
REV Journal on Electronics and Communications, Vol. 11, No. 3–4, July–December, 2021 33

Regular Article

Unbiased Pairwise Approach toward Learning-to-Rank:
An Empirical Study

Son Thanh Le1, Ha Manh Tran2, Quang Duy Nguyen1, Sinh Van Nguyen1

1 School of Computer Science and Engineering, International University - Vietnam National University,
Ho Chi Minh City, Vietnam
2 Department of Information Technology, University of Foreign Languages - Information Technology,
Ho Chi Minh City, Vietnam

Correspondence: Ha Manh Tran, hatm@huflit.edu.vn
Communication: received 23 August 2021, revised 19 September 2021, accepted 20 September 2021
Online publication: 23 October 2021, Digital Object Identifier: 10.21553/rev-jec.281
The associate editor coordinating the review of this article and recommending it for publication was Prof. Vo Nguyen Quoc Bao.

Abstract– With the bloom of information technology in recent decades, people are constantly being exposed to a huge
amount of information. Learning-to-rank comes out as one of the solutions to ease out the mentioned obstacle by trying
to rearrange objects according to their degrees of importance or relevance. This solution usually applies machine learning
techniques to construct ranking models in information retrieval systems. The aim of this study is to explore and experiment
the existing learning-to-rank approaches with real-life logs data. The study also includes estimating and minimizing the bias
noise found in the click-through data of the recorded logs. Evaluation results have presented the advantage and disadvantage
of the experimented approaches in realistic settings.

Keywords– Unbiased Pairwise, Learning-to-Rank, Machine Learning, Click Logs.

1 Introduction

Nowadays, as an online content provider, one usually
must present curated lists of products to their cus-
tomers whose tastes might be vastly different from each
other. Naturally, an emerging personalizing problem
aims to provide each customer a better experience.
Ranked retrieval involves sorting the provided items
in such an order corresponding to each individual taste
and personal preference. Thus the information retrieval
systems must try to deduce the importance of each
presented document based on users’ information need.

Machine learning techniques might be able to supply
a new perspective on how to estimate and calculate
this information need. By tracking activities of past
interactions between users and other documents that
him or her has chosen to view, we could see this
as a measure of preference. After all, user should be
considered the expert on his or her information needs.

Learning-to-rank, a kind of machine learning, makes
use of large training datasets in order to help the
learning algorithm capture the patterns. Thus, tradi-
tional source of data, such as expert’s manual annotated
data quickly become obsolete. Most modern systems
nowadays make use of implicit user feed-backs under
the form of click-through logs. It is abundant, cheap
to collect, continuous and renewable data source. Yet,
they are noisy and biased.

Many past researches have pointed out that to reli-
ably utilize such kind of data, one must account for
numerous possible kinds of bias including position

bias [1, 2], presentation bias [3], and quality-of-context
bias [4], etc. Among which, the position bias has a
strong influence on users’ clicks [5].

The term of position bias describes the tendency
of users to interact with items on top of a list with
higher probability than with items at a lower position
in the list, regardless of the item’s actual relevance. This
phenomenon is either due to laziness [1, 3] or due to
trust to the search site (trust bias) [4, 6, 7].

This means that the said bias would pose both as a
reason and a challenge to ranking systems or recom-
mendation systems. On one hand, as the viewers are
more likely to click on those rank higher, re-ranking the
order item by their relevance would essentially enhance
the viewers’ experience on the platform which result
in elevating the product’s attractiveness, in turn could
bring about other business advantages. On the other
hand, because of this tendency, naive interpretation of
clicks log might not be an accurately indication of the
item’s absolute relevance within the presented set thus
introducing noise in the data and could be misleading.

In this study, we have explored the approach of com-
bining regression-based Expectation-Maximization and
DeepPropDCG [7] into an uniform workflow, and then
experimented its performance on a production dataset.
The contribution of this study is therefore twofold:

• Providing a modular workflow for easy alteration
and tuning and various representations of the same
data.

• Validating the approach against the real-life click
logs for learning its sensible insights of capturing

1859-378X–2021-3402 © 2021 REV

34 REV Journal on Electronics and Communications, Vol. 11, No. 3–4, July–December, 2021

and generalizing the desired behavioural knowl-
edge.

The rest of the paper is structured as follows: the
next section provides some background of previous
efforts to incorporate bias into learning to rank. Sec-
tion 3 describes the theoretical work of the parts in
the focused approach. Section 4 reports the exploratory
experiments and acquired knowledge through their
results before the paper is concluded in Section 5.

2 Background

2.1 Unbiased Learning To Rank

There have been much effort in dealing with afore-
mentioned problem. One such approach is click mod-
eling. The idea is to incorporate the bias into the
model by trying to mimicking the users’ behavior and
use it as an assumption [8]. One of the most famous
models is known as the Cascade model [9] that assumes
sequential user behavior. In other words, a user is as-
sumed to scan documents one by one from the top; the
scanning process continues after obtaining an irrelevant
document but stops after obtaining a relevant one.

Another different approach is to treat bias as a coun-
terfactual effect and quantify it [5, 10]. The quantifica-
tion relies on Inverse Propensity Weighting developed
in the causal inference field [11]. The said weighting
technique has been viewed as a commonly-used tech-
nique to address the sample bias and has been widely
adopted for unbiased evaluation and learning [12–15].
This approach employs a Bernoulli variable to denote
if the relevance of a specific document is observed, or
the propensity. As stated before, this quantity could be
affected by numerous factors. In this approach, with
the main goal of tackling position bias, it is assumed
to depend on the position which the document is
displayed to the user. After that, its inverse could be
used for weighting each learning example. The idea
is if an observed click further down the result lists
is more likely to contain creditable information than
those of top positions where position bias is heavier.
The approach is thus referred to as inverse propensity
weighting.

2.2 Position Bias Model

To further formalize the user behaviour described in
the previous section, we scrutinize the position bias
model. It is a simple yet effective generative click
model and has been shown to be as effective as other
sophisticated ones [8]. Suppose, for a query q (which
could be a context collection and/or contains user
personalizing information), document d is displayed
at position k ∈ [1, K]. Any observed documents are
examined and click can be generated only after the user
has examined the mentioned document. In this model,
it is assumed that the user clicks the document if and
only if they examine the document and the document
is relevant. The examination decision only depends on
the position k but not on q and d.

Formally, the position bias model assumes an ob-
served click Bernoulli variable C standing for whether
the user clicks document d, two hidden Bernoulli vari-
ables E and R signifying whether the user examines the
document and the relevance, respectively. Aforemen-
tioned assumptions could be expressed mathematically
as follows:

O ↔ E
C = 1 ↔ E = 1, R = 1
P(E = 1|q, d, k) = P(E = 1|k)
P(R = 1|q, d, k) = P(R = 1|q, d).

Thus, the examining probability, or the propensity,
only depends on the display position k and the per-
ceived relevance is the true relevance. Based on that,
we could derive the following formula:

P(C = 1|q, d, k) = P(E = 1, R = 1|q, d, k)
= P(E = 1|k)× P(R = 1|q, d)
= θk × γq,d,

where we make use of the shorthands:

θk = P(E = 1|k)
γq,d = P(R = 1|q, d).

Given a click log under the form of L = (c, q, d, k),
the log likelihood of the data is calculated by:

log P(L)
= ∑

(c,q,d,k)∈L
c log(θk × γq,d) + (1 − c) log(1 − θk × γq,d).

3 The Focused Approach

With the goal of finding an applicable approach for
realistic production experiments, we try to explore
and tune previously proposed methods into a sin-
gle workflow that works well with the real-life col-
lected data. The focused approach is a workflow with
two steps: unbiasing and learning-to-rank that employ
regression-based Expectation-Maximization (EM) and
DeepPropDCG, respectively.

3.1 Propensity Estimation

It is clear now that one of the key components in
unbiased learning to ranking is to estimate the un-
known propensity of the current system/data. There
have been many attempts. However, most of the ideas
depend on delivering randomized results in order to
calculate the needed propensity (e.g RandTopN [2],
RandPair [5],...), which in term would cause a drop in
the users’ experience.

Recently, Wang et al. [2] have presented a different
regression-based EM algorithm that does not need the
result randomization intervention which vastly helps
reduce the develop, deploy, and evaluate process. The
work is based on the position bias model. In order to
find the parameters that maximize the log-likelihood
log P(L), the algorithm employ a technique based on
EM method.

S. T. Le et al.: Unbiased Pairwise Approach toward Learning-to-Rank: An Empirical Study 35

The Regression-based EM algorithm iterates over the
Expectation and Maximization steps to update {γk}
and {θq,d}. At iteration t+1, the Expectation step es-
timates the distribution of the hidden variable E and
R given parameters from iteration t and the observed
data L. From this, marginals P(E = 1|c, q, d, k) and
P(R = 1|c, q, d, k) can be derived.

In the Maximization step at t+1, the parameters θ
(t+1)
k

and γ
(t+1)
q,d are updated to their maximum likelihood

values given the posterior probabilities from the Ex-
pectation step. In traditional EM, the estimation phase
for γ

(t+1)
q,d would be working with (q, d) identifiers to

output the probability for each pair. Using the exact
identifiers has been proved to be challenging in per-
sonal search due to the highly sparse and noisy nature
of click data. So instead, we work with the feature
vectors xq,d and use a regression function f (x) to maxi-
mize the likelihood of a sample a binary relevance label
r ∈ {0, 1} according to P(R = 1|c, q, d, k).

Since an actual click logs is employed to evaluate,
there is no exact results to the propensity, furthermore,
the method’s theoretical validity has been proven in the
original paper. Thus, within the scope of this study,
we survey over the convergence and the qualitative
outcomes of this step.

3.2 DeepPropDCG

DeepPropDCG is a pairwise learning-to-rank ap-
proach proposed by Agarwa et al. [7]. It aims to learn
a scoring function f (x), whose results naturally form
a ranking system by sorting the scores of candidate
documents:

S f (d) = argsort{ f (x)|x ∈ x}.

The rank(y|S f (d)) of a result is thus a discontinuous
step function of the score. Instead of directly using this
in loss, we could substitute it with a (sub-)differentiable
upperbound:

rank(y|S f (d))− 1 = ∑
x′∈x
x′ ̸=x

1 f (x′)− f (x)>0

≤ ∑
x′∈x
x′ ̸=x

max(1 − (f (x)− f (x′)), 0).

Suppose, for each query q, we have a set of candidate
documents d and, a set of features x. After the ranking
process, the system S returns a ranking y. A wide
range of popular and well known additive ranking
performance metrics can be expressed by the formula:

∆(y|q, {r}) = ∑
y∈y

λ(rank(y|y))× rq,y,

where λ() could be any weighting function depending
on the rank of the score y in y, or rank(y|y). For the sake
of simplicity, the relevances are binary, rq,y ∈ {0, 1}.
Such metrics can be corrected for unwanted bias [2, 16]
by weighting each result document with the inverse of

the propensity:

∆̂(y|qi, {r}) = ∑
y∈y

λ(rank(y|y))
pi,y

with the propensities pi,y = P(Oy = 1) are estimated
beforehand. From that, we can derive the loss, or the
risk, of the whole system S as:

R̂(S) =
1
n

n

∑
i=1

∑
y∈yi

λ(rank(y|yi))

pi,y
.

By rearranging terms and applying the rank function,
the risk becomes:

R̂(S) ≤ 1
n

n

∑
i=1

1
pi

λ(∑
x′∈xi
x′ ̸=xi

max(1 − (f (xi)− f (x′)), 0)).

With the goal of optimizing nDCG (DCG) metric,
we plug in the corresponding function and get the
following formula:

1
n

n

∑
i=1

−1
pi

log−1(2 + ∑
x′∈xi
x′ ̸=xi

max(1 − (f (xi)− f (x′)), 0)).

This could be considered as our minimization ob-
jective. Since the function ties together sublosses from
pairs of document, stochastic gradient descent (SGD)
is not directly feasible at the level of individual doc-
uments. Instead, SGD is performed at the level of
document pair.

3.3 Evaluation Metric

Given the current scope which regards situation
where each query can have multiple relevant docu-
ments, the evaluation metric used in this paper is a
variant of nDCG. Due to click bias, the standard nDCG
is not suitable for offline evaluation. We thus employ
a weighted version of it, namely PSnDCG (in which
PS is for Propensity Scored), which can correct the
introduced bias [7, 17, 18]. The metric is defined as

PSDCG =
p

∑
i=1

reli
pi log2(i + 1)

,

PSnDCG =
PSDCG

PSInDCG
,

where pl is the propensity θ estimated from the algo-
rithm and PSInDCG is the PSDCG score of the optimal
ranking - PS Ideal DCG.

4 Empirical Evaluation

4.1 Datasets

The datasets used in this experiment are processed
from click-through logs from where users are presented
with a collection of documents manually composed and
handpicked by the firm’s editors following a specific
subject or theme. The raw logs hold the user identifier,
the collection identifier, the clicked document identifier,
and some other information for each record for each

36 REV Journal on Electronics and Communications, Vol. 11, No. 3–4, July–December, 2021

(a) GBDT_1

(b) GBDT_5

Figure 1. Normalized estimated bias and training loss of models trained with single-click versus multi-click datasets.

time the user clicks on an document presented within a
collection, as reported in Table I. After collected, all the
logs are segregated into sessions by grouping by (user,
collection) so that every click event within a session
is not 60 minutes away from one another. Each query
is supposed to represent a chain of actions of a user
going down a collection in a default ranking, clicking
on documents.

Each record has total 401 features. These are gener-
ated from the available ranking features of the current
system which are the latent representations of users and
items generated by basic collaborative filtering method
at a point before the time used for generating the
supervised featured. Each item and its collection are as-
sociated with one or many “genre” tags describing the
categories to which the object belongs. Moreover, higher
business-level classifications, namely “audience”, are
also assigned to users. The “audience” labels depend
on the genres with which the user has made inter-
action and some other business metrics. It is worth
mentioning that, the collections are manually composed
and curated by the service’s editors following various
themes and factors which eventually act as contexts
information.

The supervised features play the role of representing
the (q, d) to be learnt. We try to produce features which
could capture numerous abstraction levels:

• User’s features describes the tastes and preferences

Table I
Some Basic Statistics of the Datasets

of users 105000
of documents 5700
of queries 290000

over many scopes of time for personalization.
• Document’s features describes the characteristics.
• Collection’s features describes the context in which

the user and item interact.
We take a sample of its processed logs from a 5-week

period. The data of the first 4 weeks is used for training
and the data of the last week is used for evaluating.
Each query contains 2 clicked items on average.

4.2 Bias Estimation and Unbiasing
4.2.1 Meta-tuning on Query Representation: The train-

ing dataset comes in two versions:
• a multi-click version as described above where

each query contains multiple clicked items
• a single-click version where queries are duplicated

and modified so that each new query only contains
one clicked item.

The estimated bias and training loss across multiple
models using two training dataset versions are pre-
sented in Figure 1. The bias estimations are normalized
so that the propensity at position 0th is 1.0. As for the

S. T. Le et al.: Unbiased Pairwise Approach toward Learning-to-Rank: An Empirical Study 37

Table II
Final Training Loss

Model Training loss
GBDT_1 0.311
GBDT_3 0.305
GBDT_5 0.303

function f (x), to account for the non-linearity, following
the study of Wang et al. [2], we choose to compare
between GBDTs of various settings. More specifically,
with the GDBT method we used depth-3 trees and set
the shrinkage to 0.2 with distinct number of boosting
round per iteration r ranging from 1 to 10, denoted
by “GDBT_{r}”. All models were equipped with early
stopping with the tolerance of 10−4 for 5 iterations.

On the first look, there exist consistent performance
gaps in term of both training loss and estimation gaps
in term of normalized bias estimation values across
different run regardless of the architectures and hyper-
parameters used. This fact ensures that we are able to
sufficiently draw conclusions about the datasets dif-
ference from below observations since other possible
variant causes (e.g the nature of the algorithms used by
models, random initialization states, etc.) have already
been minimized and/or eliminated.

The right column of the figure shows that models
using the multi-click set take twice as long to con-
verge compared to their counterparts. Not only that,
the final loss are also significantly higher than that
of the single-click ones. It is also worth noting that
although low training loss values do not suggest low
performance but such high losses could indicate the
inability to learn. Moreover, looking at the left side of
the figure, multi-click models also failed to produce
sensible bias estimation as the values are relatively the
same across the position axis. This implies the absence
of position bias, which goes against previous studies
and assumptions about human behavior [1, 4]. On the
contrary, models which use the single-click version in
the training process show much more sensible estima-
tion of position bias as there are noticeable downward
trends along the position axis as expected. In addition,
the converged rates are much faster (almost ×2) and
at much lower loss. From this point on wards, unless
explicitly stated, the training process would always be
done on the single-click version.

4.2.2 Data Fitting: Regarding estimated bias values
shown in Figure 2, all models are able to generate a
sensible downward trend along the displayed position,
which stay consistent to previous studies. At a glance,
noises and fluctuation are presented from around the
18th position. This can be explained by the fact that not
many queries have result spanning more than 15 items.
Interestingly, there is a noticeable rise which occurs
at position 11th throughout all trials. This unexpected
behavior could be the nature of the used data and could
be tuned when in production by utilizing large datasets.

Regarding the training loss, although the learning
curve is visually different from one another, as reported

Figure 2. Normalized estimated bias

Figure 3. Training loss

in Table II, the final losses are relatively similar across
models. Recall that all the runs employs early stopping
with the tolerance of 5 iterations, this means each run
has various length corresponding to the point which
the model’s learning capability has already worn off.
This could either means the residual error has become
too small. Figure 3 shows at the few first iteration. In
general, the higher number of trees used in an iteration,
the faster convergence is achieved.

Albeit there are some differences in term of converge
rate, the estimate procedure of our Regression-based
EM is an iterative process in which the bias values is
repeatedly recalculated and updated after every iter-
ation. This essentially means apart from the training
loss, which indicates how well each model fits to the
data, there is also the convergence of the bias estimation
values that must be taken into account. We theorize
that a too fast learning paces may be harmful to the
overall algorithm as there is not enough time for the
bias values to adjust and stabilize. In such situation,
the learnt models can be of misleading results. Further
investigation into the raised problem is discussed the
next section.

4.2.3 Bias Estimation Convergence: As addressed in
the previous section, EM-algorithm consists of two
interleaved steps in which the two unknowns, namely
the bias and the ranking function, are learnt and up-
dated at the same time. In other words, the propen-
sity values are also learnable parameters that must be
re-evaluated overtime to, ideally, converge. Naturally,
the convergence states of the said values are also of
valuable insights on how well the training process has
taken place. As in Figure 4, it can be observed that
the propensity values gradually converges from their

38 REV Journal on Electronics and Communications, Vol. 11, No. 3–4, July–December, 2021

(a) GBDT_1

(b) GBDT_3

(c) GBDT_5

Figure 4. Bias estimation values of top 10 positions over time.

Table III
Bias Estimation Derivative Sums

Model Last iteration’s
derivative sum

Last 3 iterations’
derivative sum

GBDT_1 0.062 0.194
GBDT_3 0.060 0.185
GBDT_5 0.055 0.172

initialization after some iteration at different rates in
different models used. The need to quantitatively mea-
sure the convergence of value, specifically {θk}, thus
emerges. To quantify such the concept, we choose to use
the derivative of the last iteration and the summation
of the derivatives of the last three iterations, the closer
the metric value to zero, the better the convergence. The
derivatives is computed using second order accurate
central differences in the interior points, and second
order accurate one-side backward differences at the
boundary. Given that, let T be the number or training
iteration, the metric could be formally defined as

t

∑
t′=0

K

∑
k=1

f ′(θ(T−t′)
k)

with the values of t are chosen to be 0 and 2 corre-
sponding to the last iteration’s derivative sum and the
last 3 iterations’ derivatives sum, respectively.

The results are shown in Table III. Even though
the chosen metric is arbitrary and does not yield any
valuable insight when being on its own, we could com-

Figure 5. Performance by number of learning rates.

Figure 6. Performance by number of parameters.

Table IV
MLPs Layer Configurations

Number of layers Layer configurations
2 [256, 128]
3 [256,128,64]
4 [256,128,64,64]
5 [256,256,128,128,64]

pare the values in a relative manner to draw sufficient
conclusions. It is clearly shown that the sweet spot is 5
trees used per iteration.

4.3 Learning to Rank

4.3.1 Hyper-parameters Tuning: Figure 5 shows the
average performances of various different learning rate
choices across multiple runs. As we could clearly see,
10−3 is shown to be too large, effectively worsen the
performance of our model with respect to other finer
values. From the Figure, we could also draw the conclu-
sion that learning rates with values ranging from 10−4

to 10−6 yield relatively the same performance.
According to Figure 5, the learning rate choice, over-

all, does not make significant difference once going pass
the 10−4 value. 10−3 is shown to be too large. Figure 6
shows the performance at various f (x)’s complexity
depicted by the models’ number of layers. It seems
to reach its maximum performance at an intermediate
value.

S. T. Le et al.: Unbiased Pairwise Approach toward Learning-to-Rank: An Empirical Study 39

Figure 7. Important features of GBDT_5

Table V
PSnDCG Evaluation

Model PSnDCG
DeepPropDCG 0.834
LambdaMART 0.767
GBDT 0.727
Default Order 0.578

4.3.2 Ranking Capability: The evaluation results pro-
vide a comprehensive look upon models against one
another. Along with the PSnDCG-graded models, we
also include the nDCG score of the default order by the
authors of the ranking algorithm LambdaMART [19].
Noted that in the case of the default order, no person-
alization is presented here, every user is given the same
ordering.

4.4 Qualitative Insights
MLPs architectures are well known for their power in

various fields, and also in learning-to-rank specifically.
But one of their drawbacks is the black-box nature.
On the contrary, we could utilize the GBDT learnt
in bias estimation step, taking advantage of its high
interpretability to gain extra insights into the problem.

The average gain of splits which use a particular
feature is plotted in Figure 7, the top 30 features are
shown. With the top feature being the indicator whether
the user has interacted with the item before, this can be
explained by the fact that users often use the lists as a
way to navigate to the items that they are consuming.
Apart from that special case, the other top features
shows extensive usage of collection’s features which
should contain information on the overall theme of the
collection. Beside that, we could also observe that the
personal tastes and preferences are well captured as the
user’s latent and their history are also in use.

5 Conclusion

We have presented the workflow of meta-tuning and
producing sufficient data and the effort of capturing
and evaluating position bias thoroughly provided in
an in-house offline manner. The explored approach
within the scope of this study apparently appears to
yield improvement over the previously uniform manual
rankings and successfully capture the biased behaviour
of the users. However, the study still contains some
drawbacks and the worthiest mentions are the lack of
online A/B evaluation and explicit relevance feedback.
The future work focuses on the following improve-
ments regarding both implementation and evaluation:
(i) employing further hyper-parameters tuning and
more advanced and specialized architecture one may
achieve better performance; (ii) applying online A/B
testing; and (iii) gathering explicit relevance feedback
from human judges to formulate more precise evalua-
tions.

Acknowledgment

This research activity is funded by Ho Chi Minh City
University of Foreign Languages–Information Technol-
ogy under the grant number H2021-05. We would like
to thank the NAB Studio data team and the team leader,
Mr. Hoang Gia Vu, for the company’s collected dataset
and continuous support.

References

[1] T. Joachims, L. Granka, B. Pan, H. Hembrooke, and
G. Gay, “Accurately interpreting clickthrough data as
implicit feedback,” in Proceedings of the 28th Annual
International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, ser. SIGIR ’05. New
York, NY, USA: ACM, 2005, pp. 154–161.

40 REV Journal on Electronics and Communications, Vol. 11, No. 3–4, July–December, 2021

[2] X. Wang, N. Golbandi, M. Bendersky, D. Metzler, and
M. Najork, “Position bias estimation for unbiased learn-
ing to rank in personal search,” in Proceedings of the
Eleventh ACM International Conference on Web Search and
Data Mining (WSDM ’18). New York, NY, USA: ACM,
2018, pp. 610–618.

[3] Y. Yue, R. Patel, and H. Roehrig, “Beyond position bias:
Examining result attractiveness as a source of presenta-
tion bias in clickthrough data,” in Proceedings of the 19th
International Conference on World Wide Web (WWW ’10).
New York, NY, USA: ACM, 2010, pp. 1011–1018.

[4] T. Joachims, L. Granka, B. Pan, H. Hembrooke, F. Radlin-
ski, and G. Gay, “Evaluating the accuracy of implicit
feedback from clicks and query reformulations in web
search,” ACM Transactions on Information Systems, vol. 25,
no. 2, pp. 7–es, Apr. 2007.

[5] T. Joachims, A. Swaminathan, and T. Schnabel, “Unbi-
ased learning-to-rank with biased feedback,” in Proceed-
ings of the Tenth ACM International Conference on Web
Search and Data Mining (WSDM ’17). New York, NY,
USA: ACM, 2017, pp. 781–789.

[6] M. O’Brien and M. T. Keane, “Modeling result-list
searching in the world wide web: The role of relevance
topologies and trust bias,” in Proceedings of the 28th
annual meeting of the cognitive science society, vol. 28.
eScholarship–University of California, 2006, pp. 1881–
1886.

[7] A. Agarwal, X. Wang, C. Li, M. Bendersky, and M. Na-
jork, “Addressing trust bias for unbiased learning-to-
rank,” in The World Wide Web Conference (WWW ’19).
New York, NY, USA: ACM, 2019, pp. 4–14.

[8] A. Chuklin, I. Markov, and M. Rijke, “Click models for
web search,” Synthesis lectures on information concepts,
retrieval, and services, vol. 7, no. 3, pp. 1–115, 2015.

[9] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey, “An
experimental comparison of click position-bias models,”
in Proceedings of the 2008 International Conference on Web
Search and Data Mining (WSDM ’08). New York, NY,
USA: ACM, 2008, pp. 87–94.

[10] X. Wang, M. Bendersky, D. Metzler, and M. Najork,
“Learning to rank with selection bias in personal search,”
in Proceedings of the 39th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval
(SIGIR ’16). New York, NY, USA: ACM, 2016, pp. 115–
124.

[11] P. R. Rosenbaum and D. B. Rubin, “The central role of
the propensity score in observational studies for causal
effects,” Biometrika, vol. 70, no. 1, pp. 41–55, 1983.

[12] A. Agarwal, S. Basu, T. Schnabel, and T. Joachims, “Effec-
tive evaluation using logged bandit feedback from mul-
tiple loggers,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining (KDD ’17). New York, NY, USA: ACM, 2017,
pp. 687–696.

[13] M. Dudík, J. Langford, and L. Li, “Doubly robust policy
evaluation and learning,” in Proceedings of the 28th Inter-
national Conference on International Conference on Machine
Learning (ICML’11). Madison, WI, USA: Omnipress,
2011, pp. 1097–1104.

[14] L. Li, S. Chen, J. Kleban, and A. Gupta, “Counter-
factual estimation and optimization of click metrics in
search engines: A case study,” in Proceedings of the 24th
International Conference on World Wide Web (WWW ’15
Companion). New York, NY, USA: ACM, 2015, pp. 929–
934.

[15] L. Li, W. Chu, J. Langford, and X. Wang, “Unbiased
offline evaluation of contextual-bandit-based news ar-
ticle recommendation algorithms,” in Proceedings of the
Fourth ACM International Conference on Web Search and
Data Mining (WSDM ’11). New York, NY, USA: ACM,
2011, pp. 297–306.

[16] A. Agarwal, K. Takatsu, I. Zaitsev, and T. Joachims, “A
general framework for counterfactual learning-to-rank,”

in Proceedings of the 42nd International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval
(SIGIR’19). New York, NY, USA: ACM, 2019, pp. 5–14.

[17] H. Jain, Y. Prabhu, and M. Varma, “Extreme multi-label
loss functions for recommendation, tagging, ranking &
other missing label applications,” in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’16). New York, NY,
USA: ACM, 2016, pp. 935–944.

[18] K. Bhatia, K. Dahiya, H. Jain, Y. Prabhu, and
M. Varma, “The extreme classification repository: Multi-
label datasets and code,” http://manikvarma.org/ down-
loads/XC/XMLRepository.html, 2016.

[19] C. Burges, “From ranknet to lambdarank to lambdamart:
An overview,” Microsoft Research, Tech. Rep., 2010,
mSR-TR-2010-82.

Son Thanh Le received his master degree
in computer science in 2006 from Korea Ad-
vanced Institute of Science and Technology
(KAIST), Korea. He is working as lecturer at
School of Computer Science and Engineering,
International University–HCMC Vietnam Na-
tional University. His current research inter-
ests focus on data science, web technology,
information retrieval, mobile computing and
computer networks.

Ha Manh Tran is associate professor of com-
puter science at HCMC University of Foreign
Languages–Information Technology. He ob-
tained his master degree in computer science
in 2004 from the University of Birmingham,
United Kingdom and his doctoral degree in
computer science in 2009 from Jacobs Univer-
sity Bremen, Germany. His research interests
include communication networks, distributed
systems, network management, information
retrieval and machine learning.

Quang Duy Nguyen received received his
master degree in computer science in 2018
at International University–HCMC Vietnam
National University. He is working as research
associate at School of Computer Science and
Engineering, International University–HCMC
Vietnam National University. His current re-
search interests focus on data science, web
technology, information retrieval and machine
learning.

Sinh Van Nguyen is working at the School
of Computer Science and Engineering, Inter-
national University–HCMC Vietnam National
University. He received the doctoral degree of
computer science in 2013 from Aix-Marseille
University, France and the master degree of
computer science in 2008 from Asian Institute
of Technology (AIT), Thailand. His research
interests include computer graphics, images
processing, geometric modeling, AR & VR
applications, smart web.

