480p, 720p, 720p@60fps, 1080p,
1080p@60fps). Thus, the DRL agent has seven discrete
actions in each step. We use the first 60 chunks of the
video for each episode which is 240 seconds in training
and evaluation. The default quality at the beginning of
each episode is the lowest quality level.

4G LTE: the 4G LTE dataset [15] contains 135 traces,
with an average duration of 15 minutes per trace,
at 1-second granularity. This dataset collected traces
from Irish mobile operators with five mobility patterns:
static, pedestrian, car, bus, and train. By using 60
seconds sliding window across this dataset, we also
generated 1,000 traces with 320 seconds per trace.

FCC: The FCC dataset contains over 1 million
throughput traces, at a granularity of 10 samples per

44 REV Journal on Electronics and Communications, Vol. 12, No. 3–4, July–December, 2022

Figure 2. Tuning results of DQN, A2C, and PPO. Y-axis is mean
reward and X-axis is the number of trails, which is 120.

second [16]. We construct 1,000 random traces (each
spanning 320 seconds) for our dataset. Although the
method of collecting data is very similar to [11, 12],
our throughput traces are randomly selected from the
“download speed” category instead of using “web
browsing” as in [11]. According to FCC technical re-
port [16], throughput in “web browsing” is measured
by taking the sum of sizes of all the contents of the
web page divided by the fetch time, which is the
time consumed to download those contents. However,
because the size of web pages varies, the fetch time also
varies. In “download speed” category, the measurement
time is 10 seconds. The client attempts to download as
much as possible, and the average throughput achieved
during this period is recorded. In this way, the network
segment will ensure granularity in 10 seconds. We use
the September 2019 collection.

In each FCC or LTE dataset, we randomly split 80%
of the dataset to train and 20% to test, which are
800 and 200 traces, respectively. At the beginning of
every episode, the trace and the initial point are picked
randomly from the train set. We concatenate the FCC
and LTE training sets to train the DRL agents.

3.3 Hyperparamter Tunning
We apply three popular DRL algorithms, i.e., deep

Q-learning (DQN), advantage actor-critic (A2C), and
proximal policy optimization (PPO). To find a good
hyperparameter set, each algorithm is run for ≈ 120 tri-
als with different seeds. In each run, hyperparameters
are uniformly selected from ranges of hyperparameters.
The best hyperparameter set in 120 trials is used to
train and test again for the final results with ten differ-
ent seeds. More information about the hyperparameter
tuning strategy can be found in the appendix.

The rewards of 120 trials of DQN, A2C, and PPO are
shown in Figures 2. We can see that PPO is more stable
than A2C and DQN when varying hyperparameters.

3.4 Training and Testing
Training library. As noted by [17–20], code-level

optimization tricks (e.g. observation normalization, re-
ward scaling, global gradient clipping) from different
codebases greatly influence the performance of DRL
algorithms. Thus, we use the implemented algorithms
in Stable-Baselines3 [21], a well-known and reliable
DRL codebase, to train the model. PPO and A2C are
trained with four parallel environments; however, par-
allel environments are not supported with DQN. For
PPO and DQN, Adam optimizer is used according
to [22]. For A2C, we add the option of using RM-
Sprop [23] or Adam in tuning this hyperparameter.
Each algorithm trains in 885, 000 steps, which is around
15, 000 episodes. The readers can find the open-source
codes for training and tuning at [24] and [25].

4 Results

We compare the DRL-based rate adaptation methods
with some other non-DRL methods, i.e., random, con-
stant, throughput-based [2] and BOLA [5]. Particularly,

• Random: the next quality is picked randomly at
each step.

• Constant: at each step, the next quality is picked
as the 3000Kbps quality (which is known as HD
(720p) quality).

• Throughput-based (THRB): at each step, the down-
load chunk has the highest quality level, of which
the corresponding bitrate is smaller than the har-
monic mean of the estimated throughputs of three
previous downloaded chunks.

• BOLA: the buffer-based adaptation method that
uses Lyapunov optimization to minimize rebuffer-
ing and maximize video quality.

4.1 Training Curve and Testing QoE Metrics
We first present the results with the best hyperpa-

rameters in Table I with case µϕ = 2.66. Figures 3 show
the convergence of three algorithms with about 900,000
training steps. The shaded areas are the instantaneous
rewards, and the bold lines are the average of the
last 100 steps. The algorithms converge around the
400k-th step.

L. M. Luu et al.: Deep Reinforcement Learning - based Bitrate Adaptations in Dynamic Adaptive Streaming over HTTP 45

Table I
QoE Metrics When Testing with Both Datasets with µϕ = 2.66.

Each Value is the Average Across 10 Seeds. Bold Indicates the Best Result.

FCC QoE Utility Quality-switch penalty Rebuffering penalty Rebuffering time (s)

A2C 0.903 ± 0.104 1.044 0.094 0.046 1.729
DQN 0.898 ± 0.047 1.014 0.094 0.020 0.751
PPO 0.971 ± 0.046 1.080 0.077 0.031 1.165

THRB 0.752 ± 0.439 0.933 0.178 0.002 0.075
BOLA 0.843 ± 0.505 0.957 0.062 0.051 1.917

RANDOM −2.296 ± 0.069 0.785 0.581 2.500 50.003
CONSTANT −4.224 ± 0.001 1.160 0.020 5.364 107.283

LTE QoE Utility Quality-switch penalty Rebuffering penalty Rebuffering time (s)

A2C 0.600 ± 0.083 0.966 0.106 0.260 9.774
DQN 0.616 ± 0.046 0.915 0.145 0.152 5.741
PPO 0.590 ± 0.044 0.978 0.136 0.251 9.436

THRB 0.537 ± 0.672 0.841 0.194 0.267 10.03
BOLA 0.513 ± 0.942 1.029 0.145 0.371 13.94

RANDOM −1.304 ± 0.023 0.786 0.582 1.508 56.700
CONSTANT −1.713 ± 0.001 1.160 0.020 2.854 107.283

Figure 3. Training curve with µϕ = 2.66. Y-axis is reward value.

From Table I, PPO outperforms A2C and DQN with
FCC dataset. However, there is no significant difference
between the algorithms with the LTE dataset.

We further investigate the difference in results be-
tween the three algorithms by using t-test according to
the evaluation guidelines suggested by [18] and [17].
We test for the equality of the mean rewards when
variances are unknown. Each random sample has 10
data points corresponding to 10 runs with 10 random
seeds. The null hypothesis is the equality of the mean
rewards of two compared algorithms, and the alterna-
tive hypothesis is that the mean rewards are different.

Table II presents t-value and p-value of various tests
between pairs of algorithms. Except for the pair PPO
and DQN showing the difference in mean rewards
(p-value is less than the critical value 0.05), all other
p-values are greater than 0.05, which means that we
can not reject the null hypothesis. Therefore, we can
conclude that there is no significant difference in mean
rewards between the RL algorithms.

Figure 4 shows the quality level of PPO, BOLA, and
Throughput of an episode with a randomly picked
FCC trace (Figure 4(a)). We can see that PPO yields
the best quality. On the other hand, BOLA shows a
stable but low quality level. Throughput-based method

Table II
Applying t-test to Compare the Mean of Rewards. Bold

Indicates p-value Less Than 0.05.

FCC(µϕ = 2.66) LTE(µϕ = 2.66)
Alternatives t-value p-value t-value p-value

A2C ̸= DQN 0.131 0.898 -0.539 0.598
PPO ̸= A2C 1.883 0.083 -0.330 0.746
PPO ̸= DQN 3.464 0.003 -1.292 0.213

has a stable buffer level, but the quality levels of the
chunks vary.

With the DQN, A2C, and PPO models trained for
µϕ = 2.66, we further test the case µϕ = 5 to penalty
more on rebuffering time and also to evaluate the
robustness of the algorithms. The results are shown in
Table III. PPO shows a significantly higher QoE metric
in this case, while the rebuffering time is maintained the
lowest and smaller than the case µϕ = 2.66. This result
also agrees with the observation earlier that PPO model
is robust against the variations of the hyperparameters;
hence, when changing µϕ value without retuning, the
performance of PPO model does not degrade as much
as A2C and DQN models.

4.2 Runtime Analysis

PPO and A2C use two neural networks, whereas
DQN uses only the Q-network. Their update rules are
also different from each other. Thus, it is important
to compare the algorithms’ runtime to determine the
practical value. From the empirical experiments, each
algorithm takes approximately 2 hours on 4 Intel XEON
CPU @2.20 GHz and without GPU, and the runtime
difference between CPU and GPU is not significant.
This indicates that the algorithm is practical to use in
real-world situations.

46 REV Journal on Electronics and Communications, Vol. 12, No. 3–4, July–December, 2022

(a) Bandwidth of a randomly chosen trace (b) PPO

(c) THRB (d) BOLA

Figure 4. Playing quality levels and buffer sizes of one episode with a randomly picked network trace from the FCC dataset.

Table III
QoE Metrics When Test with Both Datasets in Case µϕ = 5.

Each Value is the Average Across 10 Seeds. Bold Indicates the Best Result.

FCC QoE Utility Quality-switch penalty Rebuffering penalty Rebuffering time (s)

A2C 0.576 ± 0.383 0.819 0.071 0.172 3.44
DQN 0.854 ± 0.068 1.018 0.118 0.044 0.88
PPO 0.957 ± 0.053 1.057 0.069 0.031 0.62

THRB 0.750 ± 0.445 0.933 0.178 0.005 0.1
BOLA 0.798 ± 0.626 0.957 0.062 0.096 1.92

RANDOM −2.296 ± 0.030 0.786 0.582 2.500 50.003
CONSTANT −4.091 ± 0.002 1.160 0.019 5.232 104.635

LTE QoE Utility Quality-switch penalty Rebuffering penalty Rebuffering time (s)

A2C 0.242 ± 0.304 0.745 0.085 0.418 8.36
DQN 0.419 ± 0.095 0.928 0.162 0.346 6.92
PPO 0.462 ± 0.048 0.948 0.127 0.357 7.14

THRB 0.444 ± 1.064 0.841 0.194 0.202 4.04
BOLA 0.189 ± 1.525 1.029 0.145 0.694 13.88

RANDOM −2.657 ± 0.049 0.786 0.582 2.835 56.700
CONSTANT −4.224 ± 0.002 1.160 0.020 5.364 107.283

5 Conclusions

We have applied three DRL algorithms to bitrate adap-
tation in DASH, i.e., DQN, A2C, and PPO. We build
a simulated environment to train and test with real-

trace datasets. The experiments show that the DRL al-
gorithms outperform other rule-based ABR algorithms
like throughput-based and BOLA. PPO is more robust
against the varying of hyperparameters than the other
two DRL algorithms.

L. M. Luu et al.: Deep Reinforcement Learning - based Bitrate Adaptations in Dynamic Adaptive Streaming over HTTP 47

Acknowledgment

This research is funded by Vietnam National University
Ho Chi Minh City (VNU-HCM) under grant number
DS2020-28-01.

Appendix

In this section, we describe the hyperparameter tuning
strategy. The details of DQN, A2C, and PPO algorithms
and the descriptions of their hyperparameters can be
found in the works [7, 8, 10].

We use Weights & Biases [26] for experiment track-
ing and visualizations. The Bayesian tuning strategy
is applied to search for the optimal hyperparameters
with coefficients µs = 2.66 and µϕ = 2.66. We perform
120 trials with different seeds for each algorithm. The
hyperparameter set from the best trial is then used to
train the final model with ten different seeds. Hyper-
parameters are sampled uniformly in ranges listed in
Tables IV, V, and VI.

Table IV
Tuning Ranges of Hyperparameters for DQN.

Hyperparameter Data type
Sampling
distribution

Learning rate float U(1e-5,1e-3)
Experience replay int U(59, 11800)
Batch size int U(59, 590)
Learning starts int U(295, 2360)
Discount factor float {0.95, 0.99}
Polyak coef float {0.99, 1.0}
Train frequency int U(30, 120)
Gradient steps int U(-1, 59)
Target update interval int U(30, 200)
Exploration fraction float U(0.2, 0.6)

Table V
Tuning Ranges of Hyperparameters for A2C.

Hyperparameter Data type
Sampling
distribution

Learning rate float U(1e-5,1e-3)
N steps coef int U(5, 590)
Epoch int {10, 20, 30}
Discount factor float {0.99, 1.0}
GAE coef float {0.95, 0.99, 1.0}
Entropy coef float {0, 1e-5, 1e-8}
Value function coef float U(0.2, 0.5)
Use RMSprop bool true, false
Normalize advantages bool true, false

In addition to the algorithm-specific hyperparame-
ters, each algorithm also has the network hyperparam-
eters presented in Table VII.

Table VI
Tuning Ranges of Hyperparameters for PPO.

Hyperparameter Data type
Sampling

distribution

Learning rate float U(1e-5,1e-3)

Batch size int U(59, 590)

N steps coef int U(1, 5)

Epoch int {10, 20, 30}

Discount factor float {0.99, 1.0}

GAE coef float {0.95, 0.99}

Clip range float {0.2, 0.3}

Entropy coef float {0, 1e-5, 1e-8}

Value function coef float U(0.2, 0.5)

Table VII
Tuning Ranges of Parameters for Neural Networks.

Hyperparameter Type
Sampling

distribution

Features dim int {128, 256, 512}

Policy network units int {64, 128, 256, 512}

Policy network layers int U(1, 4)

Value network units int {64, 128, 256, 512}

Value network layers int U(1, 4)

Activation function str {tanh, relu}

Table VIII
Best Hyperparamters of DQN

Hyperparameter Value

Learning rate 0.0004295652501295359

Experience replay buffer size 11340

Learning starts 1655

Batch size 181

Polyak update coef 0.99

Discount factor 0.99

Model update step (train_freq) 96

Gradient step 12

Target Network update interval 102

Exploration Fraction 0.36757746500495925

Initial exploration rate 1.0

Final exploration rate 0.05

Gradient clipping value 10

Optimizer Adam

Features dim 128

Activation function ReLU

Q-network units 64

Q-network layers 1

The optimal hyperparameters after tuning of DQN,
A2C, and PPO algorithms are shown Tables VIII, IX,
and X.

48 REV Journal on Electronics and Communications, Vol. 12, No. 3–4, July–December, 2022

Table IX
Best Hyperparameters of A2C

Hyperparameter Value

Learning rate 0.00011583245926619557
Experiences per update 7
Discount factor 1
GAE lambda 0.95
Entropy coef 1e-8
Value function coef 0.32803323811081575
Gradient clipping value 0.5
Use RMSProp True
Normalize advantage True
Features dim 256
Activation function Tanh
Policy network units 64
Policy network layers 1
Value network units 128
Value network layers 1

Table X
Best Hyperparameters of PPO

Hyperparameter Value

Learning rate 0.00012259927557284572
Experiences per update 2875
Batch size 556
N_steps coef 5
Update epoch 10
Discount factor 1
GAE lambda 0.95
Clip range 0.3
Entropy coef 1e-8
Value function coef 0.4348768251443197
Gradient clipping value 0.5
Optimizer Adam
Features dim 512
Activation function ReLU
Policy network units 512
Policy network layers 4
Value network units 128
Value network layers 3

References

[1] Cisco, “Cisco visual networking index: Forecast and
methodology 2015–2020,” 2016.

[2] T. Stockhammer, “Dynamic adaptive streaming over
http– standards and design principles,” in Proceedings of
the second annual ACM Conference on Multimedia Systems,
2011, pp. 133–144.

[3] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and
R. Johari, “Confused, timid, and unstable: picking a
video streaming rate is hard,” in Proceedings of the 2012
Internet Measurement Conference, 2012, pp. 225–238.

[4] X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic,
R. Jana, X. Jin, J. Rexford, and R. K. Sinha, “Can accurate
predictions improve video streaming in cellular net-
works?” in Proceedings of the 16th International Workshop
on Mobile Computing Systems and Applications, 2015, pp.
57–62.

[5] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA:
Near-optimal bitrate adaptation for online videos,”

IEEE/ACM Transactions on Networking, vol. 28, no. 4, pp.
1698–1711, 2020.

[6] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-
theoretic approach for dynamic adaptive video stream-
ing over http,” in Proceedings of the ACM Conference on
Special Interest Group on Data Communication, 2015, pp.
325–338.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidje-
land, G. Ostrovski et al., “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540,
pp. 529–533, 2015.

[8] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap,
T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous
methods for deep reinforcement learning,” in Proceedings
of the 33rd International Conference on Machine Learning.
PMLR, 2016, pp. 1928–1937.

[9] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and
P. Moritz, “Trust region policy optimization,” in Proceed-
ings of the International Conference on Machine Learning.
PMLR, 2015, pp. 1889–1897.

[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,”
arXiv preprint arXiv:1707.06347, 2017.

[11] H. Mao, R. Netravali, and M. Alizadeh, “Neural adap-
tive video streaming with pensieve,” in Proceedings of
the conference of the ACM Special Interest Group on Data
Communication, 2017, pp. 197–210.

[12] M. Gadaleta, F. Chiariotti, M. Rossi, and A. Zanella, “D-
DASH: A deep Q-learning framework for DASH video
streaming,” IEEE Transactions on Cognitive Communica-
tions and Networking, vol. 3, no. 4, pp. 703–718, 2017.

[13] Blender Elephants Dream Movie, 2014. [Online].
Available: https://orange.blender.org/

[14] Google, “Choose live encoder settings, bitrates, and
resolutions,” YouTube help, 2021. [Online]. Available:
https://support.google.com/youtube/answer/2853702

[15] D. Raca, J. J. Quinlan, A. H. Zahran, and C. J. Sreenan,
“Beyond throughput: A 4G LTE dataset with channel
and context metrics,” in Proceedings of the 9th ACM
Multimedia Systems Conference, 2018, pp. 460–465.

[16] FCC, “The Tenth Measuring Broadband America Fixed
Broadband Report: A Report on Consumer Fixed Broad-
band Performance in the United States,” 2019.

[17] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup,
and D. Meger, “Deep reinforcement learning that mat-
ters,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, no. 1, 2018.

[18] C. Colas, O. Sigaud, and P.-Y. Oudeyer, “A hitchhiker’s
guide to statistical comparisons of reinforcement learn-
ing algorithms,” arXiv preprint arXiv:1904.06979, 2019.

[19] L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos,
L. Rudolph, and A. Madry, “Implementation matters
in Deep RL: A case study on PPO and TRPO,” in
Proceedings of the International Conference on Learning Rep-
resentations, 2019.

[20] R. Islam, P. Henderson, M. Gomrokchi, and D. Precup,
“Reproducibility of benchmarked deep reinforcement
learning tasks for continuous control,” arXiv preprint
arXiv:1708.04133, 2017.

[21] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto,
and N. Dormann, “Stable baselines3,” GitHub Repository,
2019. [Online]. Available: https://github.com/DLR-
RM/stable-baselines3

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[23] G. Hinton and T. Tieleman, Neural networks for machine
learning class. Coursera, 2012.

[24] https://wandb.ai/aeryss/singlepath final.
[25] https://wandb.ai/aeryss/singlepath tuning.
[26] L. Biewald, “Experiment tracking with weights

and biases,” 2020. [Online]. Available: https://www.
wandb.com/

L. M. Luu et al.: Deep Reinforcement Learning - based Bitrate Adaptations in Dynamic Adaptive Streaming over HTTP 49

Long Minh Luu holds a bachelor’s degree
of Computer Science from International Uni-
versity - Vietnam National University Ho Chi
Minh City. His main research areas are Rein-
forcement Learning and Computer Vision for
bitrate adaptation, image classification, and
out-of-distribution generalization.

Nghia Trung Nguyen received his bachelor’s
and master’s degreesfrom Computer Science
from International University - Vietnam Na-
tional University Ho Chi Minh City in 2019
and 2022, respectively. His main research in-
terest is to apply Reinforcement Learning to
enhance the efficiency of various applications
in computing.

Phuong Luu Vo received her B.Eng and
M.Eng degrees in electrical-electronics engi-
neering from Ho Chi Minh City University
of Technology, Vietnam in 1998, 2002, respec-
tively, and Ph.D. degree at Kyung Hee Uni-
versity, Korea in 2014. Currently, she is an
Associate Professor at School of Computer
Science and Engineering at International Uni-
versity – VNUHCM. Her research interest is
to apply machine learning, optimization, and
game theory to contemporary networks.

Tuan-Anh Le received Ph.D. degree at Kyung
Hee University, Korea in 2013. Currently, he is
with Faculty of Engineering and Technology,
Thu Dau Mot University, Vietnam. His re-
search interest is to apply artificial intelligent
to contemporary networks.

