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Abstract– Integrals on [0, ∞) where the integrand is of the form Qn(a
√

x)p(x), where Q is the Gaussian Q function, p(·)
a Gamma PDF, n a positive integer and a > 0; or of the form erfn(ax + b) xr exp(−c2x2 + 2dx), where erf(x) is the error
function, with integers r ≥ 0, n > 0, arise in performance modelling of communication and machine learning systems.
Such integrals cannot be evaluated analytically in general, but they are reducible to a set of key integrals whose integrand
is erfn(ax + b)N(x; m, s) where N() is a Gaussian PDF with mean m and variance s. Seeking an efficient and accurate
evaluation method, we develop a new 4-term exponential quadratic approximator (EQA) for the error function that includes
both linear and quadratic terms in its exponents. The EQA minimises a sum-of-squares cost function with two “spline-type”
constraints, i.e., constraints on the function value and its first derivative. This constrained optimisation problem is reduced
to an unconstrained one by inverting a 4-D linear system, then solved by gradient descent. The resulting approximator has
a maximum absolute error of 1.65 × 10−4 on the real line, and outperforms many other exponential sum approximators for
erf(x) on x ∈ [0, 1.5] and for Q(x) on x ∈ [0, 2]. Moreover, due to its functional form, the EQA leads to an analytical formula
for the set of key integrals, which, in the n = 1 case, is accurate to 3 to 4 significant figures while being orders of magnitude
more efficient than Monte Carlo integration. The EQA can equally be used to obtain closed forms for the average symbol
error probability of various modulation schemes on Rayleigh fading channels.

Keywords– Approximation methods, Error function, Error function integral, Error probability, Exponential approximation,
Exponential quadratic approximation, Gradient descent, Q-function, Rayleigh channel, Symbolic algebra.

1 Introduction

1.1 Background & Motivation
The error function erf(x) and the closely related Q(x)

function, giving the tail probability of the Gaussian
distribution, satisfy the functional relationships Q(x) =
1
2 (1 − erf(x/

√
2)) and erf(x) = 1 − 2Q(x

√
2). These

functions have been extensively studied as they arise
in fields of science and technology that involve sta-
tistical modelling of uncertainty under Gaussian noise
assumptions, and, not least, in the performance analysis
of communication systems. Neither of these functions
has a closed form in terms of elementary functions.
Numerical library routines for the error function have
been based on minimax approximations, which min-
imize the maximum error, for absolute error bounds
dating back to 1955 [1]. Clenshaw [2] presented a pair
of rational Chebyshev expansions, one for |x| ≤ 4 and
one for x > 4, accurate to 20 places in 1962. Rational
Chebyshev approximations for optimising a relative
error bound, accurate to 6 × 10−19, were developed in
1969 by Cody [3]. Schonfelder details Chebyshev expan-
sions for erf(x) and Q(x), and their complements, that
are accurate to 30 decimal places and were used in the
1978 Numerical Algorithms Group (NAG) library [4],
which form the basis for various numerical software
packages. More recent approaches are also based on
power series expansions, rather than rational expan-
sions, which can be used to produce approximations

to arbitrary precision by bounding the truncation error.
While numerical libraries include highly accurate

implementations of the error function, there is a need
in many applications to approximate these functions
in an analytical form. This is the case where functional
dependency needs to be studied (for tuning and optimi-
sation), or as a component of a more complicated sys-
tem performance model. Series implementations often
need a large number of terms to achieve a desired accu-
racy. For instance, for a standard series implementation
(see later equation (6)), achieving a target precision
of 2−16 ≈ 1.5E − 5 in 32-bit arithmetic would require
hundreds of terms [5]. This is clearly not a practical
approach for obtaining an analytical expression, which
would itself include high-order factorial or combinato-
rial terms arising from the binomial expansion. There
is thus considerable interest in studying function-based
approximations for the error function and Q function,
which are extensively used in performance analysis of
communication systems; and consequently one finds an
extensive body of literature on this subject.

In this article, we focus on two main families of 1-
dimensional definite integrals on the non-negative real
line [0, ∞). The first of these is of the form:

Jn(a)
△
= EZ[Qn(a

√
z)] =

∫ ∞

0
Qn(a

√
z)pZ(z) dz, (1)

where a, n > 0, z is the instantaneous received SNR,
with probability density function (PDF) pZ(z), which
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is assumed to be a Gamma distribution. This type of
integral arises in computing the symbol error prob-
ability under various modulation schemes [6–9]. The
integral (1) can be expressed as infinite series via the
confluent hypergeometric function (CHGF). A change
of variables with z = x2 reexpresses the integral as:

Jn(a) =
∫ ∞

0
Qn(ax)pX(x) dx (2)

= 2−n
∫ ∞

0
erfcn(

ax√
2
)pX(x) dx,

where pX(x) is the PDF of x =
√

z and erfc(x) = 1 −
erf(x) is the complementary error function.

The second family of integrals is of the form:∫ ∞

0
erfn(ax + b) xr e−c2x2+2dx dx, n, a > 0, r, c ≥ 0. (3)

Integrals of this type arise in modelling certain adaptive
machine learning systems such as generative adver-
sarial networks [10]. They are reducible to explicit
functions involving exponentials and error functions
and integrals I(n)(a, b, m, s), for integers n > 0 and reals
a, s > 0, of the form:

I(n)(a, b, m, s)=
1√
2πs

∫ ∞

0
Φ(ax + b)n exp

[
−(x − m)2

2s

]
dx,

(4)
where Φ(x) is shorthand for erf(x), an abbreviation that
we will use throughout the paper, and which should
not be confused with the normal cumulative distri-
bution function. Clearly I(n)(a, b, m, s) =

∫ ∞
0 Φ(ax +

b)n N(x; m, s)dx where N(x; m, s) is a Gaussian PDF in x
with mean m and variance s. Since |Φ(x)| ≤ 1, it follows
that |I(n)(a, b, m, s)| ≤ 1. The integral evaluates to [11]:
Φ((b + ma)/

√
1 + 2a2s) if the range of integration is

extended to (−∞, ∞) in the special case n = 1.
When the PDF pZ(z) in (1) is a Gamma distribution,

(2) has a quadratic exponential argument (e.g., Rayleigh
and Maxwell cases). Hence (1) is also reducible to
explicit functions (exponentials and error functions)
and integrals of the form I(n)(a, b, m, s). So we can
view {I(n)(a, b, m, s)} as a set of key integrals on which
both (2) and (3) depend. Although in certain special
cases I(n)(a, b, m, s) can be evaluated analytically, these
integrals generally have no closed form solution, even
for n = 1, and particularly if b ̸= 0. The key in-
tegrals may be expressed as infinite series of closed-
form integrals via the series expansions for the error
function (5) and (6), but the subsequent expressions
often exhibit poor convergence and are not suitable for
efficient numerical computation. Similar observations
concerning a definite integral similar to (4) were made
by Fayed and Atiya [12], who obtained a series in
Hermite polynomials and Gamma functions, valid for
n = 1, m = 0, s = 1

2 and |a| < 1.
Practical approximations, that is ones having both

reasonable accuracy and computational cost, for the
error function, complementary error function and Q-
function have been dealt with in [13–15]. In terms
of functional approximations with a small number of
terms, which will be of interest here, Bao et al. [16]

distinguished two classes: (i) Mills’ ratio based forms;
(ii) sums of exponentials. (A third class of polynomial
forms is not suitable due to its complexity.) These ap-
proximations are presented in more detail in section 2.

Our approach to the evaluation of integrals of the
form (2) and (3) in this paper is by finding a practi-
cal approximation for the evaluation of the key inte-
grals (4). We seek a method that yields a closed form
(analytical) formula that is both computationally effi-
cient and accurate. Due to the form of their denomina-
tors, none of the Mills ratio approximations are suitable.
The same applies to rational-times-exponential approxi-
mations. None of these functional forms yields a closed-
form when substituted in (4). In contrast, sums of
exponential approximations yield combinations of ex-
ponentials and error functions when substituted in (4),
and are potential candidates. Such approximations are
useful for asymptotic performance models in communi-
cation systems because they accurately approximate the
large-argument behaviour of the Q and error functions.
However, as we will see, the existing approximations
based on sums of exponentials typically fail to model
accurately the medium and small argument behaviour
of these functions. We are thus led to consider modifica-
tions of sums of exponential functions that provide an
accurate approximation to Q(x) and erf(x) on the half
real line x ≥ 0 and, by extension, on the entire real line.

1.2 Structure and Contributions

Following a review of known approximations to Q(x)
and erf(x) in section 2, we consider, in section 3.1, a con-
ventional M-term exponential-quadratic approximator
(EQA) for the error function of the form:

erf(x) ≈ 1 −
M

∑
i=1

cie−aix2
, x ∈ IR,

where {ai > 0} and {ci} are parameters to be esti-
mated. Minimising a sum-of-squares cost function by
gradient descent leads to the expected result: an ap-
proximation that provides a poor fit to erf(x) for small
and medium arguments. In section 3.2 we consider
a M = 3 term EQA where we impose 3 spline-like
constraints: function values at x = 0 and x = 1 and
a first derivative constraint at x = 1. The 3 equality
constraints are used to solve a linear system that re-
duces the constrained 6-parameter estimation problem
to an unconstrained 3-parameter optimisation problem.
In a different context, the idea of using a completely
determined linear system has also been applied to
obtain the minimax approximation to the Q-function
using sums of exponential-quadratic functions in [17].

While the approximation in section 3.2 is still poor for
small arguments, this example serves as a basis for the
more complicated example in section 3.3. In this latter
section, we develop a 4-term EQA involving additional
linear terms in the exponentials for erf(x) of the form:

erf(x) ≈ 1 −
4

∑
i=1

cie−aix2+2bix, x ∈ IR.
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The approximator is subject to 4 constraints: function
values and first derivatives at x = 0 and x = u > 0. The
presence of the linear terms {bi} allows the matching
of the derivative at x = 0 but at the expense of solving
a 12-parameter constrained optimisation problem. The
reformulation of this 12-D constrained optimisation
problem as an unconstrained 8-D optimisation problem
is the main theoretical result of the paper. The recast-
ing allows the approximation parameters to be easily
obtained via gradient descent optimisation. Due to the
complexity of the calculations, which require symbolic
algebra, only the method is presented in this section.

The results of the gradient descent optimisation for-
mulated in section 3.3 are presented in section 4. This
section also contains a 10-way performance comparison
giving the absolute relative error in approximating the
error and Q functions. The 4-term EQA for erf(x) is
shown to be superior to the other approximators for
x ∈ [0, 1.43] and is applicable on the entire real line.
Section 5 gives a number of application examples of the
4-term EQA, the first of which is in approximating the
key integral (4) when n = 1. The numerical accuracy
of the approximation is tested on some special cases
(for which I(1)(a, b, m, s) is known) and on more general
cases, where the value of the integral is obtained by
Monte Carlo integration. The results indicate that the 4-
term EQA is accurate to 3 to 4 significant figures, while
being at least 6 orders of magnitude more efficient than
Monte Carlo (MC) integration performed to a similar
accuracy. In section 5.3, we demonstrate how the 4-term
EQA for erf(x) can be applied to evaluate the integral
(2) used to model the average symbol error probability
in the m = 1, 2, 3 cases. We draw conclusions and
discuss further directions for the work in section 6. A
listing of the symbolic algebra code (in Maple/Matlab
format) appears in the Appendix.

2 Known Approximations for Q(x) and erf(x)

The two standard power series for the error function
contained in Abramowitz & Stegun [18] are:

erf(x) =
2x√

π

∞

∑
n=0

(−1)n x2n

(2n + 1)n!
; (5)

erf(x) =
2xe−x2

√
π

∞

∑
n=0

(2x2)n

(2n + 1)!!
, (6)

where (2n + 1)!! = 1 · 3 · 5 · · · (2n + 1). There is also
an asymptotic expansion for the complementary error
function erfc(x) = 1 − erf(x):

erfc(x) =
e−x2

x
√

π

(
1 +

N−1

∑
n=1

(−1)n (2n − 1)!!
(2x2)n

)
+ ϵN(x),

(7)
where ϵN(x) is the remainder term, which is smaller
in magnitude than the last term in the series and
can be used to achieve a target precision. According
to [5], series (5) is useful for small arguments but is ill
conditioned for large arguments because it is alternat-
ing and suffers from “catastrophic cancellation,” where

the leading bits of adjacent terms cancel after sub-
traction. The asymptotic expansion is often the fastest
to compute for a given target precision, when this is
achievable.

For the Gaussian Q-function, examples of Mills’ ratio
approximations include [19, 20]:

QBorjesson 1(x) =
1√
2π

e−x2/2

0.661x + 0.339
√

x2 + 5.51
; (8)

QBorjesson 2(x) =
1√
2π

e−x2/2
√

x2 + 1
; (9)

QJang(x) =
1√
2π

(
1 − e−

√
π
2 x
)

x
e−x2/2 ; (10)

where each approximation has been subscripted to
denote its authorship. Jang’s approximation is closely
related to an earlier one in [21]. Examples of sums of
exponential approximations include [22–25]:

QLoskot 2(x) = 0.208 e−0.971x2
+ 0.147 e−0.525x2

; (11)

QLoskot 3(x) = 0.168 e−0.876x2
+ 0.144 e−0.525x2

+ 0.002 e−0.603x2
; (12)

QBenitez M(x) = e−0.4920x2−0.2887x−1.1893 ; (13)

QBenitez S(x) = e−0.3842x2−0.7640x−0.6964 ; (14)

QChiani(x) = 1
12 e−x2/2+ 1

4 e−2x2/3 ; (15)

QSofotasios(x) = 0.49 e−8x/13 e−x2/2 ; (16)

where “M” refers to minimisation of the maximum
absolute error (MARE) and “S” refers to sum of squared
error (SSE) in the Benitez approximation. Two-term
exponential-quadratic approximations to Q(x) similar
to (11) and (15) have also been used to evaluate (1) by
representing Q(

√
x) as a sum of two exponentials in a

linear argument [26]. We mention two further, higher-
order, exponential approximations [27, 28]:

QDao(x) = exp

(
6

∑
i=0

aixi

)
; (17)

erfVanHalen(x) = 1 − exp

(
10

∑
i=0

aixi

)
. (18)

According to [16] (Figure 9), Dao et al.’s approximation
for Q(x) is accurate to around 1× 10−4 on x ∈ [0.2, 4.5]
rising to about 6 × 10−4 at x = 0. Van Halen’s approxi-
mation (18) to erf(x) is accurate to 1.6× 10−9 for x ≥ 0.
The {ai} coefficient values for each expression are in
the respective references.

A further class of approximations to the error func-
tion is based on sums products of either rational
functions or polynomials and e−x2

. The following
rational-times-exponential approximation, mentioned
in Abramowitz & Stegun, is well known:

erf(x) ≈ 1 −
[

5

∑
k=1

ak

(1 + p x)k

]
e−x2

, (19)

and provides an absolute relative error bound of 8.09×
10−6 for x ≥ 0. Howard [29] applies splines in deriving
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a class of polynomial-times-exponential approxima-
tions of the form:

erfH(x)=
2√
π

n

∑
k=1

ck xk+1
[

pk(0)+(−1)k pk(x)e−x2
]
, (20)

where n is the order of the approximation and pk(x)
is a polynomial of degree 2n with only even powers.
Although Howard’s approximations have the desirable
property that erfH(0) = 0, an order of n = 10 (polyno-
mial degree 20) is required to obtain a relative error of
around 1× 10−4 on x ∈ [0, 4], with the error increasing
for x > 4.

3 New Exponential Sum Approximations

3.1 Unconstrained Case
Of the approximations to the error function and

Gaussian Q-function given in section 2, only sums of
exponentials of second order polynomials are suitable
candidates for the evaluation of the main types of
integrals (2) and (3) considered in the introduction.
However, the exponential quadratic functions in (11)–
(16) have been developed for asymptotic approximation
of the Q-function or error function and provide a poor
match for small-to-medium arguments and in particu-
lar at the origin. Such EQAs are therefore unsuitable
for approximation on the real line. Nonetheless, for
what follows, a demonstration of how to obtain these
approximations is necessary.

We therefore present, as an initial illustration of the
method, a simple sum-of-exponentials approximation
for erf(x), directly applicable to Q(x), and show how to
optimise its parameters. This is followed by more com-
plicated but more accurate approximations. As previ-
ously mentioned, and following [22], we consider an M-
term Prony-type approximation for erf(x) of the form

Φ̂M(x) = 1 −
M

∑
i=1

cie−aix2
, x ∈ IR, (21)

where {ci} and {ai > 0}, i = 1, . . . , M, are 2M real
parameters to be estimated. The first derivative of this
function with respect to x is given by

Φ̂′
M(x) = 2

M

∑
i=1

aicixe−aix2
, (22)

Clearly, this function has the drawback that Φ̂′
M(0)=0

regardless of the value of M, whereas we know that
the slope of erf(x) at x = 0 is 2/

√
π ≈ 1.12838.

Nonetheless, this functional form is convenient for
demonstrative purposes and leads naturally to the
more complicated cases.

Example 1 (M terms, unconstrained). Let the approx-
imator be defined as in (21). Consider the sum-of-squares
cost function defined for a sample of x-axis points (“knots”)
x = [x1, . . . , xN ] with corresponding exact function values
[y1, . . . , yN ] given by

S(x; a, c) = 1
2

N

∑
n=1

(
yn − Φ̂M(xn)

)2
, (23)
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Figure 1. Unconstrained 3-term exponential-quadratic approximation
to the error function.

where a = [a1, . . . , aM] and c = [c1, . . . , cM] are the
parameter vectors. In the case of gradient descent (GD)
optimisation, which we assume here, the first derivatives of
the cost function with respect to the parameters are required.
These are furnished by:

∂S(x; a, c)
∂aj

= −
N

∑
n=1

(
yn − Φ̂M(xn)

)
cjx2

ne−aix2
,

∂S(x; a, c)
∂cj

=
N

∑
n=1

(
yn − Φ̂M(xn)

)
e−aix2

.

The resulting gradient descent optimisation iteration (over
k) is given for j = 1, . . . , M by

aj(k + 1) = aj(k)− η
∂S(x; a(k), c(k))

∂aj
,

cj(k + 1) = cj(k)− η
∂S(x; a(k), c(k))

∂cj
,

where η > 0 is a step size parameter. The iteration is
initialised with suitable set of initial parameter values a(0)
and c(0). The GD equations are highly nonlinear and there
is no guarantee of convergence or uniqueness of the solution.
This is typical for parameter estimation of arbitrary sums of
exponential functions estimated by gradient descent. (Note
the approximator is not a Gaussian mixture, to which the
expectation maximisation (EM) algorithm can be applied.)

Figure 1 shows the behaviour of the unconstrained 3-
term exponential quadratic approximator, carried out
in Matlab. The knot points (blue crosses) were taken
to be uniformly spaced on [0, 2] with spacing 0.1. The
gradient descent algorithm was initialised with c(0) =
[0.336, 0.288, 0.004] and a(0) = [1.752, 1.05, 1.206],
corresponding to the 3-term Loskot exponential ap-
proximator (12). GD was run for 1000 iterations with
constant step size η = 0.2, converging rapidly at first,
then very gradually. While the optimisation is sensitive
to the initial parameter settings, the approximation to
the error function (shown in blue) is generally poor,
particularly around the origin. Matters do not improve
significantly by adding more knot points or by tweak-
ing the optimisation parameters.
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3.2 3 Terms, 3 Constraints
The preceding example shows that a simple sum-

of-squares cost function that includes error terms at
a finite set of knots can result in significant errors
by failing to match the slope of the error function at
the ends of the interval. The next example attempts
to correct this deficiency by adding constraints on the
approximator to match the function values at the end
point and the first derivative at the right end point
of the interval, which is taken as [0, 1] for simplicity.
We choose M = 3 terms to match the number of
constraints. This results in a simple linear system for
the multipliers (c1, c2, c3) that allows the constrained 6-
parameter estimation problem to be rewritten as an un-
constrained 3-parameter estimation problem to which
gradient descent optimisation can be applied.

Example 2 (M = 3 terms, 3 constraints). Let the ap-
proximator be defined as in (21) with M = 3 terms and the
sum-of-squares cost function defined in (23). Suppose further
that the approximator satisfies the following constraints

Φ̂3(0) = Φ(0) = 0,
Φ̂3(1) = Φ(1),
Φ̂′

3(1) = Φ′(1).

It is easy to show that these constraints are equivalent to the
system of equations 1 1 1

e−a1 e−a1 e−a1

a1e−a1 a2e−a1 a3e−a1

 c1
c2
c3

 =

 1
q
r

 , (24)

where q
△
= 1 − Φ(1) and r

△
= 1

2 Φ′(1) = 1/(e
√

π). We
can solve the linear system to obtain the ci in terms of a =
(a1, a2, a3). The result is

c̃1(a) = ea1 ((qa3 − r)ea2 + (r − qa2)ea3 + a2 − a3) ,

c̃2(a) = ea2 ((r − qa3)ea1 + (qa1 − r)ea3 + a3 − a1) ,

c̃3(a) = ea3 ((qa2 − r)ea1 + (r − qa1)ea2 + a1 − a2) ,

∆(a) = (a2 − a3)ea1 + (a3 − a1)ea2 + (a1 − a2)ea3 ,

ci(a)
△
= c̃i(a)/∆(a), i = 1, 2, 3.

Eliminating the ci from (21) allows the approximator to be
written as

Φ̂3(x; a) = 1 − ∑3
i=1ci(a)e−aix2

. (25)

Estimating the remaining parameters (a1, a2, a3) is straight-
forward since the equality constraints have been eliminated.
Gradient descent can be applied as before once the partial
derivatives of Φ̂3(x; a) with respect to the ai are computed.
This tedious calculation is best done using symbolic algebra
(or other automatic differentiation software). As an example,
the partial derivative of Φ̂3(x; a) with respect to a1, i.e.,
∂Φ̂3(x; a)/∂a1, can be shown to be:

C
A
(

B
A

− 1 + x2) ϕ1(x)

+
1
A

(
(qa3 − r)(1 − B

A
)ea1 − Dea3 +

B
A
(a3 − a1)

)
ϕ2(x)

+
1
A

(
(qa2 − r)(

B
A

− 1)ea1 + Dea2 +
B
A
(a1 − a2)

)
ϕ3(x),

where ϕi(x) = exp(ai(1 − x2)), i = 1, 2, 3, and the terms
A, B, C, D are defined by

A = (a2 − a3)ea1 + (a3 − a1)ea2 + (a1 − a2)ea3 ,
B = (a2 − a3)ea1 + ea3 − ea2 ,
C = (qa3 − r)ea2 + (r − qa2)ea3 + a2 − a3,
D = q + B(r − qa1)/A.

The derivative of the cost function S given by (23), using
Φ̂3(x; a) in place of Φ̂M(x), is:

∂S(x; a)
∂aj

= −
N

∑
n=1

(
yn − Φ̂3(xn; a)

) ∂Φ̂3(xn; a)
∂aj

.

The resulting GD iteration (over k) is given for j = 1, 2, 3
by

aj(k + 1) = aj(k)− η
∂S(x; a(k))

∂aj
, η > 0, k = 0, 1, 2, . . .

The results of a numerical simulation for the con-
strained 3-term exponential approximator in Example
2 are shown in Figures 2–4. The gradient descent algo-
rithm was initialised with a(0) = [1.752, 1.05, 1.206].
The knot points xn, n = 1, . . . , N = 101 were taken to be
uniformly spaced on [0, 1] with spacing 0.01. The GD
algorithm was run for 1000 iterations with constant step
size η = 0.2. From this initial configuration, conver-
gence of the cost function to 10−11 was observed after
100 iterations. The estimated values for the exponential
parameters were a = [3.4441, 2.7421, 2.8981] with
corresponding weights c = [18.119, 56.133, −73.252].
Along with the 3-term approximation to the error
function, several other approximations are shown in
Figure 2. All of these are based on single or a sum
of two exponentials of quadratic arguments. The 3-
term approximator exactly matches the error function
at the constraint points 0 and 1 but there is a significant
mismatch in the slope at x = 0, although the fit is better
than the Loskot 3-term and Chiani approximations for
x ∈ [0, 1]. The best fit for this range of x values is the
Benitez estimator with Sofotasios in second place. This
conclusion is clearer from the relative absolute error
(ARE) plot in Figure 3, which also shows the large
argument behaviour: all estimators considered achieve
10−6 ARE for x ≥ 3.5. The same 3-term approximator
can be directly used to approximate the Q function.
The corresponding ARE plots appear in Figure 4. The 3-
term approximator performs worst for large arguments
of the Q function, which is unsurprising given the small
fitting interval of [0, 1].

3.3 4 Terms, 4 Constraints
With the preceding two examples in hand, it is is

natural to impose a fourth constraint on the approxi-
mator to match both the function values and the first
derivatives at each end of the interval. This is, of course,
the principle of the smoothing spline [30], with the
principal difference being the approximation function
is not polynomial. As mentioned in section 3.1, the
approximator in (21) has zero derivative at x = 0, i.e,
Φ̂′

M(0) = 0, and cannot match the derivative of the
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Figure 2. Various exponential-quadratic approximations to the error
function.
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Figure 3. Absolute relative error for exponential-quadratic approxi-
mations to error function.

error function (or the Q function) at x = 0. We therefore
mildly generalise the exponential to include a linear
term, considering approximators of the form:

Φ̂M(x; a, b, c) = 1 −
M

∑
i=1

cie−aix2+2bix, x ∈ IR. (26)

which has 3M parameters to be estimated, namely the
{ai, bi, ci}, i = 1, . . . , M where, as before we assume
that the ai > 0 ∀i. The added degrees of freedom can
then be used to match the first derivative at both ends
of the interval, which we also extend to [0, u] where
u ≥ 1. In practice, as we will see, u can be used to
set a rough upper bound on the approximation error
for large arguments of the error function or Q function
since these functions are asymptotically equal to 1 and
0 respectively. The previous method for converting the
constrained nonlinear optimisation problem into an
unconstrained one is applicable if we take M = 4
terms, equal to the number of constraints. This 4-term
exponential-quadratic approximator, which we refer to
as the 4-term EQA, is dealt with in the following
theorem. For reasons of algebraic complexity, certain
explicit expressions have been omitted.
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Figure 4. Absolute relative error for exponential-quadratic approxi-
mations to Q-function.

Theorem 3.1 (M = 4 terms, 4 constraints). Let the
approximator be defined as in (26) with M = 4 terms and the
sum-of-squares cost function defined below. The constrained
nonlinear optimisation problem for {ai, bi, ci}, i = 1, . . . , 4
given by

min
{a,b,c}

S(x; a, b, c) = 1
2

N

∑
n=1

(
yn−Φ̂4(xn; a, b, c)

)2
. (27)

subject to the constraints

(C1) Φ̂4(0; a, b, c) = Φ(0),

(C2) Φ̂4(u; a, b, c) = Φ(u),

(C3) Φ̂′
4(0; a, b, c) = Φ′(0),

(C4) Φ̂′
4(u; a, b, c) = Φ′(u),

where u > 0 is the upper limit of the knot values x =
[x1, . . . , xN ], with xi ∈ [0, u], can be reexpressed as an
unconstrained nonlinear optimisation problem for {ai, bi},
i = 1, . . . , 4, as:

min
{a,b}

S(x; a, b, c(a, b)) = 1
2

N

∑
n=1

(
yn−Φ̂4(xn; a, b, c(a, b))

)2
,

(28)
where c(a, b) = [c1(a, b), . . . , c4(a, b)]T is the unique
solution (when it exists) of the 4-dimensional linear system 1 1 1 1

d1 d2 d3 d4
a1 a2 a3 a4
e1 e2 e3 e4


 c1

c2
c3
c4

 =

 1
q
s
r

 , (29)

where q
△
= 1 − Φ(u), r

△
= 1

2 Φ′(u) = exp(−u2)/
√

π, and

s
△
= − 1

2 Φ′(0) = −1/
√

π, and for i = 1, . . . , 4 the di and ei
are defined by di = exp(−aiu2 + 2biu) and ei = (aiu − bi)di.

The corresponding gradient descent algorithm is given for
parameter index j = 1, . . . , 4, step size η > 0 and iteration
k = 0, 1, 2, . . . by

aj(k + 1) = aj(k) + η [y − Ψk(x)]
T ∂

∂aj
Ψk(x), (30)

bj(k + 1) = bj(k) + η [y − Ψk(x)]
T ∂

∂bj
Ψk(x), (31)
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where y is the N-vector of exact function values
[Φ(x1), . . . , Φ(xN)]

T corresponding to the knots, and Ψk(x)
is given by

Ψk(x) =

 Φ̂4(x1; a(k), b(k), c(a(k), b(k)))
...

Φ̂4(xN ; a(k), b(k), c(a(k), b(k)))

 .

Proof: Treating the M = 4 case, constraint (C1) gives

1 −
4

∑
i=1

ci = 0, (32)

while constraint (C2) gives

1 −
4

∑
i=1

ci exp(−aiu2 + 2biu) = Φ(u), (33)

or ∑4
i=1 dici = q according to the notation in the theo-

rem. For the last two constraints, we need the derivative
of the approximator function:

Φ̂′
M(x; a, b, c) = 2

M

∑
i=1

(aix − bi)cie−aix2+2bix. (34)

So that constraint (C3) leads to

−2
4

∑
i=1

aici = Φ′(0) =
2√
π

, (35)

while constraint (C4) leads to a constraint at Φ′(u):

2
4

∑
i=1

(aiu − bi)ci exp(−aiu2 + 2biu) =
2e−u2

√
π

, (36)

or ∑4
i=1 eici = r according to the definitions in the

theorem. Equations (32)-(36) therefore satisfy the linear
system (29).

We then solve the linear system to obtain the ci in
terms of a = (a1, a2, a3, a4) and b = (b1, b2, b3, b4). This
straightforward but tedious calculation is best handled
using symbolic algebra. This is followed by substitution
to replace c by c(a, b) in (26), yielding the components
of the vector Ψ(x). The gradient descent algorithm
in (30) is formally obtained by the chain rule from the
cost function definition in (28).

Remarks

1) The partial derivatives are very complicated, each
containing more than 1000 exponential terms in
unoptimised form. They can be obtained and
converted to C code using standard functionalities
from the Matlab Symbolic Toolbox (based on the
Maple kernel). It is not practical to reproduce
these equations here due to their length.

2) The Matlab Symbolic Toolbox commands for gen-
erating the derivatives code for the gradient de-
scent algorithm for the 4-term approximator can
be found in the Appendix. This code requires only
minor rework (search and replace) to produce
working Matlab script.

3) The gist of the gradient descent algorithm here is
similar to the deep learning paradigm, which uses

algorithmic differentiation to compute deriva-
tives of the standard functional blocks that com-
prise the convolutional neural network during the
“learning phase”, i.e., parameter estimation stage.

4 Optimisation & Performance Comparison

The numerical experiments for the constrained 4-term
exponential-quadratic approximator in Theorem 3.1 are
dealt with in this section. These results were obtained
after around 100 trials with different initialisation set-
tings for a(0), b(0), different upper limits u, different
numbers of knots and different knot values. Although
the step size η = 0.2 was not varied, differing number
of steps were tried. For each algorithm configuration,
the maximum absolute error (MAE) and the maximis-
ing x-value were calculated on a grid of values from
0 to 5 with spacing 1E− 05. The minimum value of
the MAE was used to pinpoint the “best” algorithm
configuration, whose parameters are now described.

The gradient descent algorithm was initialised with
a(0) = [1.3, 0.8, 1, 0.5] and b(0) = [ −0.1, −0.1,
0, 0.4]. The knot points xn were taken to be [0.1, 0.2,
0.3, 0.6, 0.8, 1.2, 1.5] with upper limit u = 4. The GD
algorithm was run for 11000 iterations with constant
step size η = 0.2. In this case, the MAE was 0.00016499
(increasing slightly to 0.00016601 at 12000 iterations).
The estimated values for the exponential parameters
a, b and weights c appear in Table I. The simulation
results appear in Figures 5–7. Each one of these figures
gives the results for the 4-term EQA and 9 other known
approximations to the Q function or error function
(as appropriate). The additional derivative constraint at
x = 0 greatly improves the quality of the approximation

Table I
Constrained 4-Term EQA Parameters

term 1 term 2 term 3 term 4
a +1.102149 +0.602149 +0.802149 +0.302149
b −0.738479 −0.738479 −0.638479 −0.238479
c −0.656344 −8.65439E−2 +1.742885 2.31093E−6
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Figure 5. Comparison of approximations to the error function.
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Figure 7. Absolute relative error for approximations to Q-function.

over the 3-term approximator in Example 2, making
the 4-term approximator competitive with the other
methods for x values up to the upper limit of u = 4,
where (according to Matlab) the error function differs
from unity by only 1.5417E− 08. The approximation
quality is particularly good for smaller values in the
range 0 ≤ x ≤ 1.5 for the error function and 0 ≤ x ≤ 2
for the Q function. The approximation can also be used
for negative arguments since erf(x) is an odd function,
which makes it valid on the entire real line.

Figure 5 overlays 10 different approximations to the
error function including the 4-term EQA is shown in
cyan. The error function computed by Matlab’s built-
in library function appears as a black dashed line. The

latter is used as “ground truth” for the error function
to obtain absolute relative error estimates in Figures
6 and 7, which display, respectively, the ARE for the
error function approximations and for the Q function.
The same colour coding is used in these plots. The nine
other approximations are: (1) Loskot 2-term; (2) Loskot
3-term; (3) Benitez MARE; (4) Benitez SSE; (5) Chiani;
(6) Borjesson 1; (7) Borjesson 2; (8) Jang; (9) Sofotasios;
where the approximator labels have the same meanings
as in equations (8)–(16) and also as in Bao et al.’s paper
[16] and so are directly comparable. The 4-term EQA
provides a very good fit to the error function over the
range 0 ≤ x ≤ 4, particularly for small arguments
x < 0.6 where five other approximations (Benitez
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MARE, Loskot 3-term, Borjesson 1, Loskot 2-term and
Jang) give a poor fit. The Chiani approximation is a
poor fit for 0.8 < x < 2. For small arguments, the best
fitting approximations are (in order of best to worst): 4-
term EQA, Benitez SSE, Borjesson 2, Chiani, Sofotasios,
with the first 3 of these visually close in Figure 5. The
clear superiority of the 4-term EQA for x < 1.43 can be
seen in the ARE curves in Figure 6; its peak ARE is just
under 7E−4, occurring close to x = 0.16. It is also the
only approximator of those tested that exactly matches
(to around 2E−15) the zero-value of the error function
at x = 0. The next closest is Chiani, which is 9.244E−4
at x = 0. For large arguments (x > 4.7) the 4-term
EQA provides less accuracy in ARE than all the others,
bearing in mind that the peak ARE is already under
3.4E−10 for x > 4. Similar statements can be made for
the Q function approximations in Figure 7: the 4-term
EQA is better than the other nine approximations for
0 ≤ x ≤ 2.025 (approximately) and better than 8 others
up to x = 4.07, where it loses out to Jang. The Borjesson
2 is also closer to the Q function in ARE in a narrow
range around x = 1.1.

5 Application Examples

5.1 Approximation of the Key Integral for n = 1

We now return to the motivation given in the in-
troduction, namely, the evaluation of integrals of the
form (2) and (3) via the integrals I(n)(a, b, m, s) in equa-
tion (4). In the absence of a numerically well behaved,
analytical formula for I(n)(a, b, m, s), the brute-force
method is to use Monte Carlo integration, which works
by averaging randomly generated values of the inte-
grand in its support region. The integrand decreases
rapidly for x > m + p

√
s where p is the number of

standard deviations away from the mean m, so the
support for the integral can be taken as [0, m + 5

√
s].

Nonetheless, a low variance Monte Carlo estimate of (4)
might still require at least 106 random samples, which
is not efficient, and may also suffer from bias due
to imperfections in the random number generator or
due to truncation of the infinite domain of integration.
Although the integral is bounded, the integrand is un-
bounded when the Gaussian density is close to singular,
i.e., when s → 0.

Theorem 3.1 provides an accurate numerical approx-
imation to the error function based only on exponen-
tials of terms up to second order. This 4-term EQA
is specifically tailored to the analytical approximation
of integrals of the form (1) and (3). In the general
n > 0 case, a multinomial expansion of (26) is required
to compute the n-th power of the approximation of
erfn(x). There is no difficulty in principle, since all
resulting terms will still be of quadratic exponential
type, but their number increases rapidly with n. In
this application example, we focus on the n = 1 case
only, writing I(a, b, m, s) in place of I(1)(a, b, m, s), and
similarly for its approximation.

Replacing the error function in (4) by its 4-term EQA
from (26) with M = 4, we define an approximation to

the former for a, s > 0 by

Î(a, b, m, s) =
1√
2πs

∫ ∞

0
Φ̂4(ax + b) exp

[
−(x − m)2

2s

]
dx.

(37)
Consider the integrand

Φ̂4(ax + b) exp
[
−(x − m)2

2s

]
= e

−(x−m)2
2s −

4

∑
i=1

cieFi(x),

where Fi(x) is defined as

−(aia2 +
1
2s

)x2 + 2(abi − abai +
m
2s

)x− aib2 + 2bbi −
m2

2s
.

We have implicitly assumed that ax + b ≥ 0. This is the
same as b ≥ 0 since x ≥ 0 and a > 0. Defining new
variables as

α2
i = aia2 +

1
2s

,

β+
i = abi − abai +

m
2s

,

γ+
i = ci exp

(
2bbi − aib2 − m2

2s

)
,

where the + superscript denotes the b ≥ 0 case, we can
write

Î+(a, b, m, s) =
∫ ∞

0
N(x; m, s) dx

− 1√
2πs

4

∑
i=1

γ+
i

∫ ∞

0
e−α2

i x2+2β+i x dx.

It is possible to show, due to the odd symmetry of the
error function, that for s > 0 and m ∈ IR∫ ∞

0
N(x; m, s) dx = 1

2

(
1 + Φ(

m√
2s

)

)
,

and further (see [31]), that, with α > 0∫ ∞

0
e−α2x2+2βx dx =

√
π

2α
e(β/α)2

(
1 + Φ(

β

α
)

)
.

Combining these results, we then have (for b ≥ 0)

Î+(a, b, m, s) = 1
2

(
1 + Φ(

m√
2s

)

)
−

4

∑
i=1

γ+
i e(β+i /αi)

2

2αi
√

2s

(
1 + Φ(

β+
i

αi
)

)
. (38)

The b ≤ 0 case is trickier since we need to split
the integration domain according to the sign of the
argument in Φ̂4(·). On x ∈ [− b

a , ∞), ax + b ≥ 0, and
we use Φ̂4(ax + b) as before, whereas on x ∈ [0,− b

a ],
ax + b ≤ 0, and we must use −Φ̂4(−ax − b). This logic
leads to the following expression for Î−(a, b, m, s):

Î−(a, b, m, s) =
∫ ∞

− b
a

Φ̂4(ax + b)N(x; m, s) dx

−
∫ − b

a

0
Φ̂4(−ax − b)N(x; m, s) dx.

To proceed further we need the definite integrals
below (with q ≥ 0; s, α > 0):∫ q

0
N(x; m, s) dx = 1

2

(
Φ(

q − m√
2s

) + Φ(
m√
2s

)

)
,
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Table II
I(a, b, m, s) Approximator Accuracy with Truth Known

Case a b m s I Î |̂I − I|
1 1 0 0 0.5 0.25000 0.25003 2.691E−5

2
√

2 0 1 0.25 0.84888 0.84895 6.437E−5

3
√

2 0 1.5 0.25 0.96639 0.96644 4.867E−5

4 1/
√

2 0 1 1 0.57798 0.57803 4.664E−5

5 1/
√

2 0 1.5 1 0.73201 0.73207 5.756E−5

Table III
|̂I − IMC | with Indicated MC Samples (100 Run Average), Truth Unknown

Case a b m s Î ∆MC (105) ∆MC (106)

6 0.7 −0.5 1.3 0.8 0.38773 2.70E−4 6.51E−5

7 0.7 0.5 1.3 0.8 0.84719 4.39E−4 2.21E−4

8 1 −1 1 1 0.14965 1.14E−4 1.68E−5

9 0.5 −2 1 0.25 −0.93195 3.45E−4 1.05E−4

10 1.5 −1 −2 1.5 −0.012773 1.23E−5 2.45E−6

and∫ q

0
e−α2x2+2βx dx =

√
π

2α
e(β/α)2

(
Φ(qα − β

α
) + Φ(

β

α
)

)
,

along with further definitions for β− and γ− variables
(the α variables are the same as before):

β−
i = −abi − abai +

m
2s

,

γ−
i = ci exp

(
−2bbi − aib2 − m2

2s

)
.

After some further calculations, we obtain Î−(a, b, m, s)
as

1
2

(
1 − Φ(

m√
2s

)

)
+ Φ(

b/a + m√
2s

)

+
4

∑
i=1

γ−
i e(β−i /αi)

2

2αi
√

2s

(
Φ(

β−
i

αi
)− Φ(

αib
a

+
β−

i
αi

)

)

−
4

∑
i=1

γ+
i e(β+i /αi)

2

2αi
√

2s

(
1 + Φ(

αib
a

+
β+

i
αi

)

)
. (39)

It is easily verified that the expressions for Î−(a, b, m, s)
(39) and Î+(a, b, m, s) (38) are identical when b = 0.

5.2 Numerical Accuracy of Î(a, b, m, s)

To verify the accuracy of the approximations in (38)
and (39), valid for n = 1, it is preferable to use
cases for which the analytical result is known so as to
have a reference value. Unfortunately, after examining
the literature on error function integrals [11, 31–33], it
seems clear that there are very few cases for which (4)
can be exactly evaluated. Two exceptions are presented
below; both assume b = 0. The second case, which
generalises the first, can be derived from (2.18.1) in [33].

I(1, 0, 0, 1
2 ) =

1√
π

∫ ∞

0
Φ(x) e−x2

dx = 1
4 Φ2(∞) = 1

4 ,

I(a, 0, m,
1

2a2 ) =
a√
π

∫ ∞

0
Φ(ax) e−a2(x−m)2

dx

= 1
4

(
1 + Φ(

ma√
2
)

)2
.

These integrals are used to produce the results in
Table II for 5 different cases where we compare the
approximate value from (38) with its known true value.
The absolute error in all 5 cases is between 2E−5
and 6.5E−5, which corresponds to 4 significant figure
accuracy.

A more challenging set of cases for b ̸= 0 is presented
in Table III. In these cases, there is no known truth since
(4) has no closed form. We therefore use Monte Carlo
integration with 105 and also 106 random samples. The
truncation point for the uniform distribution is adjusted
so that all values of the integrand to the right of it are
less than 1E−10. The cases are chosen to cover a range
of possible values of I(a, b, m, s), which is bounded
between −1 and +1. The integrand varies from a single
positive peak (case 7) or negative peak (case 9), to
cases with one positive and one negative peak (cases
6 & 8) and a very slight peak (case 10). The table
gives the value of Î from (38) or (39) as appropriate,
and, in the last two columns, the absolute error (∆MC)
between Î and the value obtained by averaging 100
Monte Carlo integrations with the indicated number of
random samples Ns. For case 7, which is the case with
the largest discrepancy of those tested, the (average)
standard deviation on the Monte Carlo estimates for
Ns = 105 is around 0.004 and 0.0012 for Ns = 106.
The simulations were conducted in Matlab, using its
built-in uniform random number generator and error
function. The results confirm the agreement to at least
3 significant figures (discrepancy of the order 10−4)
with Monte Carlo integration. Note that MC integration
is around Ns/5 times more computationally intensive
than (38) and Ns/14 times more for (39), which is
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a highly significant saving for the same number of
significant figures in accuracy. Moreover, to obtain an
averaged MC estimate over NMC runs, the computa-
tional complexity is NMC times greater again.

5.3 Communication System Error Probabilities

As touched on in the introduction, integrals of the
form (1) arise in modelling the average symbol error
probability of certain RF communication systems over
fading channels. Changing variables and expanding
Q(x) in (2), yields

Jn(a) = 1
2 + 1

2

n

∑
j=1

(−1)j
(

n
j

) ∫ ∞

0
Φj(

ax√
2
)pX(x) dx.

(40)
The evaluation of these integrals is called for when
calculating the error probability for M-ary PAM (n = 1
case), M-ary (square) QAM and coherent QPSK (n = 1
and n = 2 cases), and differentially encoded QPSK
(n = 1, 2, 3, 4) [9].

As an illustrative example, we take the simplest case
where pZ(z) = 1

2 e−z/2, and z ≥ 0 has a χ2
2 distribution.

The transformed variable x =
√

z then has a Rayleigh
PDF, viz.: pX(x) = x e−x2/2. In this particular case, we
can write

Jn(a) = 1
2 + 1

2

n

∑
j=1

(−1)j
(

n
j

)
Ij(a), (41)

where Ij(a) is given by

Ij(a) =
∫ ∞

0
Φj(

ax√
2
) x e−x2/2 dx = 2

∫ ∞

0
Φj(ay) y e−y2

dy,

where y = x/
√

2, and, in particular,

J1(a) = 1
2 − 1

2 I1(a),

J2(a) = 1
2 − I1(a) + 1

2 I2(a),

J3(a) = 1
2 − 3

2 I1(a) + 3
2 I2(a)− 1

2 I3(a),

J4(a) = 1
2 − 2I1(a) + 3I2(a)− 2I3(a) + 1

2 I4(a).

We can calculate the terms Ij(a) by applying integration
by parts. Without going into too many details, the
result is

I1(a) =
a√

1 + a2
,

I2(a) = 4
a√

1 + a2
I(1)(a, 0, 0,

(1 + a2)−1

2
),

I3(a) =
3a√

1 + a2
− 12a

π
√

1 + a2
tan−1

√
1 + a2

1 + 3a2 ,

I4(a) =
8a√

1 + a2
I(3)(a, 0, 0,

(1 + a2)−1

2
),

where I(j)(a, b, m, s) is the integral defined in (4).
The I3(a) case involves an integral of the product of
exp(−a2y2) and two error functions of different argu-
ments contained in [33]. In general, it is easy to show
that for n ≥ 1:

In(a) =
2na√
1 + a2

I(n−1)(a, 0, 0,
(1 + a2)−1

2
).

We showed in the previous section how to develop
an analytical approximation to this integral using the
EQA for erf(x) in (26) when n = 1. When n > 1 a
multinomial expansion is required to compute the n-th
power of the 4-term EQA for erfn(x).

6 Conclusion & Further Work

We set out to find an approximation for Q or error func-
tions that also provides a good fit for small arguments.
At the same time we sought functional forms of the
approximator that lead to analytical closed forms for
a set of key integrals I(n)(a, b, m, s). Focussing on the
error function, we were led to consider approximators
based on exponentials of quadratic functions satisfying
interpolation and smoothness constraints at the lower
and upper limits of the approximation interval. We
derived a 4-term exponential-quadratic approximator
with 12 parameters satisfying two interpolation and
two first derivative constraints. We showed how to
transform this 12-parameter constrained optimisation
problem into an unconstrained 8-parameter problem.
The resulting least-squares cost function is complicated
and requires symbolic algebra to obtain. We formulated
a gradient descent optimisation algorithm to estimate
the unknown parameters. This step also requires sym-
bolic algebra to obtain the derivatives of the cost func-
tion.

Following gradient descent optimisation, we ob-
tained a 4-term EQA for the error function having a
maximum absolute error of 1.65E−4 on the real line.
Applying the 4-term EQA, we obtained an analytical
approximation to the key integral in the n = 1 case. We
compared the analytical approximation Î(a, b, m, s) in
various cases to Monte Carlo integration and obtained
agreement to 2.2E−4. Further examples were given for
error probability calculations on fading communication
channels that are reducible to sums of terms involving
the set of key integrals. The use of a 4-term EQA results
in a massive computational compared with MC integra-
tion, while offering 3 - 4 significant figure accuracy.

The 4-term EQA we obtained is not optimal in any
specific sense: the progress of the gradient descent
algorithm depends strongly on the choice of knots and
the initial parameter values. A possible direction for
further research is to vary the initialisation settings to
see if better results can be obtained. There is also the
question of convergence and stability of the gradient
descent algorithm, since some optimisation settings
lead to positive leading exponents (ai < 0). An obvious
way to obtain more accurate approximations is to move
to an EQA with M > 4 terms. Manual optimisation may
be inferior to well designed search strategies for this
type of approximation problem [16, 27] and a number
of avenues for extension are conceivable, including the
application of “Bayesian optimisation,” which applies
Gaussian process regression to construct a model of the
objective function’s dependence on the hyperparame-
ters.

Regardless of whether the 4-term EQA can be
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significantly improved, the proposed approximation
can be applied to obtain efficient and accurate eval-
uations of definite integrals involving expectations of
Q or error functions with respect to random variables
that involve quadratic exponentials in their PDFs. The
task of applying the 4-term EQA to powers of the error
function involves a multinomial expansion in products
of exponentials in quadratic arguments. Although the
theory remains within the framework established in
this paper, the investigation of this area is left for a
future study.

Appendix

Matlab Symbolic Toolbox commands for generating the
derivatives code for the 4-term, 4-constraint gradient
descent algorithm.

syms a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4
syms d1 d2 d3 d4 e1 e2 e3 e4 q r s x
S=solve(c1+c2+c3+c4-1,...

d1*c1+d2*c2+d3*c3+d4*c4-q,...
b1*c1+b2*c2+b3*c3+b4*c4-s,...
e1*c1+e2*c2+e3*c3+e4*c4-r,c1,c2,c3,c4);

p4=1-S.c1*exp(-a1*x^2+2*b1*x)...
-S.c2*exp(-a2*x^2+2*b2*x)...
-S.c3*exp(-a3*x^2+2*b3*x)...
-S.c4*exp(-a4*x^2+2*b4*x)

phi4=subs(p4,{d1,d2,d3,d4,e1,e2,e3,e4},
{exp(-a1+2*b1),exp(-a2+2*b2),...
exp(-a3+2*b3),exp(-a4+2*b4),...

(a1-b1)*exp(-a1+2*b1),...
(a2-b2)*exp(-a2+2*b2),...
(a3-b3)*exp(-a3+2*b3),...
(a4-b4)*exp(-a4+2*b4)})

dphi4da1=diff(phi4,a1);
dphi4da2=diff(phi4,a2);
dphi4da3=diff(phi4,a3);
dphi4da4=diff(phi4,a4);
dphi4db1=diff(phi4,b1);
dphi4db2=diff(phi4,b2);
dphi4db3=diff(phi4,b3);
dphi4db4=diff(phi4,b4);
ccode(S.c1); ccode(S.c2); ccode(S.c3);
ccode(S.c4); ccode(phi4); ccode(dphi4da1);
ccode(dphi4da2); ccode(dphi4da3);
ccode(dphi4da4); ccode(dphi4db1);
ccode(dphi4db2); ccode(dphi4db3);
ccode(dphi4db4);
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