
REV Journal on Electronics and Communications, Vol. 11, No. 3–4, July–December, 2021 41

Regular Article

An Efficient Approach to Measure the Difficulty Degree of
Practical Programming Exercises based on Student Performances
Huy Tran, Tien Vu Van, Hoang Nguyen Viet, Duy Tran Ngoc Bao,
Thinh Tien Nguyen, Thanh Van Le

Faculty of Computer Science and Engineering, Ho Chi Minh City University of Technology, VNU-HCM,
Ho Chi Minh City, Vietnam

Correspondence: Huy Tran, huy.tran14@hcmut.edu.vn
Communication: received 23 August 2021, revised 20 September 2021, accepted 21 September 2021
Online publication: 23 October 2021, Digital Object Identifier: 10.21553/rev-jec.282
The associate editor coordinating the review of this article and recommending it for publication was Prof. Tran Manh Ha.

Abstract– This study examines the generality of easy to hard practice questions in programming subjects. One of the most
important contributions is to propose four new formulas for determining the difficulty degree of questions. These formulas
aim to describe different aspects of difficulty degree from the learner’s perspective instead of the instructor’s subjective
opinions. Then, we used clustering technique to group the questions into three easy, medium and difficult degrees. The
results will be the baseline to consider the generality of the exercise sets according to each topic. The proposed solution
is then tested on the data set that includes the results of the two subjects: Programming Fundamentals, Data Structures
and Algorithms from Ho Chi Minh City University of Technology. The most important result is to suggest the instructors
complete various degrees according to each topic for better evaluating student’s performance.

Keywords– e-learning, difficulty degree, automatic question classification, student’s perception, effective coverage exercise.

1 Introduction

With the help of technology support, teaching and
learning processes can be deployed entirely on the
Internet [1]. People who join an online course can
access all necessary resources with no restrictions and
do the assessment tests. The instructors can observe
and evaluate the learning process of course participants
through well-designed tests.

The platform for online teaching and learning as
above is normally called e-learning education system,
becoming more and more popular in schools, particu-
larly in universities [2]. The higher level of education,
the higher requirement of self-study in the learning
process of learners. Moreover, thanks to the online en-
vironment, learners can preview educational materials
at home and take tests at any time. Overall, the process
will become more effective when applying e-learning
to teaching and learning. Realizing the above learning
foundation’s effectiveness, the Faculty of Computer
Science and Engineering (CSE) of Ho Chi Minh City
University of Technology (HCMUT) has developed and
deployed an Auto Grading System (AGS) (see Section
3.1) starting since Semester 1 of 2019.

The world is currently experiencing the COVID-19
pandemic because of its widely substantial spread. To
reduce the risk of disease spreading, the government
requires keeping social distance and encourages the on-
line education process. In HCMUT, the AGS can com-
pletely satisfy the above demand for the programming
practice lessons. If the system has sufficiently good
exercises, can encourage learners, and is supported by

instructional materials, teaching practice programming
can be done essentially online.

Besides the above benefits, the programming support
system’s common drawback is the lack of mechanisms
to encourage the appropriate learning and provide a
suitable learning path for each learner. Learners usu-
ally need to be instructed how to do exercises from
easy to complex and the number of questions at each
degree should be appropriate. In the case where the
question bank has too many easy questions, learners
will be bored with them. In the other case where there
are many difficult questions, they will be discouraged
and gives up. Therefore, an exercise with a sufficient
number of questions and appropriate difficulty degree
will provide an incentive environment for learners.

The difficulty degree of each question mentioned
here should be based on the learners’ view, although
the actual result of learners depends on the evalua-
tion process including solution designed and grading
scale estimated solely defined by instructors. Typically,
the average grade point of students is a factor that
instructors frequently observe and refer to represent
difficulty degree. However, if there is only one factor
to consider, there will be a lack of perspective on other
aspects, resulting in a one-sided evaluation. Therefore,
in this paper, some other factors will be proposed and
considered since difficulty degree of learner’s point of
view may also be revealed through problem solving
progress indicators such as the number of submission
trials, the solving time duration, etc.

The process of creating questions and assessment
their difficulty degree is only from teacher’s subjective

1859-378X–2021-3403 © 2021 REV



42 REV Journal on Electronics and Communications, Vol. 11, No. 3–4, July–December, 2021

opinion. The authors in [3] point out that teachers
only accurately estimate a fraction of question diffi-
culty compared to learners. That statement raises the
question of whether a programming exercise, which
is a group of questions, has covered enough different
degrees for learners to practice. From our proposed
methodology, taking one step further, we investigate
this coverage problem. The results provide an opportu-
nity for teachers to look back to exercises by difficulty
level and give teachers some direction to improve the
question bank.

To the best of our knowledge, this is the first time
the difficulty-related factors are explored in depth and
tackled. Our contribution is fourfold:

1) The investigation of studying important factors
that affect difficulty degree of programming prac-
tice questions.

2) The development of clustering questions based on
the learner’s perspective.

3) A comparison between difficulty-related factors
and between the learner’s and teacher’s perspec-
tive in the view point of difficulty degree of
question bank.

4) A real-life application of the problem to detect the
lack of ease-to-difficulty degree of each subject in
the question bank on the learner’s perspective.

The rest of the paper is structured as follows. Sec-
tion 2 presents related researches about factors that
affect question difficulty. Section 3 focuses on our
proposed approach to difficulty-related formulas and
clustering approach; Auto Grading System will also be
briefly introduced in this section. Section 4 shows the
experimental results and our evaluation for question
classification task. Section 5 will consider coverage of
programming topics by making statistics on classifica-
tion results. Finally, Section 6 concludes this study with
results and future researches.

2 Related Work

2.1 Difficulty-Related Factors
Average score is a factor commonly used to evaluate

the difficulty of questions. For instance, the authors
Simon et al. only used students’ average marks to
measure difficulty of programming examination ques-
tions [4]. In addition, the ratio of students’ marks
to the number of students as a weight is proposed
by Mahatme’s group for categorizing questions in e-
learning environment research [5].

Other factors are also considered to describe the
difficulty degree of question. When predicting student
performance using data from an Auto-grading system,
the authors in [6] select four features: the individual
passing rate of the best submission, individual testcase
outcomes of the best submission, the time interval
between the time of submissions and the task deadline,
and the number of submissions for classification and
regression tasks. In [7], the difficulty degree is also
considered to be proportional to the total number of
attempts for a problem. In 2018, Awat et al. did an item

Table I
Examined Difficulty-Related Factors

Factor References
Average score [5], [4]

Number of passed students [8], [9]
Number of passed submissions [9], [5]

Max score [6]
Number of submissions [6], [7]

analysis using the examination results of students [8].
One of the processes in performing item analysis is
determining the difficulty level of an item. The item
(question) difficulty is stated as the number of correct
students divided by the total number of students.

With the objective to estimate the difficulty of
programming problems, among information extracted
from the dataset, Chowdhury et al. examined clustering
by choosing the number of passed students, the number
of passed submissions, and many others as clustering
features [9].

Table I covers five difficulty-related factors that will
be examined in this study.

2.2 Data Mining Techniques

The authors in [10], [11] have proposed a fuzzy
genetic algorithm to estimate the real difficulty of the
questions. K-means [12] algorithm is used to cluster
difficulty degree in an e-learning environment [5] and
HackerRank [7]. After examining many clustering tech-
niques, the authors in [9] focuses on Fuzzy C-Mean
Clustering algorithm to estimate the difficulty of pro-
gramming problems which got high accuracy score on
the testing set.

2.3 Programming Question Coverage

The authors Petersen et al. [13] have evaluated CS1
examinations from a range of schools across North
America. They considered the distribution of question
types and the average number of concepts besides ques-
tion contents. The question contents include writing
code, reading code, programming concepts and non-
programming. The question types are multiple-choice,
short answer, writing code, drawing diagrams. There
are 28 question concepts in this research; some funda-
mental concepts are trivial syntax, variables, function
structure and expressions.

3 Proposed Approach

3.1 Auto Grading System

Auto Grading System (AGS in short) is a system that
supports practicing programming, built and used in the
Faculty of CSE of HCMUT. In this research, we will
focus on two key features of AGS, which are:

• Manage the questions bank (add/modify), and
assign a set of questions to appropriate groups of
students.



H. Tran et al.: An Efficient Approach to Measure the Difficulty Degree of Practical Programming Exercises. . . 43

• Grade the submissions of students through an
automatic mechanism.

The two sections below describe these two key fea-
tures in detail.

3.1.1 Manage and assign the questions: The instructor,
who manages the laboratory class, is required to setup
an exercise for every topic of knowledge in a course.
An exercise contains some relative questions to evalu-
ate the students’ understanding about the topic. One
question in the AGS system must be configured with
the main component, i.e., a suite of input as testcases for
submissions. This suite is used in the grading process
for submission.

After finishing setting up the exercise, the instructor
needs to assign it to groups of students. Some interest-
ing fields of data to configured in assigning question
are:

• The maximum number of submissions.
• The start and end time for submitting an answer.
When the assigning step is done, students can start

doing this exercise.
3.1.2 Automate grading the submissions of students:

Whenever AGS system records a submission for a ques-
tion from a student, it compiles the submission source
code then runs with the configured testcases to produce
a set of output. The submission score is determined by
the number of correct testcases that represented in the
output set.

Following this phase, we can collect all the score from
submissions of students which forms the data source
for this paper, including some useful information in-
ferred from the data source, such as:

• The average score of submissions for a question
• The number of students that passed a threshold
• The number of submissions that passed a threshold
• The best submission of a student for a question
• The number of submissions of a student for a

question

3.2 Difficulty-Related Formulas

For readability, in this research, all following words
including Average score, Passed submissions, Passed sub-
missions, Best submission, Number of submissions will be
used as a factor or a formula name interchangeably.

Our research proposes 4 formulas that related to the
difficulty of programming questions and constructed
based on student’s submission results. By observing all
4 formulas, we aim to describe the difficulty of pro-
gramming questions based on student’s performances.
To increase the reliability of our research, we simul-
taneously compare those formulas with the average
score formula, which is a commonly used formula to
determine the difficulty degree of questions.

3.2.1 Average score: Average score is a factor that
is widely used to describe difficulty as the mean of
student scores. Because programming questions often
have many submissions (as for trying and correcting),
a student’s score is the mean of all his/her submission
scores, which is then normalized to the range [0-1]

based on max score, then calculate the mean score
according to students. The formula is stated as

F0 =
1
N

N

∑
i=1

(
1
Ci

Ci

∑
j=1

cij

Cmax

)
, (1)

where N is the number of students answering the
question, Ci is the number of submissions of the ith
student, cij is the score of the jth submision of the
ith student, and Cmax is the maximum score of the
question.

3.2.2 Passed students: Passed students refers to infor-
mation about the number of students who passed the
test. Since a difficult question will have few students
finding a solution within the time limit, students who
do not have the submission will not be included. The
formula is then normalized to range [0 − 1]. The pro-
posed formula is

F1 =
S

Stot
, (2)

where S is the number of passed students, and Stot is
the number of students who had at least one submis-
sion for the question.

3.2.3 Passed submissions: Passed submissions refers to
the number of passed submissions for a question. For
programming questions, students typically stop submit
when they have passed them. For a difficult question,
students will have a few failed requests before reaching
the passed one. Therefore, the ratio of the number of
passed submissions to the number of total submis-
sions will be low. Conversely, for an easy question,
the number of failed submissions is low and that ratio
will be high. Additionally, if a person is recognized as
failed on Passed students, Passed submissions gives extra
information about the number of failed requests. The
proposed formula is

F2 =
U

Utot
, (3)

where U is the number of passed submissions, and Utot
is the number of total submissions.

3.2.4 Best submission: Best submission addresses the
student’s submission score. The easier the question, the
higher the student’s score on the question. During the
time the question is open, it is possible that the student
did not get a good score at the beginning, but after
a while, the submission improved, the score increased.
Hence, Best submission suggests taking the highest score
in a student’s submissions for the question

F3 =
1
N

N

∑
i=1

(
max {Ci∗}

Cmax

)
, (4)

where N is the number of students, Cmax is the maxi-
mum score, and Ci∗ is the score set of the ith student’s
submissions for the question.

3.2.5 Number of submissions: Number of submissions
refers to the number of times a student needs to work
to achieve a question. The harder the question, the
more times it has to be done. However, because AGS
provides an editor to fill the code directly, students
who do not pass a test will often change a little code



44 REV Journal on Electronics and Communications, Vol. 11, No. 3–4, July–December, 2021

Table II
Summary of Formulas

Notation Name Range of
values Properties

F0 Average score [0-1] The bigger
the easier

F1 Passed students [0-1] The bigger
the easier

F2 Passed submissions [0-1] The bigger
the easier

F3 Best submission [0-1] The bigger
the easier

F4
Number of
submissions [0-1] The bigger

the harder

right on the system and submit their code without
checking carefully on the IDE. This approach increases
the number of submissions but does not help improve
student skills. The AGS system can provide and fulfill
the following conditions:

• The number of tests is limited for learners to try
and carefully work on each submission. Careful
work helps the data reflect the student’s work
effort.

• The number of questions is large enough that
learners switch to another question when one
question is finished.

• The time to open the question is not too much for
learners to spend time doing different questions,
not too much time left to do many passes for one
question.

The proposed formula is

F4 =
1
N

N

∑
i=1

Ui
Umax

, (5)

where N is the number of students, Ui is the number
of submissions of ith student, Umax is the maximum
number of submissions for the question.

3.2.6 Comments about difficulty-related formulas: Table
II summarizes the five formulas introduced above with
their range of values and properties.

To this study’s concern, each formula F1, F2, F3, and
F4 provides various aspects regarding the difficulty. Of
all these perspectives, it can be seen that 3 main factors
that affect difficulty are students, number of submis-
sions, and grades. Furthermore, each formulation may
have more than one contributing factor with varying
degrees. Table III describes the above 3 factors with 3
contributing degrees 0, 1, 2.

• If a factor is not shown in the formula, its con-
tributing degree is 0.

• If the formula is relevant to the factor, the factor
contribution is at degree 1.

• If a factor is an inseparable part of the formula, its
contributing degree is 2.

Table III also shows that each formula has a differ-
ent combination of factors’ contributing degree. This
study aims to recognize difficulty on many different
aspects, so our research model uses a feature vector

Table III
Factors that Affect Difficulty of a Practical Programming

Question

Formula Student Submission Score
F1 2 0 1
F2 0 2 1
F3 1 0 2
F4 1 2 0

⟨F1, F2, F3, F4⟩ with four corresponding values of for-
mula F1 to F4 to describe the difficulty for that question.

3.3 Clustering Approach

Clustering is a technique of grouping similar data
without being affected by a specific purpose other than
data points themselves. K-mean is the well-known clus-
tering technique published as a journal article in [12].
The algorithm performs the following steps:

• Select K cluster centers at random.
• For each data point, calculate the distance to each

center and assign that point to cluster with the
nearest center.

• Recalculate the new center for each cluster by
calculating the new average point in each group.

• If the stopping condition is satisfied, then stop.
Otherwise, repeat step (2).

The stopping condition may be the maximum num-
ber of iterations reached, or the displacement of the
centers between two adjacent iterations is lower than a
defined threshold.

This study does not focus on comparing and selecting
the better clustering methods. K-means is appropri-
ate to metric, easy to capture the structure of data
and guarantee the convergence. Moreover, due to its
frequent occurrence in categorizing questions [5], [7],
we choose k-means as the clustering technique in this
research.

After clustering, we choose Silhouette Score to mea-
sure the goodness of the result. The Silhouette Score is
calculated as

b − a
max(a, b)

,

where a is the mean distance from a sample to the other
samples in the same cluster, b is the distance between a
sample and the nearest cluster that the sample is not a
part of [14]. The range of the Silhouette Score is between
-1 to 1. The sample is considered to have been assigned
to the correct cluster if close to 1. Whereas the value -1
implies that a sample has been assigned to the wrong
cluster.

3.4 Coverage Approach

The authors in [13] give some directions to do cover-
age in terms of content and type of questions. However,
in this study, the question content and the question
type are both writing code; the concept (we call the
topic) of a question is simply the topic it belongs to.
Taking another direction, the main focus of our study is



H. Tran et al.: An Efficient Approach to Measure the Difficulty Degree of Practical Programming Exercises. . . 45

the difficulty degree of questions. Therefore, this study
statistics the number of questions according to each of
the difficulty degrees for each programming topic.

4 Question Difficulties Classification

This section describes the experiments and evaluation
for question difficulties classification. Pandas tool [15]
helps manipulate tabular data, which is used for pre-
processing and calculating formulas’ values for each
question. Scikit-learn [16] package is a Python module
integrating a wide range of state-of-the-art machine
learning algorithms for medium-scale supervised and
unsupervised problems. Our study used k-means algo-
rithm from Scikit-learn to cluster question’s difficulty.

4.1 Methodology
This study proposes two clustering models to cat-

egorize difficulty degree of programming questions
into three degrees of easy, moderate and difficult. The
clustering results of two models then will be statistics
for evaluation in each programming topic.

The experiment dataset is two submission results
of two laboratory courses: FP (Fundamentals of Pro-
gramming) and DSA (Data Structures & Algorithms).
These data are obtained from AGS exercise data in
semester 2, academic year 2019-2020. Table IV gives
more information on the dataset.

4.2 Clustering Models for Determining Question’s
Difficulty

This study proposes two clustering models:
1) Model 1: use k-mean of scikit-learn with the num-

ber of clusters is 3, other parameters are let as
default. The information for a training point is a
value from formula F0.

2) Model 2: use k-mean of scikit-learn with the num-
ber of clusters is 3, other parameters are let as
default. The information for a training point is a
vector of 4 values ⟨F1, F2, F3, F4⟩.

4.3 Clustering Results
The Silhouette Score of each model is relatively good

(Table V).
The clustering results of two models of two courses

are presented in Table VI and Table VII. Each degree of
easy, moderate, and difficult is marked respectively in
tables as E, M, D.

4.4 Method to Assign Degrees to Clusters
In model 1, after clustering, we find the center of

each cluster represented by a scalar. According to the
properties of average score in Table II: the biggest center
corresponds to the easy cluster, the smallest center
corresponds to the difficulty cluster, and the last center
corresponds to the moderate one.

In model 2, we also find these three centers, but with
a four values vector interprets each one, it is impossi-
ble to determine the smaller and greater relationship

Table IV
Dataset Information

Number of
questions

Number of
students

Number of
submissions

Number
of topics

FP 32 673 38543 8
DSA 32 58 2604 7

Table V
Silhouette Score of Models

Model 1 Model 2
FP 0.69 0.66
DSA 0.78 0.61

between these two vectors. We define variable score as
the score of a permutation of these three vectors and
proceed with the following steps:

1) Generate six permutations of three 4-dimensional
vectors.

2) For every two adjacent vectors, consider all pairs
of values belonging to the same formula; if these
two values satisfy the properties in the Table II of
that formula, then increase score by 1, assuming
you need to sort these vectors with increasing
difficulty.

3) Choose the permutation with the highest score,
assign the clusters of the centers of this permu-
tation with easy, medium, and difficult degrees,
respectively.

The assignment manner for model 2 can fail if there
is more than one permutation with the same highest
score, then we don’t know which permutation to assign
the cluster. With experiment data, there is only one per-
mutation with the highest score and cluster assignment
is achieved.

4.5 Evaluation of Clustering Result

In course FP, we can see that there are 7 questions
with different results between two models: 6, 14, 17, 23,
24, 26, 28. Questions 6, 14 are clustered by model 2 as
more complex than model 1. The remaining questions
are clustered by model 2 as easier than model 1.

In course DSA, we can see that there are 6 questions
with different results between two models: 6, 7, 8, 10,
29, 32. All of them are clustered by model 2 as easier
than model 1.

There is no question in both FP and DSA that the
two models give conflict results.

Generally, model 2 tends to rank the degree as easier
than model 1. We can see it more evident in DSA,
maybe because DSA is a more challenging course than
FP. Students may not get high marks on the first few
tries and even got 0 points, affecting the mean score
to get lower. Nevertheless, after thinking and trying
the test, maybe students will eventually pass the test
with the highest score. At that point, the student’s
mean score will not be high, but other aspects such
as the highest score, the number of submissions, and
the number of accomplished students may give more



46 REV Journal on Electronics and Communications, Vol. 11, No. 3–4, July–December, 2021

Table VI
Clustering Result of FP

Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Model 1 D M M M E M D M M M E E M E M M M M E E E E M M E M E M M M M E
Model 2 D M M M E E D M M M E E M M M M E M E E E E E E E D E E M M M E

Table VII
Clustering Result of DSA

Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Model 1 M E M D D M M D M M M M D M M E M M M M E M E E M M M M M E E M
Model 2 M E M D D E E M M E M M D M M E M M M M E M E E M M M M E E E E

Table VIII
Formula Value for Question 7 and 8 of DSA

Question F0 F1 F2 F3 F4
6 0.70 0.94 0.51 0.963 0.36
7 0.71 0.96 0.50 0.996 0.35

Table IX
The Sameness and Similarity of Classification Results

The sameness The similarity
FP 78.13% 100%
DSA 81.25% 100%

information to have a better perspective about the
question.

Table VIII shows the calculated values of 5 formulas
corresponding to questions 6 and 7 in DSA. According
to Average score, we see the average score is about 7/10
points and ranked by model 1 as moderate. However,
the rate of passed students is about 95%, the highest av-
erage score is 9.6/10 with question 6 and nearly 10/10
for question 7. The submission rate is also relatively
low; if students have a maximum of 5 submissions, they
only need 2 times to pass that question. Also, Passed
submissions has a reasonable value: in two submissions,
the first one is unsuccessful and the second one suc-
ceeds, so the rate of submission is about 50%.

Although there is no clear conclusion about difficulty,
questions with different results as above should be
considered further with our four proposed formulas in
addition to the Average score. They are assisting teachers
in doing reviews and deciding appropriate actions.

We propose two measures for evaluating the cluster-
ing result:

• The sameness: the percentage of the number of
questions that two models have the same degree.

• The similarity: the percentage of the number for
which the degree from two models is similar. Two
degrees are considered similar if they are the same
or less likely close but not contradictory.

Table IX records two above measures of courses FP
and DSA. We can see that the results of model 2 have
high matching with one of model 1.

Table X
Statistics of Degree in Course FP

Model 1 Model 2
Index Topic Es Ms Ds Es Ms Ds

1 Loop & If ... Else 0 2 1 0 2 1
2 Array 1 2 1 2 1 1
3 String 0 3 0 0 3 0

4 Function and parameter
passing 4 1 0 5 0 0

5 Recursion 3 2 0 2 3 0
6 Pointer 0 3 0 1 2 0
7 Link list 2 2 0 3 0 1
8 OOP 1 4 0 2 3 0

5 Analysis of Programming Topic’s
Coverage

5.1 Statistics of Degree for Each Programming Topic

To observe the programming topic’s coverage, we use
classification results from 2 models and does statistics
on the number of questions of each difficulty degree.
The statistical results are shown in Table X and Table XI.
The columns Es, Ms, and Ds, respectively correspond
to the number of easy, medium and difficult sentences
in each topic.

5.2 Evaluation of Statistical Results

In Table X, 6 out of 8 topics with different difficulty
coverage are topics 2, 4, 5, 6, 7, 8. Consider topic 7
(Linked list): according to model 1, the classification
has 2 easy questions, 2 moderate questions; according
to model 2, there are 3 easy questions and 1 difficult
question. The coverage of model 1 is plausible if the
instructor wants the learners to do basic exercises.
Teachers want students to get used to Linked lists,
since Linked lists are quite advanced topics for an
introduction course. The coverage of model 2 shows
students’ suitability if the teachers want learners to
challenge some difficult questions. Also, it offers some
lack the average question.

In Table XI, 3 out of 7 topics with different difficulty
coverage are topics 2, 3, 7. In topic 2, model 1 shows
a lack of easy questions, while model 2 shows a lack
of difficult questions. In topic 7, model 1 shows a lack



H. Tran et al.: An Efficient Approach to Measure the Difficulty Degree of Practical Programming Exercises. . . 47

Table XI
Statistics of Degree in Course DSA

Model 1 Model 2
Index Topic Es Ms Ds Es Ms Ds

1 C/C++ Review,
Recursion by C/C++ 1 2 2 1 2 2

2
Implement AList Class
with Template
Programming

0 3 1 2 2 0

3 Implement singly linked
list and its applications 1 5 1 2 4 1

4
Implement Stack and
Queue with its
applications

1 4 0 1 4 0

5 Implement Binary Tree
and Binary Search Tree 2 3 0 2 3 0

6 Implement AVL and its
applications 0 2 0 0 2 0

7 Implement heap, hash
and their applications 2 2 0 4 0 0

of difficult questions, while model 2 shows a lack of
moderate and difficult questions.

Therefore, two models can give different coverage
for a topic. Although there is no clear conclusion as
to which model is better in the above coverage, two
observations can be made as follows:

• Firstly, for topics with similar coverage in two
models, which states that the coverage has a high
consensus, we can consider that coverage is reliable
for representing the difficulty degree of the topic.

• Secondly, if the number of questions on the same
difficulty degree in the two models is the same and
equal to zero, it shows the lack of questions in this
difficulty.

The instructor can rely on the above two observations
to:

• Observe coverage if there is a similar coverage.
• Adding more questions to the difficulty degree of

a topic where the number of questions is 0 in both
models.

6 Conclusion

In this study, we aim to fulfill the difficulty degrees
coverage of practical programming questions. We have
proposed formulas related to the average score, passed
students, passed submissions, best submission and the
number of submissions to determine the difficulty of
each question. Having proposed formulas, we use clus-
tering techniques to group questions into three groups.
The results will be an opportunity to look at the cover-
age of the topic-by-topic practice exercise set. Moreover,
the results are directed to suggest the instructor to
supply the questions with the missing difficulty degree
according to each topic. These results are analyzed not
based on the subjective opinions of the instructor but
by observing the information set that stores not only
the results of the learners but also the whole process of
the work to submit.

The proposed solution has been measured across
two subjects: Fundamentals of Programming and Data
Structures & Algorithms. Data collected from these
subjects through the second semester of 2019 at Ho Chi
Minh City University of Technology. In view, the results
of the study are as follows:

• Classify questions difficulty based on 2 models:
one uses the formula using the average score for-
mula and the other uses 4 formulas that we pro-
posed. With the results, although there are some
questions with different degrees of difficulty, in
general, the two models give similar classification
results, and they are reasonable.

• Conduct difficulty degree statistics on each pro-
gramming topic. The results showed that there
are differences in the difficulty degree coverage
between model 1 and model 2. The study proposes
to produce both classification results, along with
the value of 4 proposed formulas and 1 average
score formula. From there, the instructor will have
many different perspectives to make decisions to
add the necessary questions to the topic.

In the future, we still focus on these directions for
this study:

• Enrich the dataset to enhance the accuracy of clus-
tering models.

• Widen the scope of the fulfilling question diffi-
culty coverage problem. This study is only focused
on fulfilling the degree to which its amount of
questions is zero. However, with a more significant
number of questions due to enrichment, the zero
value mostly will not be appeared. Therefore, the
fulfilling method will not depend on the zero value
and need a threshold-based configuration.

• Utilize the classification results for recommending
the question with suitable difficulty for students.
Furthermore, the next stage is the system to sug-
gest programming practicing path for student.

• Expand the degrees of question difficulty, deter-
mine a number of degrees for having sensible
jumps between degrees.

Acknowledgment

This research is funded by Vietnam National University
Ho Chi Minh City (VNU-HCM) under grant number
DS2022-20-07. We acknowledge the support of time
and facilities from Ho Chi Minh City University of
Technology (HCMUT), VNU-HCM for this study.

References

[1] C. Coman, L. T, îru, L. Mesesan Schmitz, C. Stanciu, and
M. Bularca, “Online teaching and learning in higher
education during the coronavirus pandemic: Students’
perspective,” vol. 12, no. 2020: 10367, pp. 1–24, 2020.

[2] Ł. Tomczyk, K. Potyrała, A. Włoch, J. Wnek-Gozdek, and
N. Demeshkant, “Evaluation of the functionality of a
new e-learning platform vs. previous experiences in e-
learning and the self-assessment of own digital literacy,”
vol. 12, no. 2020: 10219, pp. 1–22, 2020.



48 REV Journal on Electronics and Communications, Vol. 11, No. 3–4, July–December, 2021

[3] G. van de Watering and J. van der Rijt, “Teachers’ and
students’ perceptions of assessments: A review and a
study into the ability and accuracy of estimating the dif-
ficulty levels of assessment items,” Educational Research
Review, vol. 1, no. 2, pp. 133–147, 2006.

[4] B. Simon, D. D’Souza, J. Sheard, J. Harland, A. Carbone,
and M.-J. Laakso, “Can computing academics assess the
difficulty of programming examination questions?” in
Proceedings of the 12th Koli Calling International Conference
on Computing Education Research, Nov. 2012, pp. 160–163.

[5] V. P. Mahatme and K. K. Bhoyar, “Questions catego-
rization in e-learning environment using data mining
technique,” International Journal of Information, Control
and Computer Sciences, vol. 9.0, no. 1, 1 2016.

[6] H. Chen and P. A. Ward, “Predicting student perfor-
mance using data from an auto-grading system,” arXiv
preprint arXiv:2102.01270, 2021.

[7] S. Vamsi, V. Balamurali, K. S. Teja, and P. Mallela,
“Classifying difficulty levels of programming questions
on hackerrank,” in Proceedings of the Advances in Decision
Sciences, Image Processing, Security and Computer Vision.
Springer, 2020, pp. 301–308.

[8] K. A. S. Awat and M. A. Ballera, “Applying k-means
clustering on questionnaires item bank to improve stu-
dents’ academic performance,” in Proceedings of the IEEE
10th International Conference on Humanoid, Nanotechnology,
Information Technology, Communication and Control, Envi-
ronment and Management (HNICEM), 2018, pp. 1–6.

[9] I. Chowdhury and Y. Watanobe, “Cluster analysis to
estimate the difficulty of programming problems,” in
Proceedings of the 3rd International Conference on Applica-
tions in Information Technology, Nov. 2018, pp. 23–28.

[10] E. Verdú, L. Regueras, M. Verdú, and J. P. De Castro, “Es-
timating the difficulty level of the challenges proposed in
a competitive e-learning environment,” in Proceedings of
the International Conference on Industrial, Engineering and
Other Applications of Applied Intelligent Systems, 2010, pp.
225–234.

[11] E. V. Pérez, L. M. R. Santos, M. J. V. Pérez, J. P. de
Castro Fernández, and R. G. Martín, “Automatic classi-
fication of question difficulty level: Teachers’ estimation
vs. students’ perception,” in Proceedings of the Frontiers
in Education Conference, 2012, pp. 1–5.

[12] S. Lloyd, “Least squares quantization in PCM,” IEEE
Transactions on Information Theory, vol. 28, no. 2, pp. 129–
137, 1982.

[13] A. Petersen, M. Craig, and D. Zingaro, “Reviewing cs1
exam question content,” in Proceedings of the 42nd ACM
technical symposium on Computer science education, 2011,
pp. 631–636.

[14] “sklearn.metrics.silhouette_score,” last access: 19h30
28/05/2021. [Online]. Available: https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.
silhouette_score.html

[15] T. pandas development team, “pandas-dev/pandas: Pan-
das,” Feb. 2021.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

Huy Tran is an undergraduate student and
pursuing his Master’s Degree in Computer
Science at Ho Chi Minh City University of
Technology (HCMUT), VNU-HCM, Vietnam.
His research interests are educational analysis
and adaptive learning system.

Tien Vu Van is going to graduate with a Bach-
elor degree in Computer Science and continue
to pursue a Master Program in Computer
Science at Ho Chi Minh City University of
Technology (HCMUT), VNU-HCM, Vietnam.
His current research interests are machine
learning, data analysis, and educational sys-
tem.

Hoang Nguyen Viet is currently under-
graduate at Computer Science from Ho Chi
Minh City University of Technology (HC-
MUT), Vietnam. His research interests are
software architecture for microservices-based
system, workflow processing between services
for automation in industry.

Duy Tran Ngoc Bao is a lecturer in Faculty
of Computer Science and Engineering in Ho
Chi Minh City University of Technology (HC-
MUT), VNU-HCM, Vietnam. He obtained an
M.Eng in Computer Science (HCMUT, VNU-
HCM) in 2020. His current interests are pro-
gramming languages, compiler, code gener-
ation and applying the power of machine
learning and deep learning in these relevant
fields. He has also worked for some national
projects in computer vision and data science.

Thinh Tien Nguyen is a lecturer and a re-
searcher at the Faculty of Computer Science
and Engineering, Ho Chi Minh City Univer-
sity of Technology (HCMUT). He successfully
defended his Ph.D. in Mathematics at Gran
Sasso Science Institute (Italy) in 2018. At the
moment, he is interested in physics-informed
learning and applications.

Thanh Van Le received her Master degree
in University Paris 8 in 2004 and achieved
the Ph.D. diplomat in Computer Science from
University Lyon 1, France in 2008. Since 2011,
she has been a senior lecturer at the Faculty
of Computer Science and Engineering, Ho
Chi Minh City University of Technology (HC-
MUT), Vietnam. Her current research interests
include machine learning, data mining, big
data and AI applications for public transport,
image analysis, health care system, educa-

tional analytic, and blockchain mining.


