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Abstract– Brainstorm website layout ideas usually start with everyone giving out their mockups, and all the team members
will discuss to finalize the layout of the user interface. Once a vision of that mockup is accepted, it is given to the designer
to sketch it digitally on computer software (i.e., Photoshop, Figma, Sketch). When the designer completes, the developer
based on the final design to code the UI/UX of the website. As we can see, the process requires three stages, which can
be time-consuming. Therefore, if anyone has an idea for the professional website layout, they can visualize it by drawing
on sketches. However, it can be impossible for them to make a usable website without designers and website developers.
Due to that reason, our primary goal in this paper is to help individuals transform their hand-drawn sketch images into a
website that can be deployed. To achieve that goal, we present two approaches: classical computer vision techniques and the
other using a deep learning model to detect the sketch and execute the conversion. Furthermore, our evaluation shows that
deep learning is the most promising direction. Still, classical techniques also improve the model’s input data by applying
it in the pre-processing image.

Keywords– Computer vision, Hand-drawn sketch, UI/UX, Deep learning.

1 Introduction

By sketching a mockup on paper to illustrate the struc-
ture of the user interface, we face a challenge that
designers need to convert their mockup into the design,
which is a type of scripted language. After finishing,
they need to pass the design to a developer and having
the developer implement another scripted language
(HTML with CSS, JS) to turn the design into an actual
website. This process contains conversion between two
different languages, which costs much time in project
development.

Solutions to shorten the process had been proposed
by several companies such as Microsoft, Figma, Uizard.
For instance, when using the Figma1 to cut down
the process on half by removing the developer’s in-
volvement with designs to code conversion. Moreover,
SILK [1] turns digital drawings into an application
code using gestures; DENIM [2] augments drawings to
add interaction, and REMAUI [3] convert high-fidelity
screenshots into mobile apps.

Those above-mentioned applications rely on classical
computer vision techniques and mathematical conver-
sion to achieve the following goals:

• Faster process - Mock-ups converted directly to a
design or a source code without human interfer-
ence.

• Less work - Developers can shorten the UI process
- coding and focus on improving features of the
website.

1Anima for Figma, https://www.animaapp.com/.

However, they cannot fully get what they aim for
since the classical techniques with mathematical con-
versions have its flaw and limitation. Furthermore,
while pointing out drawbacks of classical means, we
figure out that we can borrow the existing Deep Learn-
ing techniques that already proved their efficiency to
apply and achieve significant results if we treat this
kind of problem as object detection.

In this paper, the main contributions of this work are
outlined as follows (shown as Figure 1):

• Build both a deep learning and classical computer
vision means which can:

– Detect and classify website elements sketched
on the paper and subsequent tasks (i.e., line
and text detection).

– Adjust the layout to fit the defined rules for a
beautiful website layout.

– Display the detection results and return them
as a response for API service.

– Convert the detection’s result to a website
source code.

• Evaluate the performance of classical techniques
and the Deep Learning model.

The rest of this paper is organized as follows: in
the next Section 2 presents an overview and discussion
for related works. In Section 3, we show our methods,
our approaches, the pre-processing steps conducted.
In Section 4, we present our experimental results and
discussion. To sum up this study, Section 5 presents
conclusions and future works.
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Figure 1. The goal we achieve in this paper.

Figure 2. The element in the red rectangle is drawn as input, while
the blue one is marked as a button. Moreover, the two elements are
drawn precisely the same way.

2 Related Work

In this section, we discuss survey literature related to
the processing and analysis of converting drawings to
a website. This also will be followed by a summary of
the algorithm using to detect the hand-drawn sketch
and markers to recognize the website component.

2.1 Sketch2HTML of Microsoft
Microsoft solves this problem by detecting the

boundary shape to recognize website components and
the text inside each element to generate tag text for the
layout. Moreover, they also add symbols to the regular
rectangle shape to classify website components [4].
However, they only focus on building it as a beta
project since the number of drawing website elements
supported to be detected are not many. The reason for
that is the challenge of similarity between elements,
which is presented in Figure 2.

2.2 Pix2Code and other Similar Products
The following product we examine is Pix2Code. This

source code project on GitHub has belonged to Uizard
product based on the following paper [5]. This method
of the paper only focuses on comparing GUI compo-
nents (which is already markup code for UI compo-
nents) with input images to see if they are matched

Figure 3. How the algorithm works.

or not. If they are matched, then they are classified
as predefined GUI components. Due to this reason,
the paper had claimed this model would not work
for the real-life conversion of the application layout.
However, it applies the Convolutional Neural Network
(CNN) method, which we are also interested in de-
tecting symbols, so it is still useful when providing
some techniques mentioned by the paper. Moreover,
the following source codes are also based on Pix2Code
above. The exciting thing is the method [6] they use that
may serve the future purpose - extending this project
not only detecting hand-drawn sketches but also GUI
components and website images screenshot by users’
computers.

• Sketch2HTML2

• SketchCode3

2.3 Generation of Slides from Hand-Drawn Sketches
In this paper [7], the author describes an algorithm

to detect basic hand-drawn shape images taken by a
handheld device. Figure 3 shows how the algorithm
works.

We figure out that by removing corners, the algo-
rithm can avoid the situation when users draw two lines

2iSysLab. GitHub: github.com/iSysLab/sketch2html.
3Ashnkumar. GitHub: github.com/ashnkumar/sketch-code.
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intersecting each other, and they overdraw the line a bit
(which can make the computer system misunderstand
that there are two corners as one is the intersection
points and the other is the endpoint of the overdraw
line). Moreover, the Warp Perspective of the input
image is a good way to ensure the line detection since
images are taken by handheld devices, and they are
not always straight up to the camera. In addition, a
predefined list of shapes can help the algorithm under-
stand what to base on and detect, which means save a
lot of time training for learning shapes if the method
is based on Deep Learning. However, the author did
not clearly mention how they reduce noise from input
images since all inputs in the result seem to be in really
perfect conditions, which is not true if one person takes
an image in real life, therefore lead to the situation that
this experiment’s algorithms may not work for real-life
using. Besides, the hand-drawn image shows that all
the lines are perfectly drawn, which is not ideal in real
life since there is a situation that a human’s hand can
mess up a drawing.

2.4 Sketch2Tag: Automatic Hand-Drawn Sketch
Recognition

Most methods use a particular domain (shape char-
acteristic) or the predefined list of shapes for detection.
However, this paper [8] uses another approach which
is heavily based on existed clip art of the shapes and
the probabilities of users vote while using the system.
For example, users draw a part of the shape, and by
looking at the recommended system, they found out
their shape in need and choose it, which makes the
part of the shape they are drawing will be used as the
template matching for the next time other users draw.
The fascinating thing in this paper is that the system has
users involving in recommending what kind of shape
style they usually draw, which can help increase the
accuracy of the system learning algorithm. Moreover,
the correct results do not need to be defined by the
system since if the result of shape detection is agreed
and chosen by most users, and it is eventually the
correct answer that everyone wants. In contrast, if the
number of users uses this tool is not much, the accuracy
will never be improved since the result is only correct
when the users are satisfied. In addition, the website
layout in our project, the website components that need
to be drawn are a lot and combine or overlay next to
each other, which is hard to create enormous resources
from the beginning for the recommendation system.

3 Proposed System

Most drawings contain a symbol used to detect the
website component, connectivity information (lines),
and some form of annotation (text). However, there
is no public dataset available for evaluation purposes.
In section 3.1, we apply the classic approach for the
detection drawings. The following subsection 3.2 will
discuss in detail the modern means and its experiments.

Figure 4. An entire process of the classical approach.

This will include data exploration and how we pre-
process the data.

3.1 Classical Approach
After referencing the processing way of providing so-

lutions from several papers and companies, we propose
a better version to detect hand-drawn website elements
in sketch images.

Following Figure 4, we explain each process and its
scopes in order to generate the final detection result.

1) Every input image that we detect must be sent
to the API with the image source file and its
four corners coordinates (If any conditions are
missing, the API will raise and response error).
These coordination tend to help the algorithm
know where to align the top view using Warp
Perspective Algorithm [6].

2) Images need to have less noise in order not to
affect the algorithm performance, so we designed
a technique to remove the shadow out of the input
image. This technique is called bitwise removal. A
brief explanation about this means, firstly, we di-
late the image to make the content in the sketches
(hand-drawn website component layout) blur so
that the shadow and the background seem to be
the same. After that, we compare the absolute dif-
ference between the new blur image and the old
one. In the content area, by using the dilation, the
new image and the old one tend to be different,
which causes the pixel to be 1 (binary image). For
other areas such as background and shadow zone,
because the blur makes them similar to each other,
then the comparison tends to be equal, and the
pixel has 0, which helps to remove the shadow
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since it is blended into the background. The final
step is inverting the pixel value, and by doing
that, we are able to delete both background and
shadow.
After removing the noise and shadow, drawing
lines and shapes by users may miss some con-
nections in someplace where the shadow was
removed. Therefore, we apply the Morphological
method to dilate and thicken drawing lines in
order to connect them as one so that they can form
the shape that the user drew in the first place [6].

3) Thickened lines that are created to form the shape
can cause a redundant contour since the contour
only detects the edge of a line, which if it is too
thin, it tends to create an inner line and outer
line. Therefore, we applied another means called
Skeletonize [9] to get the result.

4) When the hand-drawn lines are thin, by using
contour, we can draw lines that form as regions of
elements and know which part is drawn as a rect-
angle shape by approximating the polygons at the
corner of each shape (which we call endpoints).
And then, based on the number of polygons that
had been approximated, along with our defined
rules for each polygon number, we can detect the
website elements based on the shape region with
a specific symbol inside. For instance, symbols
in the rectangle are drawn as an I, it maps onto
Image element, and similarly, drawn as T, it maps
onto Textarea element to convert to a website
source code.

3.2 Modern Approach
There are several object detection approaches that be

listed below:
• Fast R-CNN
• Faster R-CNN
• Mask R-CNN
• Single Shot MultiBox Detector (SSD)
• YOLO (You Only Look Once)
After researching and experimenting with the exam-

ple source code with the pre-trained model of each
technique, we consider between two pre-trained mod-
els: SSD and Faster RCNN.

3.2.1 SSD: SSD might appropriate for this problem
because:

• SSD pre-initializes the boxes at each position on
the image, computes and evaluates information at
each location to see if there is an object or not,
which object is, and based on results of the close
proximity, the SSD tends to calculate a box that
covers the object.

• SSD calculates the bounding box on different fea-
ture maps, and at each feature map layer, a box
tends to embrace the image with different dimen-
sions partially. By using multiple boxes on multiple
floors, SSD can aggregate the resulting box size
and position, and with excluding Region Proposal
Network (RPN), SSD can also achieve a higher
processing speed.

Figure 5. Notebook with dot background.

However, we decide not to choose SSD because its
lightweight may help us achieve the speed but not
the accuracy performance we desire because the region
proposal layer has been removed. Furthermore, due to
that fact, Faster RCNN is another choice that we finally
come to confirm using.

3.2.2 Faster RCNN: The Faster RCNN model is cho-
sen for these reasons:

• Providing a new layer called ROI (Region Of In-
terest) Pooling that extracts equal-length feature
vectors from all proposals in the same image.

• Building a network that has only a single stage.
• Sharing computations (convolutional layer calcu-

lations) across all proposals rather than indepen-
dently calculating each proposal. This is done by
using the new ROI Pooling layer.

• Not caching extracted features and thus does not
need so much disk storage.

• Fast enough without asking to trade off accuracy.
After choosing the model for Deep Learning tech-

niques, we do some more research about training sets
and found out that most hand-drawn sketches tend
to be drawn on white paper. From a user’s perspec-
tive, he/she can draw on any platforms he/she like;
however, the platform must be a single color, or the
background must have less noise, such as grid or dot
in a notebook as Figure 5.

Now, the novelty point we apply to the existing pre-
trained model is separating the input training set into
three categories as binary, grayscale and raw in other
to figure out with which dataset, the model will work
best and have the promising result (the input image
does not contain the grid background).

Following Figure 6, raw images and their two con-
version types - binary and grayscale, will be labeled
separately and trained on Faster RCNN. The final
validation result of the model reveals that with which
kind of dataset, the model has a better detection result.
From there, we can evaluate how Deep Learning in
the modern approach tends to solve this problem in
comparison to the classical approach.
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Figure 6. Steps to train the custom dataset on the pre-trained Faster
RCNN model.

Figure 7. An example that we build to test the experiment of detecting
and converting to HTML source code, which only costs about 438.69
ms (excludes all other web-app loading).

4 Experimental Results

For each experiment on each approach, we develop or
defines rules to normalize the input and output in order
to have one metric to evaluate the performance and
accuracy.

4.1 Detection Results from the Classic Approach

For the classical approach, along with an image
process, we also includes a web application to receive
the detection result and convert it to source code. By
doing this, we can know the speed when using the
classical approach to detect hand-drawn sketches.

Moreover, for the result in Figure 7, the time for
the completion tends to be less than 1 second when
it is only based on a mathematical conversion. Even
though, the speed is fast, and the result is acceptable,
there is one problem that we cannot cope with is
extending more elements since some symbols tend to
have the same endpoints (such as L and U both have
two endpoints).

Therefore, we had taken some parts of the classical
approach to improve the image’s pre-processing step
of the modern approach to boost the model detection
with a better result (we use the classical approach to
remove noises and shadow).

Figure 8. Case where classical approach will confuse between two
symbols.

4.2 Detection Results from Modern Methods
By applying the classical approach in the pre-

processing image, we can ensure that the input dataset
for the Faster RCNN model tends to be clean and have
all the features for the model to extract and recognize.
In addition, to evaluate the model with three different
training datasets, we need to scope out the number of
label elements we use to train and detect (there will
be 20 label elements) and the training iteration that we
expect the convergence will occur (which we set default
as 4000 iterations).

With all the above-mentioned setup, after training the
model and run through the validation dataset (both
raw images from several individuals and augmented
images from the existing dataset), we retrieve a table
of the average precision, which is also the standard
metric to evaluate three different models derive from
three different image types.

In the Table I, the unit is on a 100 percent scale
where the higher the number, the better the precision
in detecting each element. Furthermore, we can see
that the number of elements that got detected correctly
(high percentages) is very high in the training model on
the Raw and Grayscale datasets. While it is deficient or
could not get high rates when training with the Binary
dataset. However, Figure 9, Figure 10, and Figure 11
show the detection result of each model; we can see that
model with the Binary dataset is the only one with the
highest elements got right while others predict all the
elements with their wrong type. This gives we a confir-
mation that due to noises and similar features between
elements (both drawn by the same color and lines), the
model with the Raw and Grayscale model had been
overfitted. These models try to map a label randomly to
any element it can find because the similar features are
huge, resulting from noises interference. On the other
hand, the model with binary had been normalized to
achieve the cleanest input since the background will
always be 0 while the element will always be formed
by 1 pixel.

Because of the result above, we can conclude that if
we apply Deep Learning to solve this problem better,
we also need to combine it with the classical approach
in the image’s pre-processing stage and convert it to
the binary mode to achieve the most accurate result.
In addition, when it comes to the significant result by
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Table I
Performance Table of Each Detected Element in Every Faster RCNN Model

Label Element Raw Dataset Grayscale Dataset Binary Dataset
Average Precision Average Precision Average Precision

image 80.944 75.154 51.676
heading 100.000 88.570 42.933
rectangle 91.089 82.325 62.606

icon_search 80.198 79.059 0.000
icon_menu_horizontal 61.683 45.956 0.000

avatar 90.231 88.317 12.475
image_round 0.000 0.000 0.000

link 96.287 95.465 28.436
icon 84.836 83.121 66.428

checkbox 80.000 60.198 0.000
input 70.000 80.099 0.000

icon_close 80.000 0.000 0.000
icon_down 80.231 62.566 28.614

input_search 70.000 0.000 0.000
text 89.239 73.052 69.193

divider 54.919 24.079 0.000
button 83.843 82.122 52.941

icon_right_arrow 80.000 90.000 0.000
icon_plus 81.683 41.909 0.000

icon_home 65.050 86.634 0.000
chart_line 0.000 0.000 0.000

Figure 9. The result of the model with the Raw dataset.

Figure 10. The result of the model with the Binary dataset.

applying binary dataset with Faster RCNN, we also
base on that to provide a solution API service that
can support third-party users (companies) to label their
own elements in website sketches to train a detection
model.

Figure 11. The result of the model with the Grayscale dataset.

5 Conclusion

By using the classical approach, we can detect very
fast, and we can ensure that the detection results will
have high accuracy since it is all based on mathematical
conversion. However, this method cannot be extended
if we keep detecting elements by endpoints, so we
decided to combine it with a modern approach. On
the other hand, deep learning of the modern approach
proves itself a promising way to detect various elements
if only those elements are labeled and trained. Due to
that fact, we had already built a tool for third-party
users to label their own elements and convert to the
design or website source code they want base on the
detection result they wish to have when labeling on
their own rules (shown as Figure 12).

Overall, we had contributed many benefits for the
detection solutions by trying the experiment in this
paper, and therefore, we will continue to improve it
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Figure 12. A labeling tool for each software company uses its own
rules.

by applying more complicated models such as hand-
written OCR in order to generate more elements such
as custom text on the sketch.
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