
REV Journal on Electronics and Communications, Vol. 12, No. 1–2, January–June, 2022 1

Regular Article

An FPGA-based Convolution IP Core for Deep Neural Networks
Acceleration
Xuan-Quang Nguyen1,2, Cuong Pham-Quoc1,2

1 Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
2 Vietnam National University - Ho Chi Minh City, Vietnam

Correspondence: Cuong Pham-Quoc, cuongpham@hcmut.edu.vn
Communication: received 25 August 2021, revised 20 September 2021, accepted 21 September 2021
Online publication: 22 October 2021, Digital Object Identifier: 10.21553/rev-jec.286
The associate editor coordinating the review of this article and recommending it for publication was Prof. Tran Manh Ha.

Abstract– The development of machine learning has made a revolution in various applications such as object detection,
image/video recognition, and semantic segmentation. Neural networks, a class of machine learning, play a crucial role
in this process because of their remarkable improvement over traditional algorithms. However, neural networks are now
going deeper and cost a significant amount of computation operations. Therefore they usually work ineffectively in edge
devices that have limited resources and low performance. In this paper, we research a solution to accelerate the neural
network inference phase using FPGA-based platforms. We analyze neural network models, their mathematical operations,
and the inference phase in various platforms. We also profile the characteristics that affect the performance of neural
network inference. Based on the analysis, we propose an architecture to accelerate the convolution operation used in most
neural networks and takes up most of the computations in networks in terms of parallelism, data reuse, and memory
management. We conduct different experiments to validate the FPGA-based convolution core architecture as well as to
compare performance. Experimental results show that the core is platform-independent. The core outperforms a quad-core
ARM processor functioning at 1.2 GHz and a 6-core Intel CPU with speed-ups of up to 15.69× and 2.78×, respectively.

Keywords– Convolution neural network; Reconfigurable hardware; FPGA design.

1 Introduction

Deep neural networks (DNNs) have achieved excellent
accuracy over traditional algorithms in many appli-
cations. On the other hand, DNN models are going
deeper and require more storage and computation
complexity, demanding high-performance computing
platforms to work efficiently. In edge computing de-
ployments, these models are pre-trained in data centers,
and the network inferences are then performed near
data sources. However, most edge devices suffer from
low performance and limited computation resources
such as less storage and energy capacity [1].

To overcome this obstacle, we use FPGA-based hard-
ware accelerator platforms for edge computing devices
where we can exploit the computation flexibility of host
processors as well as the high performance of recon-
figurable fabrics [2, 3]. Furthermore, although FPGAs
suffer from low working frequency, they outperform
GPUs in energy consumption and provide higher per-
formance and energy-efficient than CPUs [4]. Therefore,
an FPGA-based hardware accelerator is a promising
approach for building high-performance DNN in edge
devices.

Many methods have been proposed to reduce the
cost of network computation. From a software point of
view, researchers developed lightweight models such
as MobileNet [5], EfficientNet [6] that reduced the size
of networks. Quantized versions of these models are

also implemented to avoid the complexity of floating-
point computation in hardware. From a hardware per-
spective, proposed optimization methods are about im-
proving parallelism or buffering a high amount of data
to avoid many secondary memory accesses. There are
many studies on hardware acceleration for DNNs. That
is one of the most concerning problems recently. Con-
volution engines which are based on fast algorithms are
proposed in [7], [8] while [9] and [10] reduced bit-width
of neural network parameters to decrease computation
and storage cost. In [11], authors proposed look-up
table solution for fast operations. In a wider consider-
ation, [12] showed that research topics on FPGA-based
neural network accelerator usually are optimizing mod-
els for effective computation and storage utilization,
developing computational units, architecture for par-
allelism.

Most DNN models mainly use convolution and ma-
trix multiplication. These two mathematical operations
require the multiply and accumulate (MAC) as the
basic computation unit. Because of the out-of-order
for cumulative multiplication in the two primary net-
work operations, we can perform the MAC operation
in parallel to archive higher throughput and lower
latency. However, we cannot calculate all needed MAC
operations of a neural network’s layer simultaneously
because the input feature map and the layer’s param-
eters could be huge to store into edge devices’ on-chip
memory. As a result, edge devices need extra off-chip

1859-378X–2022-1201 © 2022 REV

2 REV Journal on Electronics and Communications, Vol. 12, No. 1–2, January–June, 2022

memory. In this situation, read/write operations to
the off-chip memory must be optimized to maximize
the bandwidth. Fortunately, the computation can be
performed in any order as mentioned above. Therefore,
we can re-order the MAC operations to get high data
reuse. With this method, a part of parameters can be
kept in on-chip memory for computing while still used.
Then, they are replaced by the following parameters
and never be used again.

In this paper, we propose an FPGA-based architec-
ture to accelerate the convolution operations in edge
devices. We aim to design and develop a general con-
volution IP core that can be used for different DNN
models on FPGA platforms instead of optimization for
a particular purpose or platform as research mentioned
above. Our approach is a software/hardware co-design
to perform the convolution on any FPGA-based system-
on-chip platform, which is suitable for inference in edge
devices. In other words, we propose an architecture that
is platform-independent for convolution accelerator on
edge devices. To validate the proposed Convolution
IP architecture, we develop a synthesizable hardware
core with Verilog-HDL. The core is then synthesized
and implemented on the Xilinx Zynq UltraScale+ plat-
form [13]. Experimental results show that the imple-
mented hardware IP core archives 2.78× faster than
performing the same convolution on the CPU Intel core
i7-9750H and 15.69× faster than processing on the ARM
Cortex-A53 software only.

The rest of the paper is organized as follows. First,
Section 2 presents an overview of convolution compu-
tation as well as optimization techniques to improve
performance. Second, we present our proposed Convo-
lution IP core architecture in Section 3. Implementation
of the proposed IP core architecture with Verilog-HDL
on the FPGA platform as mentioned above is discussed
in Section 4. Third, we conduct several experiments and
present results in Section 5. Finally, we conclude our
work in Section 6.

2 Background & Optimization Techniques

In this section, we present an overview of convolu-
tion computation. Based on that, we design our IP
core architecture. Optimization techniques, including
temporal and spatial data reuse, are introduced. These
techniques are also applied to our IP core to improve
performance.

2.1 Convolution Computation
A deep neural network or DNN is the name of a

neural network with greater than three layers. DNN
models in recent studies have fully connected layers
with multiple layers inside and many convolution lay-
ers in their structure. In convolution layers, the primary
computation is high-dimensional convolution. The in-
put feature maps (I) are constructed as a 3D matrix
(f maps = [H × W × C]) in which the shape notations
are height (H), width (W), and number of channels
(C). For example, a bitmap image with the resolution

Figure 1. Convolution computation.

of 256 × 256 pixels and 3 color channels (red, green,
and blue) per pixel can be represented by f maps =
[256× 256× 3] with H = 256, W = 256, and C = 3. The
weights are also structured as 3D filter matrices (F, also
called kernels), where the dimensions are height (R),
width (S), and the number of channels (C). The number
of kernels (so-called depth) used for a particular DNN
model depends on the number of features in the input
we would like to recognize. Assume that we apply
multiple filters (depth = M) to input feature maps to
generate M output channels of the output feature maps
(3D matrix O = [P × Q × M]) in which the dimensions
are height (P), width (Q), and the number of channels
(M). Figure 1 illustrates a convolution computation of
C channels input f maps and M filters. In this paper,
white blocks illustrate inputs, green rectangles/squares
represent kernels, and blue ones depict outputs.

The operations of the convolution computation
shown in Figure 1 is defined in Equation (1)

O(p, q, m) = ∑
c,r,s

I[(Up + r), (Uq + s), c] ∗ F(c, r, s, m),

(1)
where m, p, q, c, r, and s are indexes corresponding to
M, P, Q, C, R, and S dimensions respectively and U is
the stride - number of skipped intermediate locations
when moving filters for each computation. Each output
point results from a dot product of elements in input
activations and filter weights across the index c, r, and
s. This operation is MAC and is performed in an arith-
metic unit called processing element (PE). The execution
order of MAC operations is not important. This results
in two strategies (temporal and spatial data reuse) of
data reuse to achieve higher parallelism computation
and reduce data communication overhead. The next
subsections present the two approaches for optimizing
the performance of the convolution computation on
hardware.

2.2 Temporal Data Reuse
When the same data value is used multiple times by

one PE, temporal reuse should be performed [14]. The
temporal reuse method re-orders the MAC operations
to keep data in PEs locally so that the number of mem-
ory reads for the value can be reduced dramatically.
The time interval between two consecutive uses of the

X.-Q. Nguyen & C. P.-Quoc: An FPGA-based Convolution IP Core for Deep Neural Networks Acceleration 3

(a) Example 1D convolution: I ∗W = O. The numbers are indexes

(b) Normal operations: weight reuse distance = 4

(c) Operation re-ordering: weight reuse distance = 1

Figure 2. An example applying re-ordering in 1D convolution for
temporal reuse.

value is called the reuse distance (rd). In this term, the
philosophy is to minimize the reuse distance. Based
on [14], Figure 2 describes the phenomenon of temporal
data reuse.

In the example shown in Figure 2, we simplify the
case by performing 1D convolution. In this case, the
convolution of an 1 × 8 input (white vector) and an
1 × 4 weight (green vector) produces an 1 × 5 output
(blue vector) with indices as shown in Figure 2(a).
Conventionally, as illustrated in Figure 2(b), we cal-
culate each point of output in the sequential order.
This order causes the reuse distance of weight to be
rd = 4. Mapping to hardware perspective, if the weight
is stored in PE for performing MAC operations, the
weight values need to fetch time by time. Hence, this
approach costs a large amount of data movement and
memory access. After re-ordering, as depicted in Fig-
ure 2(c), the reuse distance is reduced to rd = 1.
Therefore, we can buffer a weight value in a PE to use
in four consecutive operations before replacing it with a
new value to minimize the number of memory accesses
when fetching weight values.

2.3 Spatial Data Reuse
Spatial reuse is the use of the same values for

multiple PEs simultaneously. This method improves
the parallelism level of the computation. Due to data
independence, MAC operations with the same weight
values can be performed in parallel (with different
inputs). Although the space limitation (resources in
hardware perspective) can prevent the spatial reuse for
all operations, we can take advantage of the memory
hierarchy by using both reuse strategies. We take the
1D convolution example mentioned above to explore
the spatial data reuse technique. Figure 3 presents the
spatial data reuse technique.

Assume we have four PEs and a memory hierar-
chy as depicted in Figure 3(a); others are not shown
to simplify. Figure 3(b) depicts the way upon which
the spatial data reuse applies to the model presented

(a) Memory hierarchy

(b) Operation ordering 1 (c) Operation ordering 2

Figure 3. An example applying re-ordering in 1-D convolution for
spatial reuse.

Figure 2(b). While PE0 is calculating convolution of
the kernel and four first input values (index 0, 1, 2,
and 3), PE1 is computing for the next input stride
(index 1, 2, 3, and 4). Compared to Figure 2(b), this
computational model needs only four cycles to generate
four convolution results instead of 16 as the temporal
data reuse model. However, this computational model
can be further optimized by exploiting both temporal
and spatial data reuse techniques as depicted in Fig-
ure 3(c). For example, PE0 calculates convolution for the
kernel’s first value while PE1, PE2, and PE3 compute
the second, third, and fourth values. Compared to the
previous model, we improve parallelism by applying
the spatial data reuse approach and reducing external
memory accesses by exploiting the temporal data reuse
technique.

3 FPGA-based Convolution IP
Architecture

In this section, we introduce the proposed architecture
for the FPGA-based convolution computation IP core.
The proposed architecture is platform-independent so
that there is no FPGA family considered in this section.

4 REV Journal on Electronics and Communications, Vol. 12, No. 1–2, January–June, 2022

Figure 4. Overview architecture of the acceleration of convolution
computation.

3.1 Overview Architecture

By applying the data optimization techniques men-
tioned above and adapting to the system-on-chip plat-
form architecture in general, we propose a novel archi-
tecture to accelerate the convolution for edge devices
as depicted in Figure 4.

In this architecture, a Processor, which usually is hard-
wired in SoC chips, takes responsibility for controlling
the entire system and doing other steps for DNN-based
applications. Firstly, it fetches data and model param-
eters to its memory (the Off-chip memory block in the
figure) from the secondary memory (usually from an
SD card). When starting the convolution computation,
these data have to be delivered to buffers (including
Input Global Buffer and Weight Global Buffer) and Register
File in the Configurable Fabric for the processing of
the Convolution IP Core (functioning as a hardware
accelerator). The extensive data cannot be transferred
to the buffers by the host processor because of the low
throughput. Therefore, a direct memory access module
(DMA) takes this responsibility. It transfers data that
the host processor loads from the off-chip memory
(usually a DDR) to the on-chip memory, the Block
RAMs memory inside FPGA devices.

Along with the two buffers mentioned above, Input
Global and Weight Global, the Output Global Buffer is
needed to store outputs generated by the core. The
Input Global and Weight Global buffers store the input
feature maps and weight data, respectively. Because of
the flexibility and variance of DNN models, parameters
of the accelerator, including sizes of input maps (H, W,
and C), dimensions of kernels (R, S, and C) as well as
kernel depth (M) should be configured by the Processor
via Register File to work correctly. The Convolution
IP Core block executes the primary operations of the
convolution computation. Inside the core, there is an
array of Kernel-Channel Processing Engine (KCPE) for
calculating convolutions of inputs and kernels. The
number of KCPE elements depends on the number of
resources available in target FPGA devices. More details
of these elements are discussed in the next section.

Figure 5. Architecture of the Convolution IP core.

Figure 6. Kernel-Channel Processing Engine.

3.2 Convolution IP core

Figure 5 presents in detail the architecture of the
Convolution IP core. When analyzing deeper into the
core architecture, the accelerator core contains an array
of KCPEs. Each KCPE can produce partial sums of
multiple kernels and channels at the same time.

The principle of dataflow is weight stationery in
which a part of weight data of some kernels are loaded
to KCPEs at a time and kept locally for calculating the
partial sum of all output elements before replaced by
the next weight data part. With this architecture, the
core can perform MAC operations for multiple output
elements simultaneously. The number of output ele-
ments calculated in parallel depends on the number of
KCPEs. Furthermore, the core can execute computation
for multiple kernels and channels simultaneously. The
number of kernels and channels depend on the number
of Processing Elements (PEs) contained in each KCPE.
Because each KCPE can calculate the convolution of
multiple kernels, the array of KCPEs produces partial
sums of different output channels. The Psum Accumulate
Router component adds and drives these partial sums
to the proper output addresses. After computed, output
data should be sent back to the off-chip memory to free
the output buffer for the subsequent computations.

3.3 Kernel-Channel Processing Engine

Figure 6 depicts the micro-architecture of a Kernel-
Channel Processing Engine. Each KCPE processes the

X.-Q. Nguyen & C. P.-Quoc: An FPGA-based Convolution IP Core for Deep Neural Networks Acceleration 5

i_conf_weightinterval[31:0]

memctrl0_odat[31:0]

memctrl0_ovld

clk

i_conf_kernelshape[31:0]

i_conf_outputsize[31:0]

i_conf_inputrstcnt[31:0]

i_conf_inputshape[31:0]

rst

i_conf_ctrl[31:0]

i_conf_kernelsize[31:0]

i_data[23:0]

i_data_vld

i_weight[95:0]

i_weight_vld

rst_p_i

RTL_OR

I0

I1
O

line_kcpe_conv2d_engine_0

line_kcpe_conv2d_engine

clk

i_data_vld

i_weight_vld

o_data_end

o_data_req

o_psum_end

o_psum_kn0_vld

o_psum_kn1_vld

o_psum_kn2_vld

o_psum_kn3_vld

o_weight_reqrst

i_conf_ctrl[31:0]

i_conf_inputrstcnt[31:0]

i_conf_inputshape[31:0]

i_conf_kernelshape[31:0]

i_conf_kernelsize[31:0]

i_conf_outputsize[31:0]

i_data[23:0]

i_weight[95:0]

o_psum_kn0[15:0]

o_psum_kn1[15:0]

o_psum_kn2[15:0]

o_psum_kn3[15:0]

psum_accum_ctrl_0

psum_accum_ctrl

clk

memctrl0_ovld

memctrl0_rden

memctrl0_wren

psum_kn0_vld

psum_kn1_vld

psum_kn2_vld

psum_kn3_vld

psum_knx_end

rst

i_conf_kernelshape[31:0]

i_conf_outputsize[31:0]

i_conf_weightinterval[31:0]

memctrl0_idat[31:0]

memctrl0_odat[31:0]

memctrl0_radd[31:0]

memctrl0_wadd[31:0]

psum_kn0_dat[7:0]

psum_kn1_dat[7:0]

psum_kn2_dat[7:0]

psum_kn3_dat[7:0]

memctrl0_idat[31:0]

memctrl0_radd[31:0]

memctrl0_rden

memctrl0_wadd[31:0]

memctrl0_wren

o_data_end

o_data_req

o_weight_req

1

Figure 7. Schematic of a Convolution IP core.

dot product of an input feature map element and a
respective weight element of multiple channels and
kernels. The results of engines are accumulated and
written to the Output Global buffer. These KCPEs
contain a matrix of Processing Elements that perform
MACs. Refer to the NVDLA [15], Google’s TPU [16]
weight static dataflow, the Kernel-Channel Processing
Engine processes a weight from input channels and
output channels every cycle.

The number of KCPEs in a Convolution IP core
should be optimized according to the characteristics of
a specific model and the available resources in target
hardware platforms. For example, assume that a Con-
volution core can process four kernels and three chan-
nels per kernel (as illustrated in Figure 6). The weight
values of the three channels of 4 kernels data are read
from the Weight Global buffer to local registers inside
the PEs (W0100, W1000,...). As soon as the weights are
loaded, input feature map data are streamed from the
Input Global buffer through KCPEs and multicast to all
columns of the PEs matrix. Results of the process are
partial sums of output elements that corresponding to
output channels.

4 System Implementation

In this section, we present our implementation for
the proposed Convolution IP core. The implementation
is platform-independent for multiple FPGA platforms.
We then develop a computation system that uses the
core and the Zynq UltraScale+ MPSoC FPGA platform
to validate the core. Besides, in this section, we also
introduce a performance evaluation model to estimate
the execution time of the Convolution IP core according
to different input parameters.

4.1 Convolution Core Implementation

We use Verilog-HDL to describe the core manually
to develop a platform-independent and synthesizable
Convolution IP core for FPGA devices. Parameters are
used to define the dimensions input map features (H,
W, and C) and kernels characteristics (R, S, C, and M).
Hence, the core can be used in different models as well
as with various FPGA families. Figure 7 illustrates the

schematic of the core that is generated automatically by
Vivado with a particular set of parameter values.

4.2 Performance Model
Theoretically, the time interval to calculate a convo-

lution computation of the core depends on both (1)
the number of PEs which determines the number of
MAC operations performed in parallel; and (2) the
size of input feature maps and weight data. Assume
that we compute a convolution of input [H × W × C]
and M filters [R × S × C] which results in the output
[P × Q × M] in a core that consists of E KPCEs. Each
KCPE accommodates K (kernels) × J (channels) PEs.
The operating clock frequency of the core is f (Hz).
The time to process the computation of the core can be
estimated by Equation (2)

tcore = (
H × W × C × M × R × S

E × K × J
+ ndelay)×

1
f
(s), (2)

where ndelay is the number of cycles to calculate the
multiplication in a PE. Equation 2 ignores the time to
read data from the input and Weight Global buffers and
to write data to the Output Global buffer. These time in-
tervals depend on particular implementations. Besides,
when input feature maps, weights, or output data are
more extensive than buffer capacity, we should include
the time to transfer data between off-chip memory and
buffers. In this case, we have to move output data to
the off-chip memory and fetch new data from it, then
perform the new computation sequence. After all, the
computation time should be the Equation (3).

t = tcore + tbuffer × (noverflow − 1)+ noverflow × tmem, (3)

where tbuffer is the duration to access the global buffers
(only at first read input data and weight and last
write output). tmem is the time to access the off-chip
memory. Finally, noverflow is the number of times that
the amount calculated output data exceeds the output
buffer capacity.

4.3 FPGA-based MPSoC Platform Implementation
Upon the convolution core, we implement a hard-

ware accelerator system for convolution computation
on the Ultra96v2 board [17] with the Zynq UltraScale+

6 REV Journal on Electronics and Communications, Vol. 12, No. 1–2, January–June, 2022

MPSoC FPGA platform [13]. The system is built based
on the overview architecture depicted in Figure 5 in
which the hardwired quad-core Arm Cortex-A53 func-
tions as the host processor to handle operations of the
core as well as the entire system. Due to resources
limitation, the system includes 3 KCPEs (E = 3), each
of which contains 12 PEs for performing MACs of 4
3 × 3 × 3 kernels (R = 3, S = 3, J = 3, and K = 4) at
a time. The DMA module is the Xilinx Central Data
Memory Access (CDMA) for memory-mapped data
transfer from a 2GB DDR off-chip memory. With the
support of the PYNQ framework [18], we implement
the software part, including DMA, accelerator engine
drivers in Python. We use MAC cores of 8-bit integer
computation in the edge deployment perspective to
adapt quantized models originally designed for edge
device inference.

5 Experiments

In this section, we present our experiments with dif-
ferent scenarios, including (1) processing convolution
of only the host processor (the ARM processor); (2)
processing convolution of only a Intel Core i7 processor;
and (3) accelerating the host processor with our IP core;
We also analyze our experimental results in this section.

5.1 Experimental Setup

To validate soundness and correctness of the Con-
volution IP core as well as compare performance, we
conduct three different experiments with the same in-
puts as follows.

(i) Software with ARM (SWArm): only the ARM
processor executes the entire program. In other
words, the configurable fabrics are not used.

(ii) Software with Intel (SWInt): we use an Intel Core-
i7-9750H with 6 physical cores and 12 threads,
functioning at 2.6 GHz, to execute the program.
With the support of the PyTorch library, all the
threads are used to compute the convolution.

(iii) Hardware accelerator (HWAcc): in this experiment,
the embedded ARM processor, hardwired in
the PS part of the FPGA device functioning at
1.2 GHz, executes software part to manage data
movement and handle the processing of modules
in the configurable fabrics (PL part of the FPGA
device) while the Convolution IP core, functioning
at 300 MHz, processes all convolution compu-
tations. This is the ultimate goal of this paper,
accelerating software processing by our IP core.

In these experiments, we use a color images with
resolutions of 224 × 224 pixels with 3 color channels
(red, green, and blue) as input maps. In other words,
the input maps parameters are f maps = [224× 224× 3]
(i.e., H = 224, W = 224, and C = 3). Three different
kernels sets are used for these experiments including
4, 8, and 16 kernels (i.e., M is value of 4, 8, and 16,
respectively). Each of kernels is a [3 × 3 × 3] 3D matrix
(i.e., R = 3 and S = 3). Please note that the core consists

Table I
Synthesis Results for Our Convolution IP Core

FPGA device #LUTs #FFs Max Frequency

xczu3egsbva484-1
1355 2159

476 MHz
1.92 % 1.53 %

7z020clg400-1
1372 2159

173 MHz
2.58 % 2.03 %

7vx690tffg1761-2
1372 2159

344 MHz
0.32 % 0.25 %

7a12tcpg238-3
1372 2159

243 Mhz
17.15 % 13.49 %

of 3 KCPEs (E = 3). Each KCPE accommodates 4 3 × 3
kernels (i.e., K = 4). Each kernel consists 3 channels
(i.e., J = 3).

5.2 Experimental Results

In this section, we present results of the aforemen-
tioned experiments. At first we analyze synthesis and
simulation results of the core. We then compared per-
formance of the three experiments.

5.2.1 Synthesis results: The Convolution IP Core im-
plementation are synthesized with various of Xilinx
FPGA devices. Resources usages as well as maximum
frequency for the core with each device are reported in
Table I.

According to the table, the core uses less amount of
hardware resources when synthesized alone. However,
for the entire hardware accelerator system, depicted in
Section 4.3, we need more additional resources due
to other modules used such as DMA, Registers file,
Buffers, and the AXI bus for system interconnect. The
MPSoC hardware accelerator system with 256 KB for
input buffer, 32 KB for weight buffer and 512 KB for
output buffer used 93% available BRAMs of the FPGA
but just 29% LUTs and 19% CLBs as flip-flop of the
chip. This programmable logic was optimized to run
in 300 MHz with 3.534 W total on-chip power.

5.2.2 Simulation results: To validate the correctness of
the core, we simulate the RTL design of the core with
ModelSim. A part of simulation waveform is shown in
Figure 8. A careful analysis proves the correction of the
core. We then further analyze the operation and realize
that there are some unnecessary computations. These
can be improved to achieve higher performance. For
example, we do not bypass the MAC operations at edge
of input tensor, or the zero multiplications should be
recognized to reduce number of computations. Those
are our future work to further optimize the core.

5.2.3 Performance analysis: In our implementation, we
have E = 3, K = 4, J = 3, ndelay = 4 cycles and
f = 300 × 106 Hz. As mentioned above, we conduct
experiments with input I[224 × 224 × 3] with 4, 8, and
16 kernels W[3× 3× 3]. Experimental results show that
average processing times of the core are 0.00056 s,
0.00107 s, and 0.00459 s, respectively. The details ex-
ecution times of different experiments are summarized
in Table II.

X.-Q. Nguyen & C. P.-Quoc: An FPGA-based Convolution IP Core for Deep Neural Networks Acceleration 7

Figure 8. Simulation waveform of implemented convolution core.

Figure 9. Speed ups comparison of our proposed core (HWAcc),
software on ARM (SWArm), and software on Intel CPU (SWInt).

Table II
Execution Time (second) of the Three Experiments with

Different Kernels

Kernels (M) SWArm SWInt HWAcc

4 0.00879 0.00156 0.00056

8 0.01525 0.00196 0.00107

16 0.02312 0.00270 0.00459

Figure 9 depicts the speed-up of our SWInt and
our core when compared to SWArm. According to
the table and the figure, with moderate number of
kernels (M is 4 or 8), our core outperforms both the
ARM processor functioning at 1.2 GHz and the Intel
processor functioning at 2.6 GHz when obtaining a
speedup of up to 2.78× compared to the Intel proces-
sor and a speedup of up to 15.69× compared to the
ARM processor. However, when the number of kernels
becomes 16 (M = 16), the amount of outputs exceeds
the Output Global size (exceeding 512 KB). In this case,
the Intel CPU outperforms our core since our system
needs to speed time for taking care the oversize data
output.

6 Conclusion

In summary, we analysed DNN models and their
mathematical computation and architecture of edge de-
vices to summarize the bottleneck points of performing
network inference at edge. This paper proposed an
architecture for convolution accelerator on FPGA-based
SoC platforms. The work also designs an accelerate
core called kernel-channel processing engine that can
process convolution on multiple input feature map
channels and multiple kernels based on weight sta-
tionary dataflow principle. The combination of engines
as an array helps the core perform computations on
many input elements in parallel. From that point, we
can reduce latency and increase throughput of com-
putation. The implemented accelerator is about 2.78×
faster than the Intel Core i7-9750H CPU and 15.69×
faster than ARM Cortex-A53 with the same convolution
computation in our experiments.

Acknowledgment

This research is funded by Vietnam National University
- Ho Chi Minh City (VNU-HCM) under grant number
B2021-20-02.

References

[1] R. Wu, X. Guo, J. Du, and J. Li, “Accelerating neural
network inference on FPGA-Based platforms–a survey,”
Electronics, vol. 10, no. 9, p. 1025, 2021.

[2] C. Pham-Quoc, B. Kieu-Do-Nguyen, and T. Ngoc Thinh,
“An FPGA-Based Seed Extension IP Core for BWA-MEM
DNA Alignment,” in Proceedings of the International Con-
ference on Advanced Computing and Applications (ACOMP),
2018, pp. 1–6.

[3] C. Pham-Quoc, B. Kieu-Do, and T. N. Thinh, “A high-
performance FPGA-based BWA-MEM DNA sequence
alignment,” Concurrency and Computation: Practice and
Experience, vol. 33, no. 2, p. e5328, 2021, e5328 cpe.5328.

[4] C. Pham-Quoc, J. Heisswolf, S. Werner, Z. Al-Ars,
J. Becker, and K. Bertels, “Hybrid interconnect design for
heterogeneous hardware accelerators,” in Proceedings of
the Design, Automation Test in Europe Conference Exhibition
(DATE), 2013, pp. 843–846.

8 REV Journal on Electronics and Communications, Vol. 12, No. 1–2, January–June, 2022

[5] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,
W. Wang, T. Weyand, M. Andreetto, and H. Adam,
“MobileNets: Efficient Convolutional Neural Networks
for Mobile Vision Applications,” arXiv preprint
arXiv:1704.04861, 2017.

[6] M. Tan and Q. V. Le, “EfficientNet: Rethinking Model
Scaling for Convolutional Neural Networks,” in Proceed-
ings of the International conference on machine learning,
2019, pp. 6105–6114.

[7] L. Lu, Y. Liang, Q. Xiao, and S. Yan, “Evaluating fast al-
gorithms for convolutional neural networks on FPGAs,”
in Proceedings of the IEEE 25th Annual International Sym-
posium on Field-Programmable Custom Computing Machines
(FCCM), 2017, pp. 101–108.

[8] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang,
“A high performance FPGA-based accelerator for large-
scale convolutional neural networks,” in Proceedings of the
26th International Conference on Field Programmable Logic
and Applications (FPL), 2016, pp. 1–9.

[9] A. Podili, C. Zhang, and V. Prasanna, “Fast and effi-
cient implementation of Convolutional Neural Networks
on FPGA,” in Proceedings of the IEEE 28th International
Conference on Application-specific Systems, Architectures and
Processors (ASAP), 2017, pp. 11–18.

[10] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie,
H. Luo, S. Yao, Y. Wang, H. Yang, and W. B. J. Dally,
“ESE: Efficient Speech Recognition Engine with Sparse
LSTM on FPGA,” in Proceedings of the ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays,
ser. FPGA ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 75–84.

[11] M. Samragh, M. Ghasemzadeh, and F. Koushanfar, “Cus-
tomizing Neural Networks for Efficient FPGA Imple-
mentation,” in Proceedings of the IEEE 25th Annual Inter-
national Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), 2017, pp. 85–92.

[12] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “[DL] A
Survey of FPGA-Based Neural Network Inference Accel-
erators,” ACM Transactions on Reconfigurable Technology
and Systems (TRETS), vol. 12, no. 1, Mar. 2019.

[13] Xilinx. (2021) Zynq ultrascale+ mpsoc. [Online].
Available: https://www.xilinx.com/products/silicon-
devices/soc/zynq-ultrascale-mpsoc.html

[14] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer, “Efficient
processing of deep neural networks: A tutorial and
survey,” arXiv preprint arXiv:1703.09039, 2017.

[15] Nvidia. (2017) Nvidia deep learning accelerator open
source project. [Online]. Available: http://nvdla.org/

[16] N. Jouppi, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao,
C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
C. Young, T. Ghaemmaghami, R. Gottipati, W. Gulland,
R. Hagmann, C. Ho, D. Hogberg, J. Hu, and N. Boden,
“In-datacenter performance analysis of a tensor process-
ing unit,” in Proceedings of the 44th annual international
symposium on computer architecture, 6 2017, pp. 1–12.

[17] Avnet. (2021) Ultra96-V2 Board - Arm-based,
Xilinx Zynq UltraScale+ MPSoC development board
based on the Linaro 96Boards Consumer Edition
specification. [Online]. Available: https://www.avnet.
com/wps/portal/us/products/new-product-
introductions/npi/aes-ultra96-v2/

[18] Xilinx. (2021) Python productivity for zynq. [Online].
Available: http://www.pynq.io/

Xuan-Quang Nguyen is currently a researcher
at Computer Engineering Laboratory, Faculty
of Computer Science and Engineering, Ho
Chi Minh City University of Technology. He
received his BEng and MEng from Ho Chi
Minh City University of Technology, VNU-
HCM, Vietnam in 2018 and 2021 respectively.
His research interests include hardware accel-
erator, system-on-a-chip, and VLSI design.

Cuong Pham-Quoc received the BEng degree
in 2007 and the MEng degree in 2009, both
from the Faculty of Computer Science and
Engineering, the Ho Chi Minh City University
of Technology (HCMUT). He got his Ph.D.
degree from the Computer Engineering Lab
of the Delft University of Technology, the
Netherlands. Currently, his work focuses on
addressing the bottlenecks in FPGA-based de-
signs for high-performance computing sys-
tems and proposing IoT-based solutions for

issues in smart cities.

