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Abstract– Recent studies have pointed out that Chaotic Pulse Position Modulation (CPPM) is a very promising method for
improving privacy and security in chaos-based digital communication. Especially, CPPM provides better performance than
other chaotic modulation methods in noise- and distortion-affected environments. In this paper we present our development
of a robust method named M-ary CPPM which is based on the combination of the conventional CPPM and multi-symbol
modulation in order to improve the transmission bit rate. The M-ary CPPM signal has a pulse train format in which each
pulse is a symbol and the chaotically-varied inter-pulse time interval conveys the binary information of k bits (M = 2k).
The analysis and development of modulation and demodulation schemes are presented in detail. Theoretical evaluation of
Bit-Error-Rate (BER) performance in the presence of additive white Gaussian noise (AWGN) and the use of AWGN filtering
is also provided. The chaotic behavior of the M-ary CPPM is investigated with the variation of modulation parameters.
In order to verify the performance of the proposed schemes, numerical simulations were carried out in Simulink and
comparison between simulation and theoretical results is reported.

Keywords– chaotic modulation, chaotic pulse position modulation, CPPM, M-ary modulation, chaos-based digital commu-
nication, ultra-wide band, tent map.

1 Introduction

In recent years, chaotic signals and chaotic systems
have been investigated in various research fields such as
physics, biology, chemistry, and engineering [1]. Chaos-
based digital communication has received significant
attention [2] due to its potential in improving the
privacy and security of information [3]. Many chaos-
based modulation methods have been proposed us-
ing different modulation schemes [3, 4]. Due to their
type of demodulation, these schemes can be classified
as coherent or non-coherent detection. Each method
has its own advantages and disadvantages but most
of them use the chaotic carrier created by a chaotic
dynamical system to convey information, so they are
sensitive to distortion and noise that can strongly affect
the synchronization [5–7] and cause errors in recovering
information.

A robust modulation method called Chaotic Pulse
Position Modulation was proposed in [8, 9] to overcome
the major drawbacks mentioned above. Since binary
information is only modulated onto the inter-pulse
intervals, not the phase, frequency or amplitude of the
pulses, the impact of distortion and noise on the pulse
shape does not seriously affect the synchronization pro-
cess. In CPPM, only one bit is decoded at the moment of
a received pulse, that leads to low transmission rate. To
improve the bit rate, we propose a modified modulation

method which is the combination of the conventional
CPPM and multi-symbol modulation, named M-ary
CPPM. The proposed method uses each chaotically-
varied inter-pulse interval as a carrier to convey the
binary information of k bits, where each pulse is con-
sidered as a symbol. It means that a volume of k
bits is decoded for each instance of received pulses,
thus the bit rate will increase significantly. Like the
CPPM method, the M-ary CPPM also performs well
in distortion- and noise-affected channels and achieves
high levels of information privacy as well as automatic
synchronization without the need of specific hand-
shaking protocols [10]. Especially, this method is effec-
tive for direct transmission of ultra-narrow and low-
power pulses and therefore suitable for ultra-wide band
(UWB) communication [11, 12].

Tent map is a discrete-time and one-dimension non-
linear function with the piecewise-linear I/O charac-
teristic curve [13], used for generating chaotic values
which look like true random numbers [14]. In chaos-
based communications, the tent map is proposed for
application in chaotic modulation [15] with such ad-
vantages as the simplified calculation and the robust
regimes of chaos generation for rather broad ranges of
modulations parameters. Therefore, the utilization of
tent map for the M-ary CPPM is investigated with the
variation of modulation parameters. This is very impor-
tant for the design to guarantee the chaotic behavior of
the method.
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Figure 1. M-ary CPPM signal.
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Figure 2. Time interval ∆Tn with M symbols.

The rest of this paper is organized as follows. The
principle of the M-ary CPPM is described in Section 2.
Section 3 presents our analysis of the schemes for
modulator and demodulator in detail. In Section 4, BER
performance of the method is evaluated theoretically
based on a recursive algorithm. Section 5 investigates
the chaotic behavior of the M-ary CPPM with tent map.
In order to verify the performance of the proposed
schemes, a numerical simulation is implemented in
Simulink and its results in the time domain as well
as the resulted BER performance are presented in Sec-
tion 6. Finally, our conclusions are given in Section 7.

2 Description

In this section, we describe the principles of the M-ary
CPPM method. M-ary CPPM signal is considered as a
chaotic pulse train which is illustrated in Figure 1 and
can be expressed as follows:

S(t)M-ary CPPM =
∞

∑
n=0

A[u(t− tn)− u(t− tn − ∆τ)], (1)

where u(t) is the unit-step function, A and ∆τ are the
amplitude and width of the pulses, respectively. The nth

pulse is generated at time tn = t0 + ∑n
n=0 ∆Tn with ∆Tn

being the time interval between the n-th and (n− 1)-th
pulses. This interval is iteratively produced by a nonlin-
ear transformation F(∆Tn−1). By choosing a nonlinear
function F(·) with appropriate modulation parameters,
∆Tn will vary in a chaotic way and has a random-like
behavior. The interval ∆Tn with M symbols is shown
in Figure 2.
In the M-ary CPPM modulator, the binary information

is modulated onto inter-pulse interval as follows:

∆Tn = F(∆Tn−1) + d + mSn, (2)

where Sn is the reference value of the nth symbol. The
source data is divided into k-bit groups which are then
mapped to equivalent symbols. The value of Sn varies
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Figure 3. Scheme for the M-ary CPPM modulator.

from 0 to M− 1 with M being the number of symbols
(M = 2k). The parameter d is a constant time delay
that is inserted to guarantee the synchronization of
the system. The parameter m is the modulation depth
and it directly affects the bit error rate as well as the
optimization of the transmission speed.

In the M-ary CPPM demodulator, the parameters d,
m and F(·) are the same as in the modulator. Each re-
ceived pulse carries information of a symbol and guides
the synchronization process. When the synchronization
state of the system is maintained, suppose that the
demodulator receives the interval ∆Tn−1 correctly, it
easily computes Sn by the following equation:

Sn =
∆Tn − F(∆Tn−1)− d

m
. (3)

From the value of Sn, the nth symbol is found and re-
mapped to k bits, thus the binary data is recovered.

Similar to the CPPM, the M-ary CPPM method also
has a chaotic pulse train format, thus its system au-
tomatically acquires synchronization as in a CPPM-
based system. The demodulator only needs to correctly
detect two consecutive pulses in order to re-establish
the synchronization state.

3 Modulator and Demodulator

In this section, the operation of an M-ary CPPM-based
system is examined through the design and analysis of
the schemes for modulator and demodulator.

3.1 Modulator
The scheme for an M-ary CPPM modulator is shown

in Figure 3 and its signals are illustrated in Figure 4.
The Counter operates in free running mode to pro-
duce a linearly increasing value C(t) = Kt at its
output, where the time t is the duration from the reset
time and K is the count step (the difference value
between two consecutive samples). At the time tn−1,
the counter is reset, i.e., C(tn−1) = 0, and then it starts
to count immediately. The output signal C(t) is put
into a Comparator to compare with a threshold value
F(Cn−1) which is produced at the output of the Chaotic
Threshold Generator F(·). Here, Cn−1 is the output
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Figure 4. Chaotic signals of the M-ary CPPM modulator.

value of the counter which was acquired and saved
by a Sample and Hold (S+H) block from the previous
iteration before the reset time. When the output of
the counter C(t) reaches the threshold value F(Cn−1),
the output of the comparator triggers a Rectangular
Pulse Generator to produce a clock pulse at the time
t
′
n = tn−1 + F(Cn−1)/K. Then, this clock pulse triggers

a Binary Data Source to map a k-bit number to a new
symbol Sn at the M-ary Symbol Mapping block. At the
Time Delay Modulator, depending on the input value
Sn, the clock pulse will be delayed by a time duration
d + mSn. Therefore, the modulated pulse is generated
at the time tn = t

′
n + d+mSn. After that, the modulated

pulse will trigger the S+H block and reset the counter.
A new iteration starts and the next symbol will be
modulated in the same way. The reset pulses are the
same pulses of the output M-ary CPPM signal. From
the above equations, the time interval between the nth

and (n− 1)th pulses is determined by

∆Tn = tn − tn−1 =
F(Cn−1)

K
+ d + mSn

=
F(K∆Tn−1)

K
+ d + mSn (4)

With K, d and m being constants, Eq. (4) points out that
the time interval ∆Tn depends on the reference value
Sn and the chaotic threshold F(K∆Tn−1).

3.2 Demodulator

The scheme and signals of the M-ary CPPM de-
modulator are shown in Figures 5 and 6, respectively.
The Counter, the Chaotic Threshold Generator F(·),
the S+H and the Rectangular Pulse Generator blocks
are the same as in the modulator. At the input of
the demodulator, the M-ary CPPM signal is put into
a Threshold Detector. When this signal exceeds the
threshold value, a rectangular pulse is generated by the
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Figure 5. Scheme of the M-ary CPPM Demodulator.
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Figure 6. Chaotic signals of the M-ary CPPM demodulator.

Rectangular Pulse Generator. This pulse at first triggers
the block S+H 2 to save the value F(Cn−1) from the
F(·) output, then triggers the block S+H 1 to store the
value of the counter Cn at that time, and then resets
the counter. The two values saved by the S+H blocks
are put into a Subtractor to produce a difference value
at the output. From Eq. (4), it is determined by

Cn − F(Cn−1) = K∆Tn − F(Cn−1) = K(d + mSn). (5)

After that, the difference value is put into a Symbol
Detector to decode the reference value Sn of the symbol
as follows:

Sn =
Cn−F(Cn−1)

K − d
m

. (6)

Depending on the value Sn, the nth symbol is identified
and k bits are recovered at the output of the M-ary
Symbol Re-mapping block.

4 Theoretical Evaluation of BER
Performance

An analytical method to evaluate the CPPM error prob-
ability was reported in [8], and it is used for estimating
the BER of the M-ary CPPM in this research. For
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simplicity, let’s consider the input signal of the M-
ary CPPM demodulator, y(t), as the filtered signal of
the sum of the transmitted M-ary CPPM signal and
the AWGN. In the threshold detector, when the signal
y(t) exceeds a threshold value H, the rectangular pulse
generator is triggered to generate a rectangular pulse,
p(t), with an amplitude A at its output. This pulse will
be used to recover the original data bits. Firstly, we
consider a simple case with the Binary CPPM (M = 2).
In Figure 7, the detection duration with the width m
is divided into the “0” window and the “1” window,
both have a same width, where m is the modulation
depth and τ is the fundamental sampling period of
the system. Assume that the demodulator maintains
the synchronization at all times. Bit error will occur
when the pulse p(t) falls into an unexpected window.
It means that the pulse p(t) of a transmitted bit “0”
falls into the “1” window and vice versa. From [8], the
evaluation result of the BER is determined by

BERBinary CPPM = p1P0/1 + (1− p1)P1/0

= p1

[
1−

[
1
2

(
1 + erf

(
h
√

Eb/No

))] m
2τ

]

+ (1− p1)×
[[

1
2

(
1 + erf

(
h
√

Eb/No

))] m
2τ−1

×1
2

erfc
(
(1− h)

√
Eb/No

)]
,

(7)

where P0/1 and P1/0 are the error probabilities that a
“0” is detected when an “1” is transmitted and vice
versa; p1 is the proportion of “1” bits in the entire data
stream; and h = H

A . In the case that both p1 and h are
equal to 1

2 , the expression for the BER can be written
in a shorter form as

BERBinary CPPM =
1
2

[
1− erf

(
1
2

√
Eb/No

)
×
[

1
2

(
1 + erf

(
1
2

√
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))] m
2τ−1

]
.

(8)

Secondly, from the above results, we consider the gen-
eral case for BER evaluation of the M-ary CPPM (k bits)
with the detection duration illustrated in Figure 8. The
pulse p(t) can appear in the detection duration with
the width Tk-bit = (M− 1)m. This duration is divided
into two windows having the same width of Tk-bit/2.
In these, the left window contains symbols with the
“0” prefix and the right one contains symbols with the
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Figure 8. Detection windows of the M-ary CPPM.

“1” prefix. Therefore, the error probability of the first
detected bit, P1st-bit, is also the error probability of the
pulse in the detection duration Tk-bit. From Eq. (8), we
have

P1st-bit =Tk-bit =
1
2

[
1− erf

(
1
2

√
Eb/No

)

×
[

1
2

(
1 + erf

(
1
2

√
Eb/No

))] Tk-bit
2τ −1

 .
(9)

In case the first bit is recovered correctly, the M-ary
CPPM error probability is then the error probability
of recovering the rest (k − 1) bits with the detection
duration of T(k−1)-bit = (M − 1)m/2. Therefore, the
M-ary CPPM error probability for transmitting a k-bit
sequence can be inferred from the following recursive
equation:

BERM-ary CPPM ≡ BERk-bit

= P1st-bit + (1− P1st-bit)BER(k−1)-bit

= PTk-bit + (1− PTk-bit)BER(k−1)-bit

= BER(k−1)-bit +PTk-bit(1− BER(k−1)-bit), (10)

with the initial equation being

BER4-ary CPPM ≡ BER2-bit

= BER1-bit +PT2-bit(1− BER1-bit), (11)

where BER1-bit ≡ BERBinary CPPM is determined by
Eq. (8), PT2-bit is determined by Eq. (9) with the detection
duration T2-bit = 3m.

BER evaluation results of 2-, 4-, 8- and 16-ary CPPM
according to Eq. (10) and Eq. (11) are shown in Fig-
ure 13 (see the blue lines), in which the modulation
depth is chosen by m = 10τ.

5 M-ary CPPM with Tent Map

The conventional tent map is iteratively generated
through a transformation function F(·) : (0, 1)→ (0, 1)
as given by

xn+1 = F(xn) = Fn(x0)

=

{
axn, 0 < xn ≤ 0.5
a(1− xn), 0.5 < xn < 1

(12)

In this equation, n represents the number of iterations,
x0 is the initial value, xn is the output value at the n-th
step, and parameter a controls the state of the map.
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Figure 9. Bifurcation diagram of the M-ary CPPM tent map with
variations of parameters a and δ (delta).

In the M-ary CPPM, the time interval between the n-
th and (n− 1)-th pulses is expressed by Eq. (4) which
can be converted to the following:

∆Tn =
F(K∆Tn−1)

K
+ d + mSn (13)

or
Xn = F(Xn−1) + d′ + m′Sn (14)

where Xn = K∆Tn, Xn−1 = K∆Tn−1, d′ = Kd, and m′ =
Km. From Eq. (12) and Eq. (14), the tent map for the M-
ary CPPM, called the M-ary CPPM tent map, is derived
as

Xn+1 = F(Xn)

=

{
aXn + d′ + m′Sn, 0 < Xn ≤ 0.5
a(1− Xn) + d′ + m′Sn, 0.5 < Xn < 1

(15)

In the modulation process, the value of the symbol Sn+1
varies from 0 to M− 1, thus the value of the parameter
δ = d′ + m′Sn varies from d′ to d′ + m′(M − 1). This
variation of δ makes the chaotic behavior of the M-
ary CPPM tent map dependent not only on the control
parameter a but also on the parameters d′, m′ and M.
Figure 9 presents the bifurcation diagram of the M-ary
CPPM tent map, which clearly shows the dependence
of the chaotic behavior on the parameters a and δ. In
the figure, δ = 0 is the case of the conventional tent
map. The more the value of δ increases, the smaller the
chaotic area becomes, and when δ ≥ 0.5 the chaotic area
disappears. In practice, the parameters d′, m′ and M
are determined first based on design specifications such
as bit rate and BER. After that, the control parameter
a is chosen to guarantee the chaotic behavior of the
system. For example, suppose we have a 4-ary CPPM
tent map (M = 4) with given parameters d′ = 0.075 and
m′ = 0.075, the maximum value of δ is then determined
by

δmax = d′ + m′(M− 1) = 0.075 + 0.075× 3 = 0.3 (16)
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Figure 10. The 4-ary CPPM tent map with parameters a = 1.3,
x0 = 0.1, d′ = 0.075, and m′ = 0.075. (a) and (b): reference values
of the symbols and output values of the map, respectively, for 100
iterations; (c): attractor diagram with four fixed points.

From the bifurcation diagram, it is drawn that the con-
trol parameter a must be chosen such that 1 < a < 1.4
in order to obtain a chaotic behavior for the system.

Simulation results for the above-mentioned 4-ary
CPPM tent map in the first 100 iterations with X0 = 0.1
and a = 1.3 are shown in Figure 10. It is shown that the
output values of the map (Figure 10b) vary chaotically
but also convey the information of the symbol values
(presented in Figure 10a). Besides, the chaotic behavior
of the map is displayed by the attractor diagram in
Figure 10c that have four fixed points (red markers)
corresponding to four values of the symbols.

6 Numerical Simulation And Results

In order to verify the performance of the presented M-
ary CPPM modulation and demodulation schemes, a
numerical simulation of the system with an AWGN
channel and without parameter mismatch is imple-
mented in Simulink. It means that a same set of values
for the modulation parameters is used in both modu-
lator and demodulator. Simulations are performed for
M = 2, 4, 8, and 16. The values of other modulation pa-
rameters are chosen as follows: K = 0.002/τ, d = 10τ,
m = 10τ, and ∆T0 = 50τ, with τ being the fundamental
sampling period of the system. From Eq. (14) and
Figure 9, the parameters of the M-ary CPPM tent map
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Table I
Transmission Rate of 2, 4, 8, 16-ary CPPM System Per 106

Fundamental Sample Time

Number of Number of Number of
symbols M transmitted pulses transmitted bits

2 3749 3749
4 3387 6774
8 3328 9984

16 3284 13136

are then derived as:

X0 = K∆T0 = (
0.002

τ
× 50τ) = 0.1

d′ = Kd = (
0.002

τ
× 10τ) = 0.02

m′ = Km = (
0.002

τ
× 10τ) = 0.02

Therefore,

δmax(M = 2, 4, 8, 16) = δmax(M = 16)
= d′+m′(16− 1) = 0.02 + 0.02× 15 = 0.32

(17)

Then, the value for a is selected as a = 1.3 to guarantee
the chaotic behavior of the simulated system for all four
cases of M (2, 4, 8, and 16).

6.1 Chaotic Signals in Time Domain

An 8-ary CPPM system with an AWGN channel
is simulated, in which Eb/No = 20 dB to ensure a
good transmission line. Simulated chaotic signals in the
8-ary CPPM modulator and demodulator, within the
duration from the starting time 0 to 5000τ, are shown
in Figure 11 and Figure 12, respectively. We can observe
that the time interval ∆Tn varies chaotically in the range
between 150τ and 500τ. The widths of the reset, clock
and M-ary CPPM pulses are the same and equal to 20τ.
At each time instant, Sn receives only one of the eight
values, 0, 1, 2, 3, 4, 5, 6 or 7, corresponding to one of
the eight symbols, 000, 001, 010, 011, 100, 101, 110 or
111, respectively.

When the synchronization state of the system is
maintained, the signals recovered by the demodulator
exactly match their corresponding signals in the mod-
ulator. It verifies that the proposed schemes for the M-
ary CPPM method are suitable and feasible.

6.2 Improvement of Bit-Rate Performance

Table I compares simulation results of transmission
rates between the 2-, 4-, 8- and 16-ary CPPM schemes
with a time duration of 106τ and Eb/No = 20 dB for
all simulations. These results show that the numbers of
transmitted pulses (i.e., the symbol rates) of the 4-, 8-
and 16-ary CPPM schemes are only slightly lower than
that of the binary CPPM scheme, but their numbers
of transmitted bits (i.e., the bit rates) are much higher
than the binary CPPM bit rate. That means a signifi-
cant improvement in bit-rate performance of the M-ary
CPPM compared to the conventional CPPM. According
to these results, if the processing speed of modulator

Figure 11. Time-domain signals of the 8-ary modulator. (a): the
reference signal Sn; (b): output of the counter C(t); (c) and (d): input
and output of the chaotic threshold generator F(·), respectively; (e):
clock pulses (f): the output 8-ary CPPM signal.

Figure 12. Time-domain signals of the 8-ary demodulator. (a): the
input 8-ary CPPM signal; (b) and (c): outputs of the blocks S+H 2 and
S+H 1, respectively; (d): output signal from the counter; (e): recovered
signal Sn.

and demodulator circuits is 1 MHz (106 pulses per
second), for example, then the corresponding bit rates
for M = 2, 4, 8, and 16 are 3.749 Kbps, 6.774 Kbps,
9.984 Kbps, and 13.136 Kbps, respectively.
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Figure 13. Theoretical vs. simulated BER results for the 2-, 4-, 8-,
and 16-ary CPPM systems.

6.3 BER Performance

The BER performance obtained from simulations of
the 2-, 4-, 8-, and 16-ary CPPM systems with a fil-
tered AWGN channel is presented in Figure 13 (red
lines). This BER is calculated as the number of error
bits divided by the total number of transmitted bits
in a time duration of 108τ. Similar to the theoretical
curves, there are only slight differences between the
simulation curves of the 2-, 4-, 8-, and 16-ary CPPM
systems. Besides, with a same value of the fraction
Eb/No, the simulation BER values are slightly higher
than their corresponding theoretical ones. It can be
explained that the cause of these differences is the loss
of synchronization leading to bit errors. In theoretical
evaluation, we suppose that the synchronization state
is maintained at all times, thus pulse errors leading to
bit errors can only occur due to noise and filtering.
However, in the simulations, the effects of noise and
filtering may cause not only pulse errors but also the
loss of synchronization which leads to bit errors.

It can be observed from simulation results that, when
the number of symbols, M, increases, the bit rate is im-
proved significantly but the BER just slightly increases.
This is a great advantage of the proposed M-ary CPPM
method.

7 Conclusions

The paper has presented our development of the M-
ary Chaotic Pulse Position Modulation technique aimed
at improving the bit rate in secure communication
systems. The proposed schemes for the modulator and
demodulator of the system are designed and evaluated
using both theoretical evaluation and numerical simu-
lation in terms of time-domain signals and BER perfor-
mance. In addition, the M-ary CPPM tent map is in-
vestigated considering the variation of the modulation
parameters versus the chaotic behavior of the system.
It can be seen from presented results that the M-ary
CPPM not only inherits valuable features of the CPPM-

based methods such as strong security and privacy due
to its chaotic behavior, good performance in noise- and
distortion-affected environments; but can also achieve a
much higher bit rate with only a slightly different BER
performance as compared to the conventional CPPM.
This is the most important point to make the M-ary
CPPM become a strong candidate for applications of
chaos-based digital communication, especially in UWB
and high security-required systems.
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