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Abstract– This paper presents our work on evaluating the effectiveness of a novel deep convolutional neural network
architecture (CNN) for classifying breast histology images for cancer risk factors as negative or positive. Also, the hardware
structure of the proposed model was successfully synthesized and verified. The results indicate that a CNN trained on a
small dataset achieved an overall AUC (Area under the receiver operating characteristic curve - ROC Curve) value of 0.922
on a set of 55505 test images. In addition, the time it takes to classify each image is within 3.8 milliseconds instead of a
task that even trained pathologists take hours to complete.
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1 Introduction

Breast cancer is the most common form of cancer in
women, and invasive ductal carcinoma (IDC) is the
most common form of breast cancer, according to the
American Cancer Society. The peak mortality rate due
to breast cancer is due to a lack of awareness about
the importance of detecting symptoms early, as well
as a lack of training in how to identify breast cancer
symptoms [1]. On the other hand, probability of saving
a woman with breast cancer depends primarily on
whether the patient receives a diagnosis of the disease
at an early stage and immediately begins treatment [2–
4]. Hence, the accurate identification and classification
of breast cancers is an important clinical task, where
automated methods can be used to save time and
minimize errors.

One of automated methods to early detect breast
cancer is use of machine learning techniques such as
Artificial Neural Network, K-Nearest Neighbours, and
Decision Tree, other studies [5–8] conducted. In [9–19],
Convolutional Neural Networks (CNNs) - a subfield
of machine learning has also been used in classifying
histopathological images as benign or malignant.

However, in the methods of the research papers
mentioned above, the choice of hardware implementa-
tion for CNN architectures has received little attention,
although the benefits of implementing CNN network
hardware were demonstrated [20–22] with inference
phase due to its parallel architecture and high perfor-
mance per unit power. Besides, hardware has limita-
tions due to the limited amount of hardware resources.
Therefore, it is important to find an efficient hardware
architecture of the CNN accelerator to make it available
for more computations.

This paper proposes a model with the possibility of
deploying CNN network hardware and overcomes the
problem of hardware resource limitation. The architec-
ture of the model was built with the proper size to
meet the ability to deploy in hardware, and it would
be flexible enough for changing some layers or for
retraining purposes when there is a change in data
input. At the same time, the proposed model achieved
an overall AUC (Area under the ROC Curve) value of
0.922 for detecting IDC on a set of 55505 test images.

The rest of this paper is organized as follows. Sec-
tion 2 provides a brief description of the conventional
model and databases. This section also proposes deep
CNN architecture employed in this research. Section 3
presents the results obtained through experiments us-
ing the proposed methods. Section 4 is for discussion
followed by conclusions in Section 5.

2 Methodology

2.1 Conventional Model, Database

For this paper, a publicly available database was stud-
ied to evaluate the effectiveness of the proposed model
architectures. Originally, the dataset was provided by
Janowczyk, Madabhushi [23], and Roa et al. [24], which
are later widely shared by the Kaggle community.
It consists of 162 sample images that were scanned
at 40 times magnification. From there, 277524 images
of 50 × 50 dimensions are extracted (198738 nega-
tive, 78786 positive). Each image after this extraction
is named in the format uxXyYclassC.png. For exam-
ple, 10254_idx5_x1801_y1601_class1.png defined as u:
patient ID (10254_idx5); X: the x-coordinate where
the extracted image is separated from the original
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Table I
Distribution of the Train, Validation and Test Datasets

Dataset Label Negative Label Positive
Train 126 986 50 630

Validation 31 819 12 584
Test 39 933 15 572
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Figures 1 and 2 show the symbolic patches of positive and
negative images present in the dataset, the x and y axes
representing the pixel coordinates of the images. In these two
figures, it can be observed that some of them are very small,
whereas some have very large differences between the cancer
image and the non-cancer image, thus making it challenging
for its classification.

Dataset Label Negative Label Positive
Train 126 986 50 630

Validation 31 819 12 584
Test 39 933 15 572

TABLE I
DISTRIBUTION OF THE TRAIN, VALIDATION AND TEST DATASETS

Fig. 1. Histopathology images marked as Positive

Fig. 2. Histopathology images marked as Negative

In an attempt to address this challenge, there were 2
different network architectures tested, both of these were built
in Tensorflow [25]. The main difference between the two
architectures was the size of the kernel filter. While the filter
with a small size (3x3) will have a smaller receptive field
which means it will look at very few pixels at once whereas
a large kernel (5x5) will look at a larger field view. This in
turn mean the features extracted by a small kernel would be
highly local whereas the features extracted from the large
kernel would be generic and spread across the image.
Both of these network architectures were designed with
the effort of minimizing parameters in order to meet the
memory strict to be capable of implementing hardware but
still retaining the same level of accuracy that existed [13][26].

All hyperparameters, such as pooling window size, padding,
stride, or the size of the convolutional layer, were found
experimentally.

B. Our proposed model

The proposed CNN architecture has the following compo-
nents: convolutional layer, activation using Rectified Linear
Unit (ReLU) layer, local response normalization layer, pool-
ing layer, fully connected layer, and a softmax layer. The
arrangement of the architecture is shown visually in Figure 3.
From there, it can be seen that the proposed architecture has
2 convolutional layers which were then followed by a fully
connected and a softmax layer for classification.

Fig. 3. Proposed CNN architecture for predicting breast cancer

The convolutional layer is a set of filters (also called
convolutional kernels) that are convolved with the input data
to create an output feature map [27]. In the first proposed
architecture, each convolutional layer contains 5x5 convolution
filters along with a ReLU, a local response normalization
layer, and a maximum pooling layer. The use of 5x5 filters
in the first architecture was aimed at extracting generic and
spread features across the images of this data. In addition, the
convolutional layers have the same padding instead of valid
padding meaning the convoluted output retains the same size
as the input. The number of convolution filters in each layer is
shown in Table 2. The initializer values of convolution filters
followed a normal distribution with specified mean = 0 and
standard deviation = 0.05, except that values whose magnitude
was more than 2 standard deviations from the mean were
dropped and re-picked. Outputs of the convolution operations
are fed into a ReLU layer.
The activated values were normalized by the local response
normalization layer. This form of normalization makes the
neurons that most strongly activate inhibit the activity of its
neighbors. This lateral inhibition encourages local contrast
enhancement, pushing them apart and forcing them to explore
a wider range of features, ultimately improving generalization
[28].
The input feature map will then be effectively sampled by the
pooling operation. Such a downsampling procedure is useful to

Figure 1. Histopathology images marked as Positive.
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Figures 1 and 2 show the symbolic patches of positive and
negative images present in the dataset, the x and y axes
representing the pixel coordinates of the images. In these two
figures, it can be observed that some of them are very small,
whereas some have very large differences between the cancer
image and the non-cancer image, thus making it challenging
for its classification.

Dataset Label Negative Label Positive
Train 126 986 50 630

Validation 31 819 12 584
Test 39 933 15 572

TABLE I
DISTRIBUTION OF THE TRAIN, VALIDATION AND TEST DATASETS

Fig. 1. Histopathology images marked as Positive

Fig. 2. Histopathology images marked as Negative

In an attempt to address this challenge, there were 2
different network architectures tested, both of these were built
in Tensorflow [25]. The main difference between the two
architectures was the size of the kernel filter. While the filter
with a small size (3x3) will have a smaller receptive field
which means it will look at very few pixels at once whereas
a large kernel (5x5) will look at a larger field view. This in
turn mean the features extracted by a small kernel would be
highly local whereas the features extracted from the large
kernel would be generic and spread across the image.
Both of these network architectures were designed with
the effort of minimizing parameters in order to meet the
memory strict to be capable of implementing hardware but
still retaining the same level of accuracy that existed [13][26].

All hyperparameters, such as pooling window size, padding,
stride, or the size of the convolutional layer, were found
experimentally.

B. Our proposed model

The proposed CNN architecture has the following compo-
nents: convolutional layer, activation using Rectified Linear
Unit (ReLU) layer, local response normalization layer, pool-
ing layer, fully connected layer, and a softmax layer. The
arrangement of the architecture is shown visually in Figure 3.
From there, it can be seen that the proposed architecture has
2 convolutional layers which were then followed by a fully
connected and a softmax layer for classification.

Fig. 3. Proposed CNN architecture for predicting breast cancer

The convolutional layer is a set of filters (also called
convolutional kernels) that are convolved with the input data
to create an output feature map [27]. In the first proposed
architecture, each convolutional layer contains 5x5 convolution
filters along with a ReLU, a local response normalization
layer, and a maximum pooling layer. The use of 5x5 filters
in the first architecture was aimed at extracting generic and
spread features across the images of this data. In addition, the
convolutional layers have the same padding instead of valid
padding meaning the convoluted output retains the same size
as the input. The number of convolution filters in each layer is
shown in Table 2. The initializer values of convolution filters
followed a normal distribution with specified mean = 0 and
standard deviation = 0.05, except that values whose magnitude
was more than 2 standard deviations from the mean were
dropped and re-picked. Outputs of the convolution operations
are fed into a ReLU layer.
The activated values were normalized by the local response
normalization layer. This form of normalization makes the
neurons that most strongly activate inhibit the activity of its
neighbors. This lateral inhibition encourages local contrast
enhancement, pushing them apart and forcing them to explore
a wider range of features, ultimately improving generalization
[28].
The input feature map will then be effectively sampled by the
pooling operation. Such a downsampling procedure is useful to

Figure 2. Histopathology images marked as Negative.

image; Y: the y-coordinate where the extracted image
is cropped from the original image; C: label class with
a value of 0 indicates a negative case, 1 indicates a
positive case.

For this research, the dataset was split into groups
with the percentages of 64%, 16% and 20% respectively
for training, validation and testing purposes. Table I
presents the distribution of the number of samples
included in each of the training, validation and testing
datasets utilized in this research.

Figures 1 and 2 show the symbolic patches of positive
and negative images present in the dataset, the x and y
axes representing the pixel coordinates of the images.
In these two figures, it can be observed that some of
them are very small, whereas some have very large dif-
ferences between the cancer image and the non-cancer
image, thus making it challenging for its classification.

In an attempt to address this challenge, there were
2 different network architectures tested, both of these
were built in Tensorflow [25]. The main difference
between the two architectures was the size of the kernel
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The activated values were normalized by the local response
normalization layer. This form of normalization makes the
neurons that most strongly activate inhibit the activity of its
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[28].
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Figure 3. Proposed CNN architecture for predicting breast cancer.

filter. While the filter with a small size (3× 3) will have
a smaller receptive field which means it will look at
very few pixels at once whereas a large kernel (5 × 5)
will look at a larger field view. This in turn mean the
features extracted by a small kernel would be highly
local whereas the features extracted from the large
kernel would be generic and spread across the image.

Both of these network architectures were designed
with the effort of minimizing parameters in order to
meet the memory strict to be capable of implementing
hardware but still retaining the same level of accuracy
that existed [13, 26]. All hyperparameters, such as
pooling window size, padding, stride, or the size of
the convolutional layer, were found experimentally.

2.2 Our Proposed Model
The proposed CNN architecture has the following

components: convolutional layer, activation using Rec-
tified Linear Unit (ReLU) layer, local response normal-
ization layer, pooling layer, fully connected layer, and
a softmax layer. The arrangement of the architecture
is shown visually in Figure 3. From there, it can be
seen that the proposed architecture has 2 convolutional
layers which were then followed by a fully connected
and a softmax layer for classification.

The convolutional layer is a set of filters (also called
convolutional kernels) that are convolved with the in-
put data to create an output feature map [27]. In the first
proposed architecture, each convolutional layer con-
tains 5× 5 convolution filters along with a ReLU, a local
response normalization layer, and a maximum pooling
layer. The use of 5× 5 filters in the first architecture was
aimed at extracting generic and spread features across
the images of this data. In addition, the convolutional
layers have the same padding instead of valid padding
meaning the convoluted output retains the same size
as the input. The number of convolution filters in each
layer is shown in Table II. The initializer values of
convolution filters followed a normal distribution with
specified mean = 0 and standard deviation = 0.05,
except that values whose magnitude was more than 2
standard deviations from the mean were dropped and
re-picked. Outputs of the convolution operations are
fed into a ReLU layer.



28 REV Journal on Electronics and Communications, Vol. 11, No. 3–4, July–December, 2021

Table II
Number of Convolution Filters in Each Convolutional Layer

Convolutional Layer Number of Filters
Layer 1 8
Layer 2 16

Table III
Summary Table for the Parameters of the First Architecture in Our Work
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Table II
Number of Convolution Filters in Each Convolutional Layer

Convolutional Layer Number of Filters
Layer 1 8
Layer 2 16

The activated values were normalized by the local re-
sponse normalization layer. This form of normalization
makes the neurons that most strongly activate inhibit
the activity of its neighbors. This lateral inhibition
encourages local contrast enhancement, pushing them
apart and forcing them to explore a wider range of
features, ultimately improving generalization [28].

The input feature map will then be effectively sam-
pled by the pooling operation. Such a downsampling
procedure is useful to obtain a compact, invariant
feature representation for moderate changes in object
scale, pose, and translation in an image [29]. Thus, the
number of parameters and the computational complex-
ity of the model are reduced. In this paper, a max-
pooling layer of size 2 × 2 with a stride of 2 was used.

Fully connected layers connect all neurons in one
layer to all neurons in another layer. It works similarly
to a traditional multi-layer perceptron (MLP) neural
network. To classify the images, the flattened matrix
from the output of the convolutional layers passes
through a fully connected layer. The fully connected
layer was used in this paper has 20 neuron units.

Then a softmax layer with 2 neuron units was con-
nected to it. Essentially, the softmax layer is a densely
connected layer with the output values added to a
softmax function. The softmax function normalizes the
output values into a probability distribution.

The total number of parameters in the first structure
is the sum of all parameters in the 2 Convolutional
Layers and 2 Fully Connected Layers, achieved 29806
parameters. Table III below provides a summary.

Table III
Summary table for the parameters of the first architecture in

our work

Layer Name Tensor Size Weights Biases Parameters

Input image 50 × 50 × 3 0 0 0

Conv-1 46 × 46 × 8 600 8 608

MaxPool-1 23 × 23 × 8 0 0 0

Conv-2 19 × 19 × 6 3200 16 3216

MaxPool-2 9 × 9 × 16 0 0 0

Flatten 1296 0 0 0

FC-1 20 25 920 20 25 940

FC-2 2 40 2 42

Table IV
Summary table for the parameters of the second architecture

in our work

Layer Name Tensor Size Weights Biases Parameters
Input image 50x50x3 0 0 0

Conv-1 48x48x8 216 8 224
MaxPool-1 24x24x8 0 0 0

Conv-2 22x22x16 1152 16 1168
MaxPool-2 9x9x16 0 0 0

Flatten 1936 0 0 0
FC-1 20 38 720 20 38 740
FC-2 2 40 2 42

The second architecture kept the same number of
convolution filters in each convolutional layer, used
exclusively 3 × 3 convolutional filters aimed at extract-
ing highly local features, multiple 3 × 3 convolution
filters were stacked on top of each other before fed into
ReLU, normalized, and performing max-pooling. It was
achieved 40174 parameters. Table IV below provides a
summary.

3 Experimental results

3.1 Scenario
In this paper, the network was trained for 200 epochs

and the frequency of validation per 1388 iterations,
with two different optimization algorithms, Adam [30]
- Adaptive learning rate optimization algorithm and
Adadelta [31] – An adaptive learning rate method. Also,
both of these optimizations combined with a technique
called schedule learning rate with an initial 0.0001 for
Adam and 1 for Adadelta, decay every 1000 steps
with a 0.9 rate. This training process of two proposed
architectures is shown in the following Figure 4, Figure
5, Figure 6, and Figure 7 respectively.

3.2 Results
In these Figures, it can be indicated that the network

consistently increases the training and validation accu-
racy to their optimum values.

The consistency of the validation is often more unpre-
dictable than the smooth progression of the consistency
of the training. Such behavior can be attributed to

Table IV
Summary Table for the Parameters of the Second Architecture in Our Work
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Table IV
Summary table for the parameters of the second architecture

in our work

Layer Name Tensor Size Weights Biases Parameters

Input image 50 × 50 × 3 0 0 0

Conv-1 48 × 48 × 8 216 8 224

MaxPool-1 24 × 24 × 8 0 0 0

Conv-2 22 × 22 × 16 1152 16 1168

MaxPool-2 9 × 9 × 16 0 0 0

Flatten 1936 0 0 0

FC-1 20 38 720 20 38 740

FC-2 2 40 2 42

The activated values were normalized by the local re-
sponse normalization layer. This form of normalization
makes the neurons that most strongly activate inhibit
the activity of its neighbors. This lateral inhibition
encourages local contrast enhancement, pushing them
apart and forcing them to explore a wider range of
features, ultimately improving generalization [28].

The input feature map will then be effectively sam-
pled by the pooling operation. Such a downsampling
procedure is useful to obtain a compact, invariant
feature representation for moderate changes in object
scale, pose, and translation in an image [29]. Thus, the
number of parameters and the computational complex-
ity of the model are reduced. In this paper, a max-
pooling layer of size 2 × 2 with a stride of 2 was used.

Fully connected layers connect all neurons in one
layer to all neurons in another layer. It works similarly
to a traditional multi-layer perceptron (MLP) neural
network. To classify the images, the flattened matrix
from the output of the convolutional layers passes

through a fully connected layer. The fully connected
layer was used in this paper has 20 neuron units.

Then a softmax layer with 2 neuron units was con-
nected to it. Essentially, the softmax layer is a densely
connected layer with the output values added to a
softmax function. The softmax function normalizes the
output values into a probability distribution.

The total number of parameters in the first structure
is the sum of all parameters in the 2 Convolutional
Layers and 2 Fully Connected Layers, achieved 29806
parameters. Table III provides a summary.

The second architecture kept the same number of
convolution filters in each convolutional layer, used
exclusively 3 × 3 convolutional filters aimed at extract-
ing highly local features, multiple 3 × 3 convolution
filters were stacked on top of each other before fed
into ReLU, normalized, and performing max-pooling.
It was achieved 40174 parameters. Table IV provides a
summary.
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obtain a compact, invariant feature representation for moderate
changes in object scale, pose, and translation in an image
[29]. Thus, the number of parameters and the computational
complexity of the model are reduced. In this paper, a max-
pooling layer of size 2x2 with a stride of 2 was used.
Fully connected layers connect all neurons in one layer to all
neurons in another layer. It works similarly to a traditional
multi-layer perceptron (MLP) neural network. To classify the
images, the flattened matrix from the output of the convolu-
tional layers passes through a fully connected layer. The fully
connected layer was used in this paper has 20 neuron units.
Then a softmax layer with 2 neuron units was connected
to it. Essentially, the softmax layer is a densely connected
layer with the output values added to a softmax function.
The softmax function normalizes the output values into a
probability distribution.
The total number of parameters in the first structure is the sum
of all parameters in the 2 Convolutional Layers and 2 Fully
Connected Layers, achieved 29806 parameters. Table 3 below
provides a summary.

Convolutional Layer Number of Filters
Layer 1 8
Layer 2 16

TABLE II
NUMBER OF CONVOLUTION FILTERS IN EACH CONVOLUTIONAL LAYER

Layer Name Tensor Size Weights Biases Parameters
Input image 50x50x3 0 0 0

Conv-1 46x46x8 600 8 608
MaxPool-1 23x23x8 0 0 0

Conv-2 19x19x6 3200 16 3216
MaxPool-2 9x9x16 0 0 0

Flatten 1296 0 0 0
FC-1 20 25 920 20 25 940
FC-2 2 40 2 42

TABLE III
SUMMARY TABLE FOR THE PARAMETERS OF THE FIRST ARCHITECTURE IN

OUR WORK

The second architecture kept the same number of convolu-
tion filters in each convolutional layer, used exclusively 3×3
convolutional filters aimed at extracting highly local features,
multiple 3×3 convolution filters were stacked on top of each
other before fed into ReLU, normalized, and performing max-
pooling. It was achieved 40174 parameters. Table 4 below
provides a summary.

Layer Name Tensor Size Weights Biases Parameters
Input image 50x50x3 0 0 0

Conv-1 48x48x8 216 8 224
MaxPool-1 24x24x8 0 0 0

Conv-2 22x22x16 1152 16 1168
MaxPool-2 9x9x16 0 0 0

Flatten 1936 0 0 0
FC-1 20 38 720 20 38 740
FC-2 2 40 2 42

TABLE IV
SUMMARY TABLE FOR THE PARAMETERS OF THE SECOND ARCHITECTURE

IN OUR WORK

III. EXPERIMENTAL RESULTS

A. Scenario

In this paper, the network was trained for 200 epochs and the
frequency of validation per 1388 iterations, with two different
optimization algorithms, Adam [30] - Adaptive learning rate
optimization algorithm and Adadelta [31] – An adaptive learn-
ing rate method. Also, both of these optimizations combined
with a technique called schedule learning rate with an initial
0.0001 for Adam and 1 for Adadelta, decay every 1000
steps with a 0.9 rate. This training process of two proposed
architectures is shown in the following Figure 4, Figure 5,
Figure 6, and Figure 7 respectively.

B. Results

Fig. 4. Our first proposed classification model traning plot using Adam

Fig. 5. Our first proposed classification model traning plot using Adadelta

In these Figures, it can be indicated that the network
consistently increases the training and validation accuracy to
their optimum values.
The consistency of the validation is often more unpredictable
than the smooth progression of the consistency of the training.

Figure 4. Our first proposed classification model traning plot using
Adam.
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[29]. Thus, the number of parameters and the computational
complexity of the model are reduced. In this paper, a max-
pooling layer of size 2x2 with a stride of 2 was used.
Fully connected layers connect all neurons in one layer to all
neurons in another layer. It works similarly to a traditional
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The second architecture kept the same number of convolu-
tion filters in each convolutional layer, used exclusively 3×3
convolutional filters aimed at extracting highly local features,
multiple 3×3 convolution filters were stacked on top of each
other before fed into ReLU, normalized, and performing max-
pooling. It was achieved 40174 parameters. Table 4 below
provides a summary.
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SUMMARY TABLE FOR THE PARAMETERS OF THE SECOND ARCHITECTURE

IN OUR WORK

III. EXPERIMENTAL RESULTS

A. Scenario

In this paper, the network was trained for 200 epochs and the
frequency of validation per 1388 iterations, with two different
optimization algorithms, Adam [30] - Adaptive learning rate
optimization algorithm and Adadelta [31] – An adaptive learn-
ing rate method. Also, both of these optimizations combined
with a technique called schedule learning rate with an initial
0.0001 for Adam and 1 for Adadelta, decay every 1000
steps with a 0.9 rate. This training process of two proposed
architectures is shown in the following Figure 4, Figure 5,
Figure 6, and Figure 7 respectively.

B. Results

Fig. 4. Our first proposed classification model traning plot using Adam

Fig. 5. Our first proposed classification model traning plot using Adadelta

In these Figures, it can be indicated that the network
consistently increases the training and validation accuracy to
their optimum values.
The consistency of the validation is often more unpredictable
than the smooth progression of the consistency of the training.

Figure 5. Our first proposed classification model traning plot using
Adadelta.

3 Experimental Results

3.1 Scenario

In this paper, the network was trained for 200 epochs
and the frequency of validation per 1388 iterations,
with two different optimization algorithms, Adam [30]
- Adaptive learning rate optimization algorithm and
Adadelta [31] - An adaptive learning rate method. Also,
both of these optimizations combined with a technique
called schedule learning rate with an initial 0.0001 for
Adam and 1 for Adadelta, decay every 1000 steps with
a 0.9 rate. This training process of two proposed archi-
tectures is shown in the following Figure 4, Figure 5,
Figure 6, and Figure 7 respectively.

3.2 Results

In these Figures, it can be indicated that the network
consistently increases the training and validation accu-
racy to their optimum values.
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Fig. 6. Our second proposed classification model traning plot using Adam

Fig. 7. Our second proposed classification model traning plot using Adadelta

Such behavior can be attributed to the challenging as well as
the practicality level of the validation dataset used, leading
to higher variances in training. However, over 200 epochs,
the overall fluctuation of the validation process still tends to
follow the training of the model, which proves that the model
was not overfitting or underfitting.

IV. DISCUSSION

While accuracy is an important issue, what is as, or some-
times more important is the number of false negatives and
false positives, or in this instance, breast cancer image patches
classified as benign and vice versa. Tables 5 and 6 show the
confusion matrices of the first and second proposed network
architecture in this paper, respectively. Also, AUC-based per-
formance for breast cancer detection was also presented. By
using the Test Data Set as mentioned in Table 1, the results
were determined. Figure 8 presents the Receiver Operating
Characteristic (ROC) curve for all approaches. Table 7 sum-
marizes the AUC values obtained using these approaches.

In the task of determining whether a patient has breast
cancer or not, breast cancer image patches classified as benign

Optimizations Testing set Predicted: benign Predicted: malignant

Adam Actual: benign True Neg.: 36553 False Pos.: 3380
Actual: malignant False Neg.: 4481 True Pos.: 11091

Ad̄aelta Actual: benign True Neg.: 36820 False Pos.: 3113
Actual: malignant False Neg.: 4438 True Pos.: 11134

TABLE V
CONFUSION MATRIX OF THE FIRST MODEL IN OUR WORK

Optimizations Testing set Predicted: benign Predicted: malignant

Adam Actual: benign True Neg.: 36415 False Pos.: 3518
Actual: malignant False Neg.: 4289 True Pos.: 11283

Ad̄aelta Actual: benign True Neg.: 36737 False Pos.: 3196
Actual: malignant False Neg.: 4143 True Pos.: 11429

TABLE VI
CONFUSION MATRIX OF THE SECOND MODEL IN OUR WORK

Methodology AUC
Existing Benchmark [13] 0.935
Existing Benchmark [26] 0.902

First architecture Adam 0.911
Adadelta 0.920

Second architecture Adam 0.914
Adadelta 0.922

TABLE VII
SUMMARY TABLE FOR AUC

(false negative) should be far more concerned than benign
image patches classified as malignant (false positive). A false
negative would mean not warning about breast cancer when
in fact it is the case of cancer which leads to health problems
due to no precaution. A false positive means cases would
take precautions even if they don’t really need to. Therefore,
through the comparison of the confusion matrices, the second
proposed model and the Adadelta optimization algorithm
emerged as the most suitable choice.
As can be seen in Figure 8 and Table 7, there is a noticeable
difference in performance when Adadelta optimization was
used instead of Adam optimization technique. The effect was
outperformed roughly 1% based on AUC results. Also, the
AUC value obtained from the chosen model was 0.922 which
significantly outperforms the existing benchmark in [26] and
almost identical to the result obtained in [13].
However, the model in [13] has up to 458498 parameters,
which means 11.4 times larger than the 40174 parameters
of the model proposed in this paper. It is the huge number
of parameters that is one of the main reasons leading to
the hardware implementation barrier for deep CNN network
models.
As mention earlier, the proposed model in this paper was
built with the proper size to meet the ability to deploy in
hardware, and it would be flexible enough for changing some
layers or for retraining purposes when there is a change
in data input. The proposed convolutional neuron network
hardware architecture was created using a high-level synthesis
(HLS) tool named LeFlow [32]. This tool uses Google’s
XLA compiler which emits LLVM [33] code directly from
a Tensorflow specification. This LLVM code can then be
used with a high-level synthesis tool such as LegUp [34]

Figure 6. Our second proposed classification model traning plot using
Adam.
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Fig. 6. Our second proposed classification model traning plot using Adam

Fig. 7. Our second proposed classification model traning plot using Adadelta

Such behavior can be attributed to the challenging as well as
the practicality level of the validation dataset used, leading
to higher variances in training. However, over 200 epochs,
the overall fluctuation of the validation process still tends to
follow the training of the model, which proves that the model
was not overfitting or underfitting.

IV. DISCUSSION

While accuracy is an important issue, what is as, or some-
times more important is the number of false negatives and
false positives, or in this instance, breast cancer image patches
classified as benign and vice versa. Tables 5 and 6 show the
confusion matrices of the first and second proposed network
architecture in this paper, respectively. Also, AUC-based per-
formance for breast cancer detection was also presented. By
using the Test Data Set as mentioned in Table 1, the results
were determined. Figure 8 presents the Receiver Operating
Characteristic (ROC) curve for all approaches. Table 7 sum-
marizes the AUC values obtained using these approaches.

In the task of determining whether a patient has breast
cancer or not, breast cancer image patches classified as benign

Optimizations Testing set Predicted: benign Predicted: malignant

Adam Actual: benign True Neg.: 36553 False Pos.: 3380
Actual: malignant False Neg.: 4481 True Pos.: 11091

Ad̄aelta Actual: benign True Neg.: 36820 False Pos.: 3113
Actual: malignant False Neg.: 4438 True Pos.: 11134

TABLE V
CONFUSION MATRIX OF THE FIRST MODEL IN OUR WORK

Optimizations Testing set Predicted: benign Predicted: malignant

Adam Actual: benign True Neg.: 36415 False Pos.: 3518
Actual: malignant False Neg.: 4289 True Pos.: 11283

Ad̄aelta Actual: benign True Neg.: 36737 False Pos.: 3196
Actual: malignant False Neg.: 4143 True Pos.: 11429

TABLE VI
CONFUSION MATRIX OF THE SECOND MODEL IN OUR WORK

Methodology AUC
Existing Benchmark [13] 0.935
Existing Benchmark [26] 0.902

First architecture Adam 0.911
Adadelta 0.920

Second architecture Adam 0.914
Adadelta 0.922

TABLE VII
SUMMARY TABLE FOR AUC

(false negative) should be far more concerned than benign
image patches classified as malignant (false positive). A false
negative would mean not warning about breast cancer when
in fact it is the case of cancer which leads to health problems
due to no precaution. A false positive means cases would
take precautions even if they don’t really need to. Therefore,
through the comparison of the confusion matrices, the second
proposed model and the Adadelta optimization algorithm
emerged as the most suitable choice.
As can be seen in Figure 8 and Table 7, there is a noticeable
difference in performance when Adadelta optimization was
used instead of Adam optimization technique. The effect was
outperformed roughly 1% based on AUC results. Also, the
AUC value obtained from the chosen model was 0.922 which
significantly outperforms the existing benchmark in [26] and
almost identical to the result obtained in [13].
However, the model in [13] has up to 458498 parameters,
which means 11.4 times larger than the 40174 parameters
of the model proposed in this paper. It is the huge number
of parameters that is one of the main reasons leading to
the hardware implementation barrier for deep CNN network
models.
As mention earlier, the proposed model in this paper was
built with the proper size to meet the ability to deploy in
hardware, and it would be flexible enough for changing some
layers or for retraining purposes when there is a change
in data input. The proposed convolutional neuron network
hardware architecture was created using a high-level synthesis
(HLS) tool named LeFlow [32]. This tool uses Google’s
XLA compiler which emits LLVM [33] code directly from
a Tensorflow specification. This LLVM code can then be
used with a high-level synthesis tool such as LegUp [34]

Figure 7. Our second proposed classification model traning plot using
Adadelta.

The consistency of the validation is often more unpre-
dictable than the smooth progression of the consistency
of the training. Such behavior can be attributed to
the challenging as well as the practicality level of the
validation dataset used, leading to higher variances in
training. However, over 200 epochs, the overall fluctu-
ation of the validation process still tends to follow the
training of the model, which proves that the model was
not overfitting or underfitting.

4 Discussion

While accuracy is an important issue, what is as, or
sometimes more important is the number of false neg-
atives and false positives, or in this instance, breast can-
cer image patches classified as benign and vice versa.
Tables V and VI show the confusion matrices of the
first and second proposed network architecture in this
paper, respectively. Also, AUC-based performance for
breast cancer detection was also presented. By using the
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Table V
Confusion Matrix of the First Model in Our Work

Optimizations Testing set Predicted: benign Predicted: malignant

Adam
Actual: benign True Neg.: 36553 False Pos.: 3380

Actual: malignant False Neg.: 4481 True Pos.: 11091

Ad̄aelta
Actual: benign True Neg.: 36820 False Pos.: 3113

Actual: malignant False Neg.: 4438 True Pos.: 11134

Table VI
Confusion Matrix of the Second Model in Our Work

Optimizations Testing set Predicted: benign Predicted: malignant

Adam
Actual: benign True Neg.: 36415 False Pos.: 3518

Actual: malignant False Neg.: 4289 True Pos.: 11283

Ad̄aelta
Actual: benign True Neg.: 36737 False Pos.: 3196

Actual: malignant False Neg.: 4143 True Pos.: 11429

Table VII
Summary Table for AUC

Methodology AUC
Existing Benchmark [13] 0.935
Existing Benchmark [26] 0.902

First architecture
Adam 0.911

Adadelta 0.920

Second architecture
Adam 0.914

Adadelta 0.922
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Fig. 8. ROC Curves for all approaches

to automatically generate Verilog code, then subsequently
mapped using Quartus to an Altera Cyclone II FPGA to
estimate the resource usage. The number of resources used
was statistically and summarized in Table 8.

Resource Altera – Cyclone II
Combination Logic (elements) 34 562

Register 22 677
Other resource None

TABLE VIII
PROPOSED CONVOLUTIONAL NEURAL NETWORK PERFORMANCE

The hardware structure was also verified in real-time con-
dition using Modelsim to simulate in 50 MHz frequency
maximum to strongly demonstrate the design potential. From
this point, if the proposed model in this paper is developed to
its fullest ability, it may potentially detect cancer risk factors -
detection hardware or process that can operate parallel to the
CPU.

V. CONCLUSIONS AND FUTURE WORKS

In this work, a novel model of convolutional neural network
was used to classify breast histology images for cancer risk
factors as negative or positive. An overall AUC (Area under
the ROC Curve) value of 0.922 was achieved on a set of 55505
images (of which 15572 images belong to IDC). According to
the results, CNN was proven to detect breast cancer effectively.
Also, the hardware structure of the proposed model was
successfully synthesized and verified.
A lot of future research would be available. The highest
priority would be obtaining a much larger data set as well as
more consistency and working with the network parameters
to maximize precision and eliminate false negatives. For
some other enhancements, there are a variety of embedding
strategies that can be attempted and it is worth looking deeper
into the max-pooling process.
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Figure 8. ROC Curves for all approaches.

Test Data Set as mentioned in Table I, the results were
determined. Figure 8 presents the Receiver Operating
Characteristic (ROC) curve for all approaches. Table
VII summarizes the AUC values obtained using these
approaches.

In the task of determining whether a patient has
breast cancer or not, breast cancer image patches clas-
sified as benign (false negative) should be far more
concerned than benign image patches classified as ma-
lignant (false positive). A false negative would mean
not warning about breast cancer when in fact it is the
case of cancer which leads to health problems due to

Table VIII
Proposed Convolutional Neural Network Performance

Resource Altera - Cyclone II
Combination Logic (elements) 34 562

Register 22 677
Other resource None

no precaution. A false positive means cases would take
precautions even if they don’t really need to. Therefore,
through the comparison of the confusion matrices, the
second proposed model and the Adadelta optimization
algorithm emerged as the most suitable choice.

As can be seen in Figure 8 and Table VII, there is
a noticeable difference in performance when Adadelta
optimization was used instead of Adam optimization
technique. The effect was outperformed roughly 1%
based on AUC results. Also, the AUC value obtained
from the chosen model was 0.922 which significantly
outperforms the existing benchmark in [26] and almost
identical to the result obtained in [13].

However, the model in [13] has up to 458498 param-
eters, which means 11.4 times larger than the 40174
parameters of the model proposed in this paper. It is
the huge number of parameters that is one of the main
reasons leading to the hardware implementation barrier
for deep CNN network models.

As mention earlier, the proposed model in this paper
was built with the proper size to meet the ability to
deploy in hardware, and it would be flexible enough
for changing some layers or for retraining purposes
when there is a change in data input. The proposed con-
volutional neuron network hardware architecture was
created using a high-level synthesis (HLS) tool named
LeFlow [32]. This tool uses Google’s XLA compiler
which emits LLVM [33] code directly from a Tensor-
flow specification. This LLVM code can then be used
with a high-level synthesis tool such as LegUp [34] to
automatically generate Verilog code, then subsequently
mapped using Quartus to an Altera Cyclone II FPGA to
estimate the resource usage. The number of resources
used was statistically and summarized in Table VIII.
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The hardware structure was also verified in real-time
condition using Modelsim to simulate in 50 MHz fre-
quency maximum to strongly demonstrate the design
potential. From this point, if the proposed model in this
paper is developed to its fullest ability, it may poten-
tially detect cancer risk factors - detection hardware or
process that can operate parallel to the CPU.

5 Conclusions and Future Works

In this work, a novel model of convolutional neural
network was used to classify breast histology images
for cancer risk factors as negative or positive. An overall
AUC (Area under the ROC Curve) value of 0.922 was
achieved on a set of 55505 images (of which 15572
images belong to IDC). According to the results, CNN
was proven to detect breast cancer effectively. Also,
the hardware structure of the proposed model was
successfully synthesized and verified.

A lot of future research would be available. The
highest priority would be obtaining a much larger data
set as well as more consistency and working with the
network parameters to maximize precision and elim-
inate false negatives. For some other enhancements,
there are a variety of embedding strategies that can
be attempted and it is worth looking deeper into the
max-pooling process.
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