
REV Journal on Electronics and Communications, Vol. 11, No. 3–4, July–December, 2021 49

Regular Article

Neighborhood Search for Solving Personal Scheduling Problem in
Available Time Windows with Split-Min and Deadline Constraints

Trang Hong Son1,2, Tran Van Lang3, Nguyen Huynh-Tuong1

1 HCMC University of Technology, Vietnam
2 Hoa Sen University, Vietnam
3 HCMC University of Foreign Laguages - Information Technology, Vietnam

Correspondence: Trang Hong Son, son.tranghong@hoasen.edu.vn
Communication: received 24 August 2021, revised 20 September 2021, accepted 21 September 2021
Online publication: 22 October 2021, Digital Object Identifier: 10.21553/rev-jec.284
The associate editor coordinating the review of this article and recommending it for publication was Prof. Vo Nguyen Quoc Bao.

Abstract– The scheduling of individual jobs with certain constraints so that efficiency is a matter of concern. Jobs have
deadlines to complete, can be broken down but not too small, and will be scheduled into some available time windows. The
goal of the problem is to find a solution so that all jobs are completed as soon as possible. This problem is proved to be a
strongly NP-hard problem. The implementation of the proposed MILP model using a CPLEX solver was also conducted to
determine the optimal solution for the small-size dataset. For large-size dataset, heuristic algorithms are recommended such
as First Come First Served (FCFS), Earliest Deadline (EDL), and neighborhood search including Stochastic Hill Climbing
(SHC), Random Restart Hill Climbing (RRHC), Simulated Annealing (SA) to determine a good solution in an acceptable
time. Experimental results will present in detail the performance among the groups of exact, heuristic, and neighborhood
search methods.

Keywords– splitting-job, available time-window, deadline constraint, FCFS rule, EDL rule, neighborhood search, hill climbing
algorithm, simulated annealing algorithm.

1 Introduction

In our daily life, each human being has a lot of personal
tasks that need to be done (called jobs). Each job has an
execution time (called processing time) and a required
time to complete (called deadline) for each job. We also
have free time slots to which jobs can be scheduled
(called available time window) and time slots that are
not available or do not need to be scheduled (called un-
available time window). To simplify problem modeling,
unavailable time windows are reduced to milestones
(referred to as break times). The scheduling personal
problem is the problem of arranging jobs in available
time windows so that they are effective according to
different criteria. The main constraints in this problem
are that the jobs can be broken down but cannot be less
than a certain threshold (called splitmin), and the jobs
only can be assigned into available time windows. In
addition, the problem also has an additional constraint
that the completion time of the job must be before the
corresponding deadline of that job. This problem aims
to find a solution so that all jobs are completed as soon
as possible.

According to Graham [1], this scheduling problem is
denoted as follows:

1|splittable, splitmin, available − windows, deadline|Cmax

Other notations used in the problem are:
• J = {J1, . . . , Jn} is the set of n jobs.
• Ji is the ith job.
• pi is the processing time for job Ji.

Table I
Jobs

Jobs Processing-time Deadline
J1 6 18
J2 8 20
J3 4 9
J4 9 34
J5 11 42

Table II
Windows

Windows Available-time
W1 [0,7]
W2 [7,15]
W3 [15,25]
W4 [25,38]
W5 [38,+∞)

1

Neighborhood search for solving personal
scheduling problem in available time windows with

split-min and deadline constraints
Trang Hong Son1,2, Tran Van Lang3, and Nguyen Huynh-Tuong1

1HCMC University of Technology, Vietnam
2Hoa Sen University, Vietnam

3HCMC University of Foreign Laguages - Information Technology, Vietnam
Email: {8140009@hcmut.edu.vn, son.tranghong@hoasen.edu.vn}, langtv@huflit.edu.vn, htnguyen@hcmut.edu.vn

Abstract—The scheduling of individual jobs with certain con-
straints so that efficiency is a matter of concern. Jobs have
deadlines to complete, can be broken down but not too small,
and will be scheduled into some available time windows. The
goal of the problem is to find a solution so that all jobs
are completed as soon as possible. This problem is proved to
be a strongly NP -hard problem. The implementation of the
proposed MILP model using a CPLEX solver was also conducted
to find optimal solution for the small-size dataset. For large-
size dataset, heuristic algorithms are recommended such as
First Come First Served (FCFS), Earliest Deadline (EDL), and
neighborhood search including Stochastic Hill Climbing (SHC),
Random Restart Hill Climbing (RRHC), Simulated Annealing
(SA) to find a good solution in an acceptable time. Experimental
results will present in detail the performance among the groups
of exact, heuristic, and neighborhood search methods.

Index Terms—splitting-job, available time-window, deadline
constraint, FCFS rule, EDL rule, neighborhood search, hill
climbing algorithm, simulated annealing algorithm

I. INTRODUCTION

In our daily life, each human being has a lot of personal
tasks that need to be done (called jobs). Each job has an
execution time (called processing time) and a required time
to complete (called deadline) for each job. We also have free
time slots to which jobs can be scheduled (called available
time window) and time slots that are not available or do
not need to be scheduled (called unavailable time window).
To simplify problem modeling, unavailable time windows
are reduced to milestones (referred to as break times). The
scheduling personal problem is the problem of arranging jobs
in available time windows so that they are effective according
to different criteria. The main constraints in this problem are
that the jobs can be broken down but cannot be less than a
certain threshold (called splitmin), and the jobs only can be
assigned into available time windows. In addition, the problem
also has an additional constraint that the completion time of the
job must be before the corresponding deadline of that job. This
problem aims to find a solution so that all tasks are completed
as soon as possible.
According to Graham [1], this scheduling problem is denoted
as follows:

1|splittable, splitmin, available−windows, deadline|Cmax

Other symbols used in the problem are:

• N = J1, ..., Jn is the set of n jobs.
• pi ≥ 0 is the processing time of job Ji.
• di is the deadline for job Ji.
• Ci is the completion time of job Ji.
• Cmax is the completion time of all jobs.
• bt is the tth break-time.

The problem is illustrated by the input data in the Tables I and
II. This simple example has n = 5 jobs (J1, J2, J3, J4, J5)
with execution time respectively of each job is 6, 8, 4, 9, 11
and the required time to complete the corresponding dead-
line of each job is 18, 20, 9, 34, 42; and m = 5 windows
(W1,W2,W3,W4,W5) with respective available time [0.7],
[7,15], [15,25], [25, 38], [38,+∞); and 4 break times at
times t = 7, t = 15, t = 25, t = 38 as Figure 1.

TABLE I
JOBS

Jobs Processing-time Deadline
J1 6 18
J2 8 20
J3 4 9
J4 9 34
J5 11 42

TABLE II
WINDOWS

Windows Available-time
W1 [0,7]
W2 [7,15]
W3 [15,25]
W4 [25,38]
W5 [38,+∞)

0 7 15 25 38 t

time window

Fig. 1. Demonstration of available time windows

Let splitmin = 3, the possible solutions to the problem are
as follows.

0 7 15 25 38 t

J1=6 idle J2=8 J3=4 J4=6 J4=3 J5=8 idle J5=3

d3 d1 d2 d4 d5

Fig. 2. The infeasible solution for violating deadline constraint

Figure 1. Demonstration of available time windows.

• rji is the remaining time for job Ji.
• di is the deadline for job Ji.
• Ci is the completion time for job Ji.
• Cmax is the completion time for all jobs.
• W = {W1, ..., Wm} is the set of m available time-

windows.
• Wt is the tth window.
• wt is the size of window Wt.
• rwt is the remaining size of the window Wt.
• bt is the tth break-time.
The problem is illustrated by the input data in the

Tables I and II. This simple example has n = 5 jobs
(J1, J2, J3, J4, J5) with the processing time of each job is
6, 8, 4, 9, 11 and the deadline of each job is 18, 20, 9,
34, 42; and m = 5 windows (W1, W2, W3, W4, W5) with
respective available time [0, 7], [7, 15], [15, 25], [25, 38],
[38,+∞); and 4 break times at times t = 7, t = 15,
t = 25, t = 38 as Figure 1.

1859-378X–2021-3404 © 2021 REV

50 REV Journal on Electronics and Communications, Vol. 11, No. 3–4, July–December, 2021

Let splitmin = 3, the possible solutions to the problem
are as follows.

1

Neighborhood search for solving personal
scheduling problem in available time windows with

split-min and deadline constraints
Trang Hong Son1,2, Tran Van Lang3, and Nguyen Huynh-Tuong1

1HCMC University of Technology, Vietnam
2Hoa Sen University, Vietnam

3HCMC University of Foreign Laguages - Information Technology, Vietnam
Email: {8140009@hcmut.edu.vn, son.tranghong@hoasen.edu.vn}, langtv@huflit.edu.vn, htnguyen@hcmut.edu.vn

Abstract—The scheduling of individual jobs with certain con-
straints so that efficiency is a matter of concern. Jobs have
deadlines to complete, can be broken down but not too small,
and will be scheduled into some available time windows. The
goal of the problem is to find a solution so that all jobs
are completed as soon as possible. This problem is proved to
be a strongly NP -hard problem. The implementation of the
proposed MILP model using a CPLEX solver was also conducted
to find optimal solution for the small-size dataset. For large-
size dataset, heuristic algorithms are recommended such as
First Come First Served (FCFS), Earliest Deadline (EDL), and
neighborhood search including Stochastic Hill Climbing (SHC),
Random Restart Hill Climbing (RRHC), Simulated Annealing
(SA) to find a good solution in an acceptable time. Experimental
results will present in detail the performance among the groups
of exact, heuristic, and neighborhood search methods.

Index Terms—splitting-job, available time-window, deadline
constraint, FCFS rule, EDL rule, neighborhood search, hill
climbing algorithm, simulated annealing algorithm

I. INTRODUCTION

In our daily life, each human being has a lot of personal
tasks that need to be done (called jobs). Each job has an
execution time (called processing time) and a required time
to complete (called deadline) for each job. We also have free
time slots to which jobs can be scheduled (called available
time window) and time slots that are not available or do
not need to be scheduled (called unavailable time window).
To simplify problem modeling, unavailable time windows
are reduced to milestones (referred to as break times). The
scheduling personal problem is the problem of arranging jobs
in available time windows so that they are effective according
to different criteria. The main constraints in this problem are
that the jobs can be broken down but cannot be less than a
certain threshold (called splitmin), and the jobs only can be
assigned into available time windows. In addition, the problem
also has an additional constraint that the completion time of the
job must be before the corresponding deadline of that job. This
problem aims to find a solution so that all tasks are completed
as soon as possible.
According to Graham [1], this scheduling problem is denoted
as follows:

1|splittable, splitmin, available−windows, deadline|Cmax

Other symbols used in the problem are:

• N = J1, ..., Jn is the set of n jobs.
• pi ≥ 0 is the processing time of job Ji.
• di is the deadline for job Ji.
• Ci is the completion time of job Ji.
• Cmax is the completion time of all jobs.
• bt is the tth break-time.

The problem is illustrated by the input data in the Tables I and
II. This simple example has n = 5 jobs (J1, J2, J3, J4, J5)
with execution time respectively of each job is 6, 8, 4, 9, 11
and the required time to complete the corresponding dead-
line of each job is 18, 20, 9, 34, 42; and m = 5 windows
(W1,W2,W3,W4,W5) with respective available time [0.7],
[7,15], [15,25], [25, 38], [38,+∞); and 4 break times at
times t = 7, t = 15, t = 25, t = 38 as Figure 1.

TABLE I
JOBS

Jobs Processing-time Deadline
J1 6 18
J2 8 20
J3 4 9
J4 9 34
J5 11 42

TABLE II
WINDOWS

Windows Available-time
W1 [0,7]
W2 [7,15]
W3 [15,25]
W4 [25,38]
W5 [38,+∞)

0 7 15 25 38 t

time window

Fig. 1. Demonstration of available time windows

Let splitmin = 3, the possible solutions to the problem are
as follows.

0 7 15 25 38 t

J1=6 idle J2=8 J3=4 J4=6 J4=3 J5=8 idle J5=3

d3 d1 d2 d4 d5

Fig. 2. The infeasible solution for violating deadline constraintFigure 2. The infeasible solution for violating deadline constraint. 2

0 7 15 25 38 t

J3=4 J1=3 J1=3 J2=5 J2=3 J4=6 idleJ4=3 J5=8 idle J5=3

d3 d1 d2 d4 d5

Fig. 3. The feasible solution with Cmax = 41

0 7 15 25 38 t

J1=3 J3=4 J2=8 J1=3 J5=7 J4=9 J5=4

d3 d1 d2 d4 d5

Fig. 4. The optimal solution with Cmax = 38

The optimization personal scheduling problem (PSP) pre-
sented at [2] is considered as a special case of this problem
with deadline = ∞. Because the PSP is a strongly NP -hard
problem, so this problem under consideration also is a strongly
NP -hard problem. In addition, some structural properties of
a particular optimal solution are presented at [3], which are:

1) There exists an optimal solution such that there is no
idle-time of size ≥ 2× splitmin.

2) There exists an optimal solution such that in a time
window there are only 0 or 1 sub-jobs.

3) There exists an optimal solution such that in a time
window there is at most one idle-time.

4) There exists an optimal solution such that in a time
window, if there is idle-time, then idle-time is at the end
of the window.

5) There exists an optimal solution such that a job can be
subdivided at most Si, where Si = min{

⌊
pi

splitmin

⌋
;m}.

6) There exists an optimal solution such that within a time
window the order of jobs is arranged arbitrarily.

This problem has the same properties in its optimal solution
as the PSP, except for property 6, because this problem is
concerned with the order of sub-jobs Ji in the same window
Wt.

This paper is organized as follows. The next section
shows the mathematical modeling of this scheduling problem.
The section III presents the proposed approaches for solving
this problem. The results of the experiment is demonstrated
in the section IV. And the final section is discussion and
conclusion of the study.

II. MATHEMATICAL MODEL

Some decision variables are:
• xi,t ∈ {0, 1} is a binary variable, whose value is 1 if there

exists sub-job Ji assigned to window Wt, otherwise value
0.

• yi,t is an integer variable whose value is the execution
time of the sub-job Ji in the window Wt corresponding
to xi,t.

• si,t is an integer variable whose value is the start of the
sub-job Ji in the window Wt corresponding to xi,t.

• bvi,j,t ∈ {0, 1} is a binary variable, used to convert from
an OR constraint to an AND constraint.

And intermediate variables are:

• ci,t = si,t + yi,t is an integer variable whose value is the
completion time of sub-job Ji in the window Wt.

• Ci = maxt=1,...,m(ci,t) is an integer variable whose
value is the completion time of job Ji.

• Cmax = maxi=1,...,n(Ci), is an integer variable whose
value is the completion time of all jobs.

The Mixed Integer Linear Programming (MILP) model is
represented as follows.

Objective function:

min(Cmax)

Subject to:
m∑

t=1

yi,t = pi;∀i = 1, . . . , n (1)

n∑

i=1

yi,t ≤ wt;∀t = 1, . . . ,m (2)

splitmin×xi,t ≤ yi,t ≤ pi×xi,t;∀i = 1, . . . , n;∀t = 1, . . . ,m
(3)

bt × xi,t ≤ si,t ≤ INF × xi,t;∀i = 1, . . . , n;∀t = 1, . . . ,m
(4)

bt ≤ si,t ≤ bt+1 − yi,t;∀i = 1, . . . , n;∀t = 1, . . . ,m (5)

ci,t − sj,t ≤ INF × bvi,j,t; ∀i, j = 1, . . . , n / i 6= j;
∀t = 1, . . . ,m

cj,t − si,t ≤ INF × (1− bvi,j,t); ∀i, j = 1, . . . , n / i 6= j;
∀t = 1, . . . ,m

(6)

Ci ≤ di;∀i = 1, . . . , n (7)

The constraints are described as below:

• Constraint (1): the total execution time of sub-jobs is
equal to the job’s completion time.

• Constraint (2): the total execution time of sub-jobs in a
window must not exceed the size of that window.

• Constraint (3): if there is a sub-job assigned in a window,
the execution time of that sub-job must be greater than
splitmin and less than equal to execution time of that job;
in addition, this constraint also ensures that if xi,t = 0
then yi,t = 0.

• Constraint (4): if xi,t = 0 then si,t = 0.
• Constraint (5): the start time of a sub-job in a window

must be within 2 break-times.
• Constraints (6): sub-jobs must not overlap within a win-

dow, passed from the following condition:
[
ci,t ≤ sj,t;∀i, j = 1, . . . , n / i 6= j;∀t = 1, . . . ,m
cj,t ≤ si,t;∀i, j = 1, . . . , n / i 6= j;∀t = 1, . . . ,m

• Constraints (7): the job’s end time must not exceed the
job’s deadline.

Figure 3. The feasible solution with Cmax = 41.

2

0 7 15 25 38 t

J3=4 J1=3 J1=3 J2=5 J2=3 J4=6 idleJ4=3 J5=8 idle J5=3

d3 d1 d2 d4 d5

Fig. 3. The feasible solution with Cmax = 41

0 7 15 25 38 t

J1=3 J3=4 J2=8 J1=3 J5=7 J4=9 J5=4

d3 d1 d2 d4 d5

Fig. 4. The optimal solution with Cmax = 38

The optimization personal scheduling problem (PSP) pre-
sented at [2] is considered as a special case of this problem
with deadline = ∞. Because the PSP is a strongly NP -hard
problem, so this problem under consideration also is a strongly
NP -hard problem. In addition, some structural properties of
a particular optimal solution are presented at [3], which are:

1) There exists an optimal solution such that there is no
idle-time of size ≥ 2× splitmin.

2) There exists an optimal solution such that in a time
window there are only 0 or 1 sub-jobs.

3) There exists an optimal solution such that in a time
window there is at most one idle-time.

4) There exists an optimal solution such that in a time
window, if there is idle-time, then idle-time is at the end
of the window.

5) There exists an optimal solution such that a job can be
subdivided at most Si, where Si = min{

⌊
pi

splitmin

⌋
;m}.

6) There exists an optimal solution such that within a time
window the order of jobs is arranged arbitrarily.

This problem has the same properties in its optimal solution
as the PSP, except for property 6, because this problem is
concerned with the order of sub-jobs Ji in the same window
Wt.

This paper is organized as follows. The next section
shows the mathematical modeling of this scheduling problem.
The section III presents the proposed approaches for solving
this problem. The results of the experiment is demonstrated
in the section IV. And the final section is discussion and
conclusion of the study.

II. MATHEMATICAL MODEL

Some decision variables are:
• xi,t ∈ {0, 1} is a binary variable, whose value is 1 if there

exists sub-job Ji assigned to window Wt, otherwise value
0.

• yi,t is an integer variable whose value is the execution
time of the sub-job Ji in the window Wt corresponding
to xi,t.

• si,t is an integer variable whose value is the start of the
sub-job Ji in the window Wt corresponding to xi,t.

• bvi,j,t ∈ {0, 1} is a binary variable, used to convert from
an OR constraint to an AND constraint.

And intermediate variables are:

• ci,t = si,t + yi,t is an integer variable whose value is the
completion time of sub-job Ji in the window Wt.

• Ci = maxt=1,...,m(ci,t) is an integer variable whose
value is the completion time of job Ji.

• Cmax = maxi=1,...,n(Ci), is an integer variable whose
value is the completion time of all jobs.

The Mixed Integer Linear Programming (MILP) model is
represented as follows.

Objective function:

min(Cmax)

Subject to:
m∑

t=1

yi,t = pi;∀i = 1, . . . , n (1)

n∑

i=1

yi,t ≤ wt;∀t = 1, . . . ,m (2)

splitmin×xi,t ≤ yi,t ≤ pi×xi,t;∀i = 1, . . . , n;∀t = 1, . . . ,m
(3)

bt × xi,t ≤ si,t ≤ INF × xi,t;∀i = 1, . . . , n;∀t = 1, . . . ,m
(4)

bt ≤ si,t ≤ bt+1 − yi,t;∀i = 1, . . . , n;∀t = 1, . . . ,m (5)

ci,t − sj,t ≤ INF × bvi,j,t; ∀i, j = 1, . . . , n / i 6= j;
∀t = 1, . . . ,m

cj,t − si,t ≤ INF × (1− bvi,j,t); ∀i, j = 1, . . . , n / i 6= j;
∀t = 1, . . . ,m

(6)

Ci ≤ di;∀i = 1, . . . , n (7)

The constraints are described as below:

• Constraint (1): the total execution time of sub-jobs is
equal to the job’s completion time.

• Constraint (2): the total execution time of sub-jobs in a
window must not exceed the size of that window.

• Constraint (3): if there is a sub-job assigned in a window,
the execution time of that sub-job must be greater than
splitmin and less than equal to execution time of that job;
in addition, this constraint also ensures that if xi,t = 0
then yi,t = 0.

• Constraint (4): if xi,t = 0 then si,t = 0.
• Constraint (5): the start time of a sub-job in a window

must be within 2 break-times.
• Constraints (6): sub-jobs must not overlap within a win-

dow, passed from the following condition:
[
ci,t ≤ sj,t;∀i, j = 1, . . . , n / i 6= j;∀t = 1, . . . ,m
cj,t ≤ si,t;∀i, j = 1, . . . , n / i 6= j;∀t = 1, . . . ,m

• Constraints (7): the job’s end time must not exceed the
job’s deadline.

Figure 4. The optimal solution with C∗
max = 38.

The optimization personal scheduling problem (PSP)
presented at [2] is considered as a special case of
this problem with deadline = ∞. Because the PSP
is a strongly NP-hard problem, this problem under
consideration is also a strongly NP-hard problem. In
addition, some structural properties of a particular
optimal solution are presented at [3], which are:

1) There exists an optimal solution such that there is
no idle-time of size ≥ 2 × splitmin.

2) There exists an optimal solution such that there
are only 0 or 1 sub-jobs in a time window.

3) There exists an optimal solution such that there is
at most one idle-time in a time window.

4) There exists an optimal solution such that in a
time window, if there is idle-time, then idle-time
is at the end of the window.

5) There exists an optimal solution such that a
job can be split at most Si, where Si =

min
{ ⌊

pi
splitmin

⌋
; m

}
.

6) There is an optimal solution such that the order
of jobs is arranged arbitrarily in a time window.

This problem has the same properties in its optimal
solution as the PSP, except for property 6 because this
problem is concerned with the order of sub-jobs Ji in
the same window Wt.

This paper is organized as follows. The next sec-
tion shows the mathematical model for this scheduling
problem. Section 3 presents the proposed approaches
for solving this problem. The results of the experiment
are demonstrated in the Section 4. And the final section
is the discussion and conclusion of the study.

2 Mathematical Model

Some decision variables are:
• xi,t ∈ {0, 1} is 1 if there exists sub-job Ji assigned

to window Wt, otherwise is 0.

• yi,t ∈ N is the execution time for the sub-job Ji in
the window Wt corresponding to xi,t.

• si,t ∈ N is the start time for the sub-job Ji in the
window Wt corresponding to xi,t.

• vi,j,t ∈ {0, 1} is used to convert from an OR
constraint to an AND constraint.

And intermediate variables are:
• ci,t = si,t + yi,t ∈ N is the completion time for sub-

job Ji in the window Wt.
• Ci = max

t=1,...,m
(ci,t) ∈ N is the completion time for

job Ji.
• Cmax = max

i=1,...,n
(Ci) ∈ N is the completion time for

all jobs.
The Mixed Integer Linear Programming (MILP)

model is represented as follows.
Objective function: min(Cmax)
Subject to:

m

∑
t=1

yi,t = pi; ∀i = 1, . . . , n (1)

n

∑
i=1

yi,t ≤ wt; ∀t = 1, . . . , m (2)

splitmin × xi,t ≤ yi,t ≤ pi × xi,t;
∀i = 1, . . . , n; ∀t = 1, . . . , m

(3)

bt × xi,t ≤ si,t ≤ INF × xi,t;
∀i = 1, . . . , n; ∀t = 1, . . . , m

(4)

bt ≤ si,t ≤ bt+1 − yi,t;
∀i = 1, . . . , n; ∀t = 1, . . . , m

(5)

ci,t − sj,t ≤ INF × vi,j,t; ∀i, j = 1, . . . , n|i ̸= j;
∀t = 1, . . . , m

cj,t − si,t ≤ INF × (1 − vi,j,t); ∀i, j = 1, . . . , n|i ̸= j;
∀t = 1, . . . , m

(6)
Ci ≤ di; ∀i = 1, . . . , n (7)

The constraints are described as below:
• Constraint (1): the total execution time for sub-jobs

is equal to the completion time for this job.
• Constraint (2): the total execution time for sub-

jobs in a window must not exceed the size of this
window.

• Constraint (3): if there is a sub-job assigned in a
window, the execution time for this sub-job must
be greater than equal to splitmin and less than equal
to processing time for this job; in addition, this
constraint also ensures that if xi,t = 0 then yi,t = 0.

• Constraint (4): if xi,t = 0 then si,t = 0.
• Constraint (5): the start time for a sub-job in a

window must be within 2 break-times.
• Constraints (6): sub-jobs must not overlap within a

window, passed from the following condition:
[

ci,t ≤ sj,t; ∀i, j = 1, . . . , n|i ̸= j; ∀t = 1, . . . , m
cj,t ≤ si,t; ∀i, j = 1, . . . , n|i ̸= j; ∀t = 1, . . . , m

• Constraints (7): the completion time for a job must
not exceed the deadline for this job.

T. H. Son et al.: Neighborhood Search for Solving Personal Scheduling Problem in Available Time Windows. . . 51

Algorithm 1: FCFS, with O(m × n)
input: Jobs: list jobs,

Wins: list windows
1 begin
2 foreach window Wt ∈ Wins do
3 foreach job Ji ∈ Jobs do
4 Assignment(Ji, Wt);
5 end
6 end
7 end

Algorithm 2: Assignment, with O(1)

input: Ji: the ith job,
Wt: the tth window

1 begin
2 if rji ≥ splitmin and rwt ≥ splitmin then
3 if rji ≤ rwt then
4 Assign job Ji with the size of rji into

window Wt;
5 else
6 if rji − rwt ≥ splitmin then
7 Assign job Ji with the size of rwt

into window Wt;
8 else if rji − splitmin ≥ splitmin then
9 Assign job Ji with the size of

(rji − splitmin) into window Wt;
10 end
11 end
12 end

3

III. PROPOSED APPROACHES

A. Heuristics

Some symbols are used in heuristics:
• rji is the remaining time of job Ji after this job is

assigned to a certain window.
• rwt is the remaining time of the window Wt, after a job

is assigned to this window.
1) First Come First Served (FCFS): The idea of this

heuristic is to apply the FCFS rule (the job that comes first
will be processed first). It browses each window from LEFT to
RIGHT, at each window the assignment of jobs to the window
will be considered in one of the following three cases:
• if rji ≤ rwt then assign job Ji with size rji to window

Wt.
• if rji ≥ (rwt + splitmin), then assign job Ji of size rwt

to the window Wt, the rest is put back into the list of
jobs.

• if rji ≥ (2× splitmin), then assign job Ji of size (rji−
splitmin) to window Wt, the rest is returned to the list
of jobs.

Algorithm 1: FCFS, with O(m× n)

input: Jobs: list jobs,
Wins: list windows

1 begin
2 foreach window Wt ∈Wins do
3 foreach job Ji ∈ Jobs do
4 Assignment(Ji, Wt);
5 end
6 end
7 end

Algorithm 2: Assignment

input: Ji: the ith job,
Wt: the tth window

1 begin
2 if rji ≥ splitmin and rwt ≥ splitmin then
3 if rji ≤ rwt then
4 Assign job Ji with the size of rji into

window Wt;
5 else
6 if rji − rwt ≥ splitmin then
7 Assign job Ji with the size of rwt into

window Wt;
8 else if rji − splitmin ≥ splitmin then
9 Assign job Ji with the size of

(rji − splitmin) into window Wt;
10 end
11 end
12 end

Comment that applying the FCFS rule very easily leads to a
job that violates the constraint (7) and will be an infeasible
solution. The solution from the FCFS with the above input
data in Table I, II presents as Figure 5, where J3 violated the
constraint (7) so the solution is infeasible.

0 7 15 25 38 t

J1=6 idle J2=8 J3=4 J4=6 J4=3 J5=8 idle J5=3

d3 d1 d2 d4 d5

Fig. 5. The FCFS with infeasible solution

2) Earliest Deadline (EDL): The idea of this heuristic is
to apply the EDL rule (the job with the earliest deadline will
be prioritized for processing first). It browses each window
from LEFT to RIGHT, at each window the jobs are sorted in
incrementing deadline order, then assigning jobs to the window
is similar to the FCFS algorithm.

Algorithm 3: EDL, with O(m× n× logn)

input: Jobs: list jobs,
Wins: list windows

1 begin
2 List jobs sorted in EDL order;
3 foreach window Wt ∈Wins do
4 foreach job Ji ∈ Jobs do
5 Assignment(Ji, Wt);
6 end
7 end
8 end

Comment that applying the EDL rule will help to limit the jobs
that violate the constraint (7). The solution from the EDL with
the above input data in Table I, II presents as Figure 6.

0 7 15 25 38 t

J3=4 J1=3 J1=3 J2=5 J2=3 J4=6 idleJ4=3 J5=8 idle J5=3

d3 d1 d2 d4 d5

Fig. 6. The EDL with Cmax = 41

B. Neighborhood search

Note in the FCFS presented at III-A1, the order of jobs will
affect the solution obtained. For example with the above input
data in Table I, II.

Figure 5. The FCFS with infeasible solution.

3 Proposed Approaches

3.1 Heuristics

3.1.1 First Come First Served (FCFS): The idea of this
heuristic is to apply the FCFS rule (the job that comes
first will be processed first). It browses each window
from LEFT to RIGHT, at each window the assignment
of jobs to the window will be considered in one of the
following three cases:

• if rji ≤ rwt then assign job Ji with size rji to
window Wt.

• if rji ≥ (rwt + splitmin), then assign job Ji of size
rwt to the window Wt, the rest is put back into the
list of jobs.

• if rji ≥ (2 × splitmin), then assign job Ji of size
(rji − splitmin) to window Wt, the rest is returned
to the list of jobs.

A comment that applying the FCFS rule very easily
leads to a job that violates the constraint (7) and will be
an infeasible solution. The solution from the FCFS with
the above input data in Table I, II presents as Figure 5,

Algorithm 3: EDL, with O(m × n × logn)
input: Jobs: list jobs,

Wins: list windows
1 begin
2 foreach window Wt ∈ Wins do
3 List jobs sorted in EDL order;
4 foreach job Ji ∈ Jobs do
5 Assignment(Ji, Wt);
6 end
7 end
8 end

3

III. PROPOSED APPROACHES

A. Heuristics

Some symbols are used in heuristics:
• rji is the remaining time of job Ji after this job is

assigned to a certain window.
• rwt is the remaining time of the window Wt, after a job

is assigned to this window.
1) First Come First Served (FCFS): The idea of this

heuristic is to apply the FCFS rule (the job that comes first
will be processed first). It browses each window from LEFT to
RIGHT, at each window the assignment of jobs to the window
will be considered in one of the following three cases:
• if rji ≤ rwt then assign job Ji with size rji to window

Wt.
• if rji ≥ (rwt + splitmin), then assign job Ji of size rwt

to the window Wt, the rest is put back into the list of
jobs.

• if rji ≥ (2× splitmin), then assign job Ji of size (rji−
splitmin) to window Wt, the rest is returned to the list
of jobs.

Algorithm 1: FCFS, with O(m× n)

input: Jobs: list jobs,
Wins: list windows

1 begin
2 foreach window Wt ∈Wins do
3 foreach job Ji ∈ Jobs do
4 Assignment(Ji, Wt);
5 end
6 end
7 end

Algorithm 2: Assignment

input: Ji: the ith job,
Wt: the tth window

1 begin
2 if rji ≥ splitmin and rwt ≥ splitmin then
3 if rji ≤ rwt then
4 Assign job Ji with the size of rji into

window Wt;
5 else
6 if rji − rwt ≥ splitmin then
7 Assign job Ji with the size of rwt into

window Wt;
8 else if rji − splitmin ≥ splitmin then
9 Assign job Ji with the size of

(rji − splitmin) into window Wt;
10 end
11 end
12 end

Comment that applying the FCFS rule very easily leads to a
job that violates the constraint (7) and will be an infeasible
solution. The solution from the FCFS with the above input
data in Table I, II presents as Figure 5, where J3 violated the
constraint (7) so the solution is infeasible.

0 7 15 25 38 t

J1=6 idle J2=8 J3=4 J4=6 J4=3 J5=8 idle J5=3

d3 d1 d2 d4 d5

Fig. 5. The FCFS with infeasible solution

2) Earliest Deadline (EDL): The idea of this heuristic is
to apply the EDL rule (the job with the earliest deadline will
be prioritized for processing first). It browses each window
from LEFT to RIGHT, at each window the jobs are sorted in
incrementing deadline order, then assigning jobs to the window
is similar to the FCFS algorithm.

Algorithm 3: EDL, with O(m× n× logn)

input: Jobs: list jobs,
Wins: list windows

1 begin
2 List jobs sorted in EDL order;
3 foreach window Wt ∈Wins do
4 foreach job Ji ∈ Jobs do
5 Assignment(Ji, Wt);
6 end
7 end
8 end

Comment that applying the EDL rule will help to limit the jobs
that violate the constraint (7). The solution from the EDL with
the above input data in Table I, II presents as Figure 6.

0 7 15 25 38 t

J3=4 J1=3 J1=3 J2=5 J2=3 J4=6 idleJ4=3 J5=8 idle J5=3

d3 d1 d2 d4 d5

Fig. 6. The EDL with Cmax = 41

B. Neighborhood search

Note in the FCFS presented at III-A1, the order of jobs will
affect the solution obtained. For example with the above input
data in Table I, II.

Figure 6. The EDL with Cmax = 41.

where J3 violated the constraint (7) so the solution is
infeasible.

3.1.2 Earliest Deadline (EDL): The idea of this heuris-
tic is to apply the EDL rule (the job with the earliest
deadline will be prioritized for processing first). It
browses each window from LEFT to RIGHT, at each
window the jobs are sorted in incrementing deadline
order, then assigning jobs to the window is similar to
the FCFS algorithm.

A comment that applying the EDL rule will help to
limit the jobs that violate the constraint (7). The solution
from the EDL with the above input data in Table I, II
presents as Figure 6.

3.2 Neighborhood Search

Note in the FCFS presented at 3.1.1, the order of jobs
will affect the solution obtained. For example with the
above input data in Table I, II. 4

Jobs: {J1 = 6, J2 = 8, J3 = 4, J4 = 9, J5 = 11}
⇒ infeasible solution

0 7 15 25 38 t

J1=6 idle J2=8 J3=4 J4=6 J4=3 J5=8 idle J5=3

d3 d1 d2 d4 d5

Jobs: {J3 = 4, J1 = 6, J2 = 8, J4 = 9, J5 = 11}
⇒ feasible solution with Cmax = 41

0 7 15 25 38 t

J3=4 J1=3 J1=3 J2=5 J2=3 J4=6 idleJ4=3 J5=8 idle J5=3

d3 d1 d2 d4 d5

Fig. 7. The obtained solutions are different when the order of jobs changes

This property leads to trying to change the order of jobs to find
a better solution that will bring this problem into the form of
a combinatorial optimization problem with the fitness value as
the Cmax. Several methods of neighborhood search algorithms
such as hill climbing, simulated annealing, tabu search, . . .
and evolutionary strategies such as genetic algorithm, memetic
algorithm, . . . have been proposed to solve combinatorial
optimization problems with better solutions. However these
methods must be executed through many iterations to find
a better solution than the original solution, so the cost in
terms of time will increase many times compared to the
heuristics. Neighborhood search is a technique used to find
the best possible solution to a problem, this technique does not
guarantee to find the optimal solution but guarantees to find
the best possible solution, based on the method of searching
for neighborhood until the stopping condition is satisfied.

Fig. 8. Neighborhood search

The problem is encoded so that neighborhood search can be
applied as follows:

• Each solution will represent a set of ordered jobs, for
example S = J2|J3|J5|J4|J1 will be different from S′ =
J3|J2|J4|J1|J5.

• Neighbor solution is generated the way as Sourd [4] and
Ta [5], which is from current solution S = J1|Ji|J2|Jj |J3

the following operations:
– SWAP: swap two jobs Ji and Jj ¿¿ S′ =

J1|Jj |J2|Ji|J3.
– EBSR (extraction and backward-shifted reinsertion):

extract job Jj and insert it before job Ji ¿¿ S′ =
J1|Jj |Ji|J2|J3.

– EFSR (extraction and forward-shifted reinsertion):
extract job Ji and insert it after job Jj ¿¿ S′ =
J1|J2|Jj |Ji|J3.

– ALL: combines all 3 operations SWAP, EBSR and
EFSR.

• The fitness value of the solutions is the Cmax value found
in the FCFS algorithm.

1) Stochastic Hill Climbing (SHC): Stochastic Hill Climb-
ing is a variation of the Basic Hill Climbing method described
in [6].

Fig. 9. Hill Climbing

The idea of the SHC algorithm is that while Basic Hill Climb-
ing method tries to find the highest slope in the neighborhood
to move to, Stochastic Hill Climbing tries to find a random
higher slope in the neighborhood to move to. [7]. At each
iteration, generate a neighbor solution newSol (by operations
like SWAP or EBSR or EFSR or ALL) and compare with
current solution currSol, if newSol is better than currSol
then update currSol.
Algorithm 4: SHC
input: currSol: current solution,

itermax: maximum number of iterations
1 begin
2 iter = 1;
3 while iter ≤ itermax do
4 newSol = Neighbor(currSol);
5 if fitness(newSol) < fitness(currSol) then
6 currSol = newSol;
7 iter = 1;
8 else
9 iter = iter + 1;

10 end
11 end
12 return currSol;
13 end

Figure 7. The obtained solutions are different when the order of jobs
changes.

This property leads to trying to change the order
of jobs to find a better solution that will bring this
problem into the form of a combinatorial optimization
problem with the fitness value as the Cmax. Several
methods of neighborhood search algorithms such as hill

52 REV Journal on Electronics and Communications, Vol. 11, No. 3–4, July–December, 2021

Figure 8. Neighborhood search.

climbing, simulated annealing, tabu search,... and evo-
lutionary strategies such as genetic algorithm, memetic
algorithm,... have been proposed to solve combinatorial
optimization problems with better solutions. However
these methods must be executed through many itera-
tions to find a better solution than the original solution,
so the cost in terms of time will increase many times
compared to the heuristics. Neighborhood search is a
technique used to find the best possible solution to
a problem, this technique does not guarantee to find
the optimal solution but guarantees to find the best
possible solution, based on the method of searching for
neighborhood until the stopping condition is satisfied.

The problem is encoded so that neighborhood search
can be applied as follows:

• Each solution will represent a set of ordered jobs,
for example S = J2|J3|J5|J4|J1 will be different from
S′ = J3|J2|J4|J1|J5.

• Neighbor solution is generated the way as
Sourd [4] and Ta [5], which is from current solution
S = J1|Ji|J2|Jj|J3 the following operations:

– SWAP: swap two jobs Ji and Jj
=⇒ S′ = J1|Jj|J2|Ji|J3.

– EBSR (extraction and backward-shifted rein-
sertion): extract job Jj and insert it before job Ji
=⇒ S′ = J1|Jj|Ji|J2|J3.

– EFSR (extraction and forward-shifted reinser-
tion): extract job Ji and insert it after job Jj
=⇒ S′ = J1|J2|Jj|Ji|J3.

– ALL: combines all 3 operations SWAP, EBSR
and EFSR.

• The fitness value of the solutions is the Cmax value
found in the FCFS algorithm.

3.2.1 Stochastic Hill Climbing (SHC): Stochastic Hill
Climbing is a variation of the Basic Hill Climbing
method described in [6].

The idea of the SHC algorithm is that while Basic
Hill Climbing method tries to find the highest slope in
the neighborhood to move to, Stochastic Hill Climbing
tries to find a random higher slope in the neighborhood
to move to [7]. At each iteration, generate a neighbor
solution newSol (by operations like SWAP or EBSR
or EFSR or ALL) and compare with current solution
currSol, if newSol is better than currSol then update
currSol.

A comment that the Basic Hill Climbing or Stochastic
Hill climbing method is quite simple, so the solutions
often fall into the local optimum (see Figure 10).

Figure 9. Hill Climbing.

Figure 10. Local optimum vs. Global optimum.

Algorithm 4: SHC
input: currSol: current solution,

itermax: maximum number of iterations
1 begin
2 iter = 1;
3 while iter ≤ itermax do
4 newSol = Neighbor(currSol);
5 if f itness(newSol) < f itness(currSol) then
6 currSol = newSol;
7 iter = 1;
8 else
9 iter = iter + 1;

10 end
11 end
12 return currSol;
13 end

Algorithm 5: Neighbor
input: currSol: current solution

1 begin
2 create randomly i, j positions (i < j) in the

current solution;
3 newSol = SWAP(currSol, i, j) or

EBSR(currSol, i, j) or EFSR(currSol, i, j) or
ALL(currSol, i, j);

4 return newSol;
5 end

3.2.2 Random Restart Hill Climbing (RRHC): The idea
of the RRHC algorithm is that to get out of the local
optimal point, it performs a series of hill-climbing
searches from different randomly generated initial

T. H. Son et al.: Neighborhood Search for Solving Personal Scheduling Problem in Available Time Windows. . . 53

Figure 11. Random Restart Hill Climbing.

Algorithm 6: RRHC
input: restartmax: maximum number of restarts,

itermax: maximum number of iterations
1 begin
2 restart = 1;
3 while restart ≤ restartmax do
4 initSol = create a randomly initial

solution;
5 localOptSol = SHC(initSol, itermax);
6 if f itness(localOptSol) < f itness(bestSol)

then
7 bestSol = localOptSol;
8 end
9 restart = restart + 1;

10 end
11 return bestSol;
12 end

states [7]. At each restart step, generate random initial
solution, use SHC algorithm to find local optimum
solution localOptSol and compare with best solution
bestSol, if localOptSol is better than bestSol then update
bestSol again.

3.2.3 Simulated Annealing (SA): The idea of the SA
algorithm is to avoid local optimization by accepting a
worse solution with a temperature dependent probabil-
ity T [8]. At each temperature T, create a neighbor solu-
tion newSol and evaluate with current solution currSol,
if newSol is better then update currSol, otherwise, it can
still be accepted with some probability.

4 Experimental Results

4.1 Dataset

There are two datasets DS1 and DS2 created to eval-
uate the methods in Section 3. Therein, DS1 contains
small sample sizes of 10 to 30 jobs used to compare
the exact method with heuristics and neighborhood
searches; and DS2 contains large sample sizes of 100
to 300 jobs (scaled up to 10 times) used for comparison
between heuristics and neighborhood searches. In each
dataset, there are 15 tuples (n, splitmin) created accord-
ing to the following rules:

• Each job can be split but not too small, so splitmin ∈
{2, 3, 4}.

• Normally each job has a maximum processing time

Figure 12. Simulated Annealing.

Algorithm 7: SA
input: Tmax: initial temperature,

Tmin: finish temperature,
alpha: cooling rate

1 begin
2 currSol = initSol;
3 T = Tmax;
4 while T > Tmin do
5 newSol = Neighbor(currSol);
6 ∆E = f itness(newSol)− f itness(currSol);
7 if min(1, e−∆E/T) ≥ rand(0, 1) then
8 currSol = newSol;
9 end

10 if f itness(currSol) < f itness(bestSol) then
11 bestSol = currSol;
12 end
13 T = alpha ∗ T;
14 end
15 return bestSol;
16 end

of 24h, so pi is randomly generated by integer
uniform distribution in [splitmin, 24].

• For each job, a due-date value and a deadline value
are generated in the same way as Hariri & Potts [9]
and Baptiste [10]:

– di is randomly generated by integer uniform
distribution in [dl P, duP], where P = ∑n

i=1 pi,
dl ∈ {0.1, 0.3, 0.5, 0.7}, du ∈ {0.3, 0.5, 0.7, 0.9},
dl < du.

– di is randomly generated by integer uniform
distribution in [di, 1.1 × P].

Thus, in each tuple, there will be 10 instances
created with 10 sets of values dl and du.

• According to the International Labor Office -
Geneva [11], the working time in a day does not ex-
ceed 12h, and a window of time corresponding to
a day can be viewed, so wt is randomly generated
by integer uniform distribution in [splitmin, 12] and

the number of windows m such that
m
∑

t=1
wt ≥

n
∑

i=1
pi.

For an example with a tuple (10, 4), the input data
of 10 instances are created as Table III.

The Figure 13 shows the density distribution of the
data pi, di, wt for the tuple (n = 10, splitmin = 4, dl =
0.1, du = 0.3).

54 REV Journal on Electronics and Communications, Vol. 11, No. 3–4, July–December, 2021

Table III
The Input Data Generated with a Tuple (10,4)

ID dl du pi = 11 15 11 20 12 16 16 12 6 8
wt = 10 4 5 7 6 8 5 4 10 6 8 9 7 10 10 8 11

1 0.1 0.3 di = 107 72 56 91 71 76 111 76 84 89
2 0.1 0.5 di = 111 85 54 128 87 61 60 85 68 51
3 0.1 0.7 di = 106 137 61 130 78 126 101 116 35 66
4 0.1 0.9 di = 60 69 120 97 62 114 63 46 122 34
5 0.3 0.5 di = 119 101 75 122 134 57 39 101 83 136
6 0.3 0.7 di = 108 96 127 40 119 97 104 49 78 101
7 0.3 0.9 di = 117 101 126 132 128 114 62 125 113 75
8 0.5 0.7 di = 101 134 106 135 113 82 110 73 119 96
9 0.5 0.9 di = 95 137 117 136 115 100 121 135 114 72

10 0.7 0.9 di = 139 113 127 119 137 124 104 118 135 119

Figure 13. The density distribution of data for the tuple (n =
10, splitmin = 4, dl = 0.1, du = 0.3)

4.2 Evaluation Criteria
All relevant algorithms were experimentally installed

on a computer configured with Intel(R) Core(TM) i7-
4650U 1.70GHz, 8GB memory with Windows 8.1 Pro-
fessional OS, with three evaluation criteria:

• The number of feasible solutions found (#FS).
• If the solution is feasible then the percentage gap

(%LB) between the Cmax value found and the lower

bound LB =
n
∑

i=1
pi.

• The runtime (t) found the solution.
Besides, the exact method with solving the MILP

model is also installed on CPLEX 12.7.1 solver to find
the number of solutions (#FS) that are not only feasible
solutions but also optimal solutions and percentage gap
(%LB) between the optimal solution and LB.

4.3 Configuration Parameters
The configuration parameters in the algorithms

greatly affect the quality of the solution found as well
as the processing time of the algorithm. For example
for the SHC algorithm you have to choose which op-
erations to generate neighbor solutions, while for the

RRHC algorithm how many iterations will be reason-
able, and finally, the SA algorithm will what should
be the initial temperature as well as the heat reduction
coefficient.

4.3.1 SHC operators: In the SHC algorithm, choosing
how to create the neighbor solution is very important.
The four proposed operations that are SWAP, EBSR,
EFSR, and ALL will be experimented on the dataset
DS1 to find out suitable operations for creating the
neighbor solution.

Table IV shows that the ALL operation resulted in
the highest number of feasible solutions found (107
solutions), as well as the percentage gap (%LB) between
the results Cmax and the lower bound LB is the low-
est (2.46%). Therefore, choose the combined operation
ALL to implement and test algorithms such as RRHC
and SA.

4.3.2 RRHC parameters: In the RRHC algorithm, the
quality of the solution will be improved after each
iteration. So the question is how many iterations are
needed? Does too much iteration affect the processing
time of the algorithm? We conduct experiments on DS1
to find the right value for two parameters restartmax
and itermax. To ensure that all instances give a fea-
sible solution, select instances generated by the tuple
(dl = 0.7, du = 0.9) because with this tuple the deadline
value is generated within the widest possible normal
distribution.

Table V shows that the higher the number of itera-
tions, the higher the processing time of the algorithm.
And the set of parameter values (restartmax=1000 and
itermax=100) gives the lowest average value of Cmax
(231.87) and the average processing time is 31.08 sec-
onds is acceptable. Therefore, this parameter set is for
the comparative evaluation of the algorithms in 4.4. The
convergence of the hill climbing is shown in Figure 14
and it also shows how the best solution improves after
restarts.

4.3.3 SA parameters: In the SA algorithm, the value
of initial temperature (Tmax) and the cooling factor
(alpha) will affect the quality of the algorithm’s so-
lution, because these parameter values will change to
the current temperature value at each iteration, thereby
affecting the acceptance probability during execution.

T. H. Son et al.: Neighborhood Search for Solving Personal Scheduling Problem in Available Time Windows. . . 55

Table IV
The SHC Operators on the DS1

ID n splitmin SWAP EBSR EFSR ALL
#FS %LB t #FS %LB t #FS %LB t #FS %LB t

1 10 2 8 1.42 0.03 8 0.77 0.03 8 1.16 0.04 8 0.52 0.06
2 10 3 7 1.44 0.03 7 1.44 0.03 7 1.64 0.03 7 1.44 0.07
3 10 4 4 4.13 0.03 4 4.13 0.03 4 4.92 0.03 4 4.13 0.06
4 15 2 6 0.96 0.07 7 0.73 0.07 6 0.85 0.07 7 0.64 0.13
5 15 3 7 2.23 0.06 7 1.95 0.06 7 2.5 0.06 7 1.67 0.11
6 15 4 6 5.13 0.07 6 4.34 0.07 6 5.13 0.07 6 4.03 0.14
7 20 2 7 0.77 0.11 7 0.64 0.11 7 0.9 0.11 7 0.58 0.21
8 20 3 8 3.53 0.1 8 3.35 0.09 8 2.69 0.1 8 2.39 0.21
9 20 4 5 5.49 0.1 5 5.49 0.1 5 5.91 0.1 5 4.98 0.22

10 25 2 9 0.89 0.17 9 0.43 0.17 9 1.01 0.18 9 0.7 0.33
11 25 3 7 3.13 0.18 7 3.23 0.16 7 3.56 0.19 7 2.37 0.31
12 25 4 5 5.54 0.15 6 5.73 0.15 5 5.75 0.14 6 4.68 0.32
13 30 2 10 0.99 0.28 10 0.51 0.29 10 0.9 0.28 10 0.88 0.51
14 30 3 9 3.19 0.27 9 2.93 0.27 9 3.55 0.26 9 2.7 0.47
15 30 4 7 6.5 0.25 7 4.67 0.25 7 6.72 0.25 7 5.13 0.44

Total 105 - - 107 - - 105 - - 107 - -
Average - 3.02 - - 2.69 - - 3.15 - - 2.46 -

Notes:
• (#FS): higher is better; (%LB) and (t): lower is better
• Each tuple (n, splitmin) is the average results of 10 sample instances

Table V
Summary of Results with Parameters restartmax and itermax

nr ni (10,2) (10,3) (10,4) (15,2) (15,3) (15,4) (20,2) (20,3) (20,4) (25,2) (25,3) (25,4) (30,2) (30,3) (30,4) average runtime

10 10 97 140 132 158 156 218 224 211 245 287 271 302 355 343 392 235.40 0.04

10 100 97 140 132 157 154 218 224 211 244 287 271 300 354 343 389 234.73 0.31

10 1000 97 140 132 157 154 218 224 210 244 287 267 296 354 343 388 234.07 2.55

100 10 97 140 128 157 154 218 224 211 245 287 267 300 354 342 388 234.13 0.34

100 100 97 140 128 157 154 214 224 209 240 287 267 294 354 342 383 232.67 3.11

100 1000 97 140 128 157 154 214 224 209 240 287 265 292 354 342 384 232.47 25.44

1000 10 97 140 128 157 154 218 224 210 240 287 267 296 354 343 388 233.53 3.33

1000 100 97 140 128 157 154 214 224 209 240 287 266 290 354 339 379 231.87 31.08

1000 1000 97 140 128 157 154 214 224 209 240 287 265 290 354 339 381 231.93 257.36

Figure 14. The convergence of the RRHC algorithm on several instances.

56 REV Journal on Electronics and Communications, Vol. 11, No. 3–4, July–December, 2021

Table VI
Summary of Results with Tmax = 10000

alpha (10,2) (10,3) (10,4) (15,2) (15,3) (15,4) (20,2) (20,3) (20,4) (25,2) (25,3) (25,4) (30,2) (30,3) (30,4) average

0.99 97 140 132 158 154 218 224 214 246 287 271 296 356 346 392 235.40

0.991 97 140 132 158 156 219 224 211 240 288 273 296 355 343 391 234.87

0.992 97 140 132 158 156 220 224 213 245 287 271 300 355 345 388 235.40

0.993 97 140 128 158 156 214 224 211 244 287 271 294 355 344 392 234.33

0.994 97 140 128 158 154 218 224 212 245 287 270 300 355 345 388 234.73

0.995 97 140 128 158 154 219 224 210 244 287 271 296 355 347 391 234.73

0.996 97 140 132 157 154 218 224 211 245 288 271 294 355 345 388 234.60

0.997 97 140 132 158 154 218 224 213 244 287 271 294 354 345 388 234.60

0.998 97 140 128 157 156 214 224 210 241 287 266 290 354 343 388 233.00

0.999 97 140 128 157 154 214 224 211 241 287 267 288 354 343 388 232.87

Table VII
Summary of Results with alpha = 0.999

Tmax (10,2) (10,3) (10,4) (15,2) (15,3) (15,4) (20,2) (20,3) (20,4) (25,2) (25,3) (25,4) (30,2) (30,3) (30,4) average

1000 97 140 128 157 154 214 224 210 241 287 267 291 354 343 388 233.00

10000 97 140 128 157 154 214 224 209 241 287 267 290 354 343 384 232.60

100000 97 140 128 157 154 214 224 210 245 287 273 306 355 343 401 235.60

1000000 97 140 128 157 154 214 224 211 244 287 267 306 354 342 388 234.20

10000000 97 140 128 158 154 214 224 211 241 287 277 306 354 345 400 235.73

Figure 15. The convergence of SA algorithm on several instances.

According to Laarhoven [12], the parameter value of
Tmax should be very high and the value of alpha
should be close to 1 for slow temperature reduction.
First, select Tmax = 10000, conduct experiments on
the DS1 to find the value alpha ∈ {0.990, 0.991, 0.992,
0.993, 0.994, 0.995, 0.996, 0.997, 0.998, 0.999} is suitable
for the problem. To ensure that all instances give a
feasible solution, select instances are generated by the
tuple (dl = 0.7, du = 0.9) because with this tuple the
deadline value is generated within the widest possible
normal distribution.

Table VI shows that alpha = 0.999 achieves the min-
imum Cmax mean (232.87). Therefore, choose alpha =
0.999, continue to experiment on the DS1 to find the
value Tmax ∈ {1000, 10000, 100000, 1000000, 10000000}.
Table VII shows that Tmax = 10000 achieves the min-
imum Cmax (232.60). Therefore, choose alpha = 0.999
and Tmax = 10000 for the comparison evaluation
of algorithms in 4.4 section. The convergence of the
simulated annealing process is shown in Figure 15 and
it also shows how the best solution improves during
the process from Tmax to Tmin.

T. H. Son et al.: Neighborhood Search for Solving Personal Scheduling Problem in Available Time Windows. . . 57

Table VIII
Summary of Results on DS1

ID n splitmin CPLEX EDL SHC RRHC SA

#FS %LB t #FS %LB t #FS %LB t #FS %LB t #FS %LB t

1 10 2 8 0 0.53 8 3.35 0 8 0.52 0.06 8 0.39 0.65 8 0.39 0.93

2 10 3 8 0.72 0.63 6 3.36 0 7 1.44 0.07 7 0.72 0.79 7 0.72 1.1

3 10 4 6 0 2.76 2 5.51 0 4 4.13 0.06 5 2.68 0.67 6 1.84 0.93

4 15 2 7 0.09 6.34 6 2.87 0 7 0.64 0.13 7 0.27 1.48 6 0.21 2.03

5 15 3 8 0 3.77 5 5.84 0 7 1.67 0.11 7 0 1.43 7 0 1.69

6 15 4 9 1.42 26.02 3 6.32 0 6 4.03 0.14 6 3 1.74 6 1.82 2.1

7 20 2 7 0.45 11.51 7 2.05 0 7 0.58 0.21 7 0.45 2.45 7 0.45 3.7

8 20 3 9 0 38.12 4 5.86 0 8 2.39 0.21 9 0.64 2.24 4 0.12 2.82

9 20 4 7 1.27 121.43 4 6.65 0 5 4.98 0.22 6 1.83 2.52 6 1.27 3.28

10 25 2 9 0 34.73 9 2.4 0 9 0.7 0.33 9 0 4.35 9 0 5.08

11 25 3 8 0 72.99 7 5.98 0 7 2.37 0.31 8 0.99 4.07 7 0.16 4.33

12 25 4 8 1.05 319.38 1 7.37 0 6 4.68 0.32 7 2.61 3.17 1 1.05 3.66

13 30 2 10 0 115.82 10 2.49 0 10 0.88 0.51 10 0.03 6.76 10 0 7.58

14 30 3 9 0 283.86 7 5.71 0 9 2.7 0.47 9 1.31 7.07 7 0.3 6.58

15 30 4 8 0 1248.26 4 8.11 0 7 5.13 0.44 8 3.13 5.99 4 1.26 6.11

Total 121 - - 83 - - 107 - - 113 - - 95 - -

Average - 0.33 152.41 - 4.92 0.00 - 2.46 0.24 - 1.2 3.03 - 0.64 3.46
Notes:
• (#FS): higher is better; (%LB) and (t): lower is better
• Each tuple (n, splitmin) is the average results of 10 sample instances

Figure 16. The comparison chart on DS1.

4.4 Benchmarking

The first experiment on the DS1, the results are
summarized in Table VIII and Figure 16. Experimental
results show that the CPLEX solver finds more feasible
solutions than all other algorithms (121 solutions), in
addition, when finding feasible solutions, the percent-
age gap (%LB) between results Cmax is found and the
lower bound LB is also the smallest (0.33%). However,
the time for the CPLEX solver to find the solution is

very high (the case n = 30 and splitmin = 4 takes more
than 20 minutes) and increases exponentially with n.
In contrast, the EDL heuristic has a very fast running
time (0.00 seconds for all cases) but the quality of the
solutions is not good, the number of feasible solutions
found in the lowest (83 solutions) and the percentage
gap (%LB) is the highest (about 4.92%). In the Hill
Climbing algorithms, the RRHC algorithm gives better
solution quality than the SHC algorithm with more
feasible solutions (113 versus 107 solutions) and a lower

58 REV Journal on Electronics and Communications, Vol. 11, No. 3–4, July–December, 2021

Table IX
Summary of Results on DS2

ID n splitmin EDL SHC RRHC SA

#FS %LB t #FS %LB t #FS %LB t #FS %LB t

1 100 2 10 2.32 0 10 1.11 4.23 10 0.73 57.22 10 0.2 65.82

2 100 3 10 5.51 0 10 3.14 6.22 10 2.54 60.64 10 1.13 57.41

3 100 4 4 9.44 0 8 6.16 4.89 9 5.68 47.79 4 2.44 52.31

4 150 2 10 2.48 0.01 10 1.23 12.17 10 0.96 139.11 10 0.41 156.31

5 150 3 10 5.27 0 10 3.39 14.09 10 2.92 148.35 10 1.62 136.96

6 150 4 6 8.96 0 10 5.66 16.55 10 5.52 196.31 6 3.04 130.51

7 200 2 10 2.21 0.01 10 1.27 23.13 10 1.02 280.41 10 0.63 285.62

8 200 3 10 5.46 0.01 10 3.72 23.5 10 3.31 253.2 10 1.92 241.57

9 200 4 4 9.36 0.01 9 6.56 31.48 9 6.15 229.28 4 3.04 218.08

10 250 2 10 2.26 0.01 10 1.42 40.6 10 1.16 402.07 10 0.6 390.54

11 250 3 10 5.87 0.01 10 3.95 48.44 10 3.54 453.65 10 1.96 333.18

12 250 4 5 9.14 0.02 10 6.57 53.31 10 6.69 387.15 6 3.77 313.86

13 300 2 10 2.57 0.02 10 1.65 64.48 10 1.45 540.98 10 0.87 534.75

14 300 3 10 5.78 0.02 10 3.93 80.6 10 3.8 608.76 10 2.3 552.81

15 300 4 6 9.1 0.02 9 6.96 85.56 9 6.71 539.91 8 3.93 471.79

Total 125 - - 146 - - 147 - - 128 - -

Average - 5.72 0.01 - 3.78 33.95 - 3.48 289.66 - 1.86 262.77
Notes:
• (#FS): higher is better; (%LB) and (t): lower is better
• Each tuple (n, splitmin) is the average results of 10 sample instances

Figure 17. The comparison chart on DS2.

percentage gap (%LB) (1.2% compared to 2.46%), but
the processing time of the RRHC is many times higher
than that of the SHC algorithm because the RRHC
algorithm has to restart many times. Besides, the RRHC
algorithm also finds the most feasible solution among
all approximation algorithms (113 solutions). Finally,
the SA algorithm gives a compromise solution with
good solution quality (#FS=95 and %LB=0.64) while the
running time is low (just over 3 seconds).

The next experiment on the large DS2, the results are
summarized in Table IX and Figure 17. This experiment
only compares the results of heuristic and neighbor-
hood searches without the CPLEX solver. Because the
CPLEX solver not only finds a feasible solution but
also tries to find the optimal solution, so for large data
sets the CPLEX solver runs very long compared to the
acceptable time of the problem is about 10 minutes.
The experimental results show that similar to the DS1,

T. H. Son et al.: Neighborhood Search for Solving Personal Scheduling Problem in Available Time Windows. . . 59

the EDL algorithm finds the solution very quickly (only
about 0.01 seconds), but the quality of the solution is
not good with the percentage gap (%LB) is quite high
(about 5.72%). The Hill Climbing algorithms (SHC and
RRHC) found the highest number of feasible solutions
(146 and 147 solutions), while the SA algorithm had
the lowest percentage gap (%LB) (only about 1.86%).
In terms of processing time, the RRHC algorithm and
the SA algorithm have a fairly high average processing
time (about 5 minutes), especially in the case (n = 300
and splitmin = 3) it takes about 10 minutes to process,
which is understandable since RRHC and SA both have
strategies to get rid of the local optimal solution by
iterating many times in the hope that the global optimal
solution can be reached. Another note for the cases of
splitmin = 4, the number of infeasible solutions is quite
high because in this case, the jobs are difficult to break
down to assigned into the appropriate windows.

In summary, with the number of jobs n ≤ 30, we
should use the CPLEX solver to determine the optimal
solution to the problem in an acceptable time (under
10 minutes). In contrast, with a larger number of jobs,
if the priority is given to the criterion of finding the
number of feasible solutions as high as possible, then
the RRHC algorithm should be chosen, and if the pri-
ority is for the percentage gap (%LB) criterion the more
as low as possible, the SA algorithm should be used.

5 Conclusion

In this paper, the problem of scheduling individual jobs
so that all jobs are completed at the earliest within time
windows with constraints splitmin and deadlines have
been set and solved. The MILP model has been built
and implemented using the CPLEX solver to determine
the optimal solution to the problem. In addition, sev-
eral heuristics such as FCFS, EDL, and neighborhood
searches such as SHC, RRHC, SA have been proposed
to determine the feasible solution for this problem. Ex-
periments to evaluate the proposed methods have also
been performed and the results show that the RRHC
and SA algorithms achieve a compromise between good
solution quality and acceptable execution time in both
small and large sample sizes datasets. Adding more
constraints to this personal scheduling problem is an
issue to consider in the future, such as constraints on
the order of jobs or constraints on parallel machines.

References

[1] R. Graham, E. Lawler, J. Lenstra, and A. R. Kan, “Opti-
mization and approximation in deterministic sequencing
and scheduling: a survey,” Annals of Discrete Mathematics,
vol. 5, pp. 287–326, 1979.

[2] V. Nguyen, N. H. Tuong, H. Nguyen, and T. Nguyen,
“Single-machine scheduling with splitable jobs and
availability constraints,” REV Journal on Electronics and
Communications, vol. 3, no. 1-2, pp. 21–27, 2013.

[3] V. Nguyen, N. H. Tuong, V. Tran, and N. Thoai, “An
MILP-based makespan minimization model for single-
machine scheduling problem with splitable jobs and
availability constraints,” in Proceedings of the International

Conference on Computing, Management and Telecommuni-
cations (ComManTel), Ho Chi Minh, Vietnam, 2013, pp.
397–400.

[4] F. Sourd, “Dynasearch for the earliness-tardiness
scheduling problem with release dates and setup con-
straints,” Operations Research Letters, vol. 34, no. 5, pp.
591–598, 2006.

[5] Q. C. Ta, J.-C. Billaut, and J.-L. Bouquard, “Heuristic
algorithms to minimize the total tardiness in a flow
shop production and outbound distribution scheduling
problem,” in Proceedings of the International Conference on
Industrial Engineering and Systems Management (IESM),
Seville, Spain, 21-23 Oct. 2015.

[6] J. Pearl, Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison-Wesley Longman Pub-
lishing Co., Inc., 1984.

[7] S. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, 3rd ed. Prentice Hall Press, 2009, ch. Beyond
Classical Search.

[8] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimiza-
tion by simulated annealing,” Science, vol. 220, no. 4598,
pp. 671–680, 1983.

[9] A. M. A. Hariri and C. N. Potts, “Single machine
scheduling with deadlines to minimize the weighted
number of tardy jobs,” Management Science, vol. 40,
no. 12, pp. 1712–1719, 1994.

[10] P. Baptiste, F. Della Croce, A. Grosso, and V. T’Kindt, “Se-
quencing a single machine with due dates and deadlines:
An ILP-based approach to solve very large instances,”
Journal of Scheduling, vol. 13, no. 1, pp. 39–47, 2010.

[11] I. L. O. Geneva, “Working time in the twenty-first cen-
tury,” International Labour Organization, 2011.

[12] P. Laarhoven, Theoretical and Computational Aspects of
Simulated Annealing. Erasmus Universiteit Rotterdam,
1988.

Trang Hong Son is a senior lecturer in the
Faculty of Information Technology, Hoa Sen
University, Vietnam. He received BSc. degree
(2004) in Physics and Computer from HCMC
University of Natural Science, Vietnam, and
Master of e-Management degree (2010) from
Innotech International Academy, France. Now
he is a Ph.D. student from HCMC University
of Technology, Vietnam.

His previous studies were in areas such
as High-Performance Parallel and Distributed

Computing, Bioinformatics, and now his research interests include
Computational intelligence, Scheduling application, Blockchain tech-
nology. Besides his work has appeared in the Journal of Ambient
Intelligence and Humanized Computing, the Science & Technology
Development Journal - Engineering and Technology, the Journal of
Computer Science and Cybernetics.

60 REV Journal on Electronics and Communications, Vol. 11, No. 3–4, July–December, 2021

Tran Van Lang is a senior principal research
scientist on computer science of Vietnam
Academy of Science and Technology (VAST)
who has been interested in the development
of bioinformatics and parallel computing in
Vietnam. He is an editor-in-chief of the HU-
FLIT Journal of Science (HJS), journal scien-
tific secretary, and chief editor of the Elec-
tronic and Telecommunication Section of the
Vietnam Journal Science and Technology.

Before being appointed editor-in-chief of
HJS, he was deputy editor-in-chief of the Journal of Computer Science
and Cybernetics, dean of the Information Technology Faculty, Lac
Hong University, as well as a member of directorship of the Insititute
of Applied Mechanics and Informatics, VAST.

He received BSc. degree in mathematics (1982) and Ph.D. De-
gree in mathematics-physics (1995) from the HCMC University of
Natural Sciences (Vietnam). And he has been an Assoc. Professor
in computer science from the Graduate University of Science and
Technology, VAST (2006). He also has worked as a researcher in
computational mathematics at the Dorodnitsyn Computing Center,
Russian Academy of Science (Russia).

His interests include bioinformatics, high-performance parallel and
distributed computing, computational intelligence, scientific com-
putation, and computational mathematics. His work has appeared
in journals such as the BMC Bioinformatics, the Algorithms for
Molecular Biology, the Vietnam Journal of Mathematics, the Journal
of Computer Science and Cybernetics, Vietnam Journal of Science and
Technology,... He also has written a number of books on software
development, bioinformatics, grid computing, and elearning. His
home page is reached at http://fair.conf.vn/∼lang.

Nguyen Huynh-Tuong is an associate profes-
sor in the Faculty of Computer Science and
Engineering, HCMC University of Technol-
ogy, Vietnam. He has received his Ph.D. (2009)
and M.Eng (2006) in Computer Science from
François Rabelais University (Tours, France),
and B.Eng (2001) in Computer Engineering
from HCMC University of Technology, Viet-
nam. His research interests are in the areas
of scheduling, high-performance computing,
and network security.

He worked for more than ten years as a research expert of algo-
rithms and resolution approaches including simulation, modeling,
and optimization for real-life problems, including manufacturing
scheduling, transportation problems, education management and as-
sessment, and blockchain applications. His work has appeared in the
Asian Journal of Computer Science and Information Technology, the
European Journal of Operational Research, the Journal of Scheduling,
Mathematical Problems in Engineering, IEEE Access.

