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Abstract– The email overload problem has been discussed in numerous email-related studies. One of the possible solutions
to this problem is email prioritization, which is the act of automatically predicting the importance levels of received
emails and sorting the user’s inbox accordingly. Several learning-based methods have been proposed to address the email
prioritization problem using content features as well as social features. Although these methods have laid the foundation
works in this field of study, the reported performance is far from being practical. Recent works on deep neural networks
have achieved good results in various tasks. In this paper, the authors propose a novel email prioritization model which
incorporates several deep learning techniques and uses a combination of both content features and social features from
email data. This method targets Vietnamese emails and is tested against a self-built Vietnamese email corpus. Conducted
experiments explored the effects of different model configurations and compared the effectiveness of the new method to
that of a previous work.
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1 Introduction

The global volume of email usage has been increasing
steadily over the last decade. According to reports
from Radicati, the number of daily sent/received emails
is 306.4 billion in 2020, with an average increase of
approximately 4.3% each year. Research has reported
that email users are unable to reply all of their daily
incoming messages. According to a study on Yahoo
Mail data of 2 million users [1], the reply rate drop
from 25% for people who receive less than 20 messages
per day to as low as 5% for people who receive around
100 emails per day. A nationwide organizational survey
about email usage at work in the US [2] reported that
office workers receive around 41 legitimate emails per
day on average. It is not always feasible to process
all emails when there are too many. However, it is
possible to optimize the benefits of reading emails by
prioritizing the most important ones and the methods
for solving this problem are categorized as email prior-
itization methods.

There have been two approaches to solving this prob-
lem: classification and regression. The email features
used for email prioritization are various forms of con-
tent features [3–5], social features [6] or the combination
of both [7]. Content features are the texts extracted from
the email’s subject and body while social features are
calculated by building graphs [6] based on the email’s
sender and receiver address. The algorithms used in the
various studies ranged from traditional machine learn-

ing models such as Bayesian classifier [6], support vec-
tor machine [7], support vector ordinal regression [5],
artificial neural network [3, 4] to deep learning mod-
els such as multilayer perceptron (MLP) [8], stacked
auto-encoders [9], temporal convolution network [10]
and Long Short-Term Memory (LSTM) network [11].
The proposed works of classification or regression of
emails into 3 or 5 importance levels has seen certain
achievements. The reported results serve as a basis for
ongoing research in the field of this problem.

In recent years, deep learning [12] has been widely
applied to natural language processing tasks. Both feed-
forward networks such as CNN and recurrent networks
such as LSTM achieved good results for text classifi-
cation. There are several reasons which lead to deep
learning’s superior performance. Traditional machine
learning methods reply on hand-crafted feature selec-
tion to be effective. Deep neural networks can reply on
their complex internal structure to automatically learn
features from data. Recurrent neural networks have the
ability to model ordered sequences, which is similar to
how texts in natural languages are formed. Especially,
an LSTM network has been reported to be able to learn
very long dependencies in temporal data.

Word embedding is a novel technique for vector rep-
resentation of texts. Each word in a text is represented
by a fixed-size, real-valued word vector. Among the
methods to generate word embeddings, word2vec [13]
is the most popular algorithm which also has highest
reported performance in many papers. It has the ability
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to represent the semantic meaning of words in a natural
language. In other words, using word2vec features
enables a certain level of text comprehension for a
machine learning model. It is intuitive that this char-
acteristic could benefit a task which greatly depends
on email’s textual content such as email prioritization.
Yet there hasn’t been published research that used
word2vec features for email prioritization.

This paper proposes a five-level email prioritization
model which falls into the deep learning category. A
novel combination of content features using word2vec
embeddings and social features from training data
analysis is utilized in the presented method. A deep
neural network structure was suggested to accommo-
date the mixed inputs. This network, whose structure is
described later in this paper, makes use of LSTM units
among a variety of other neural network elements. The
model’s performance is demonstrated on a Vietnamese
email dataset.

2 Related Works

2.1 Problem Description

The major purpose of email prioritization is to save
email user’s time by pointing out which received emails
are the most important. For instance, the unread mes-
sages in a user’s inbox can be sorted by the order of
decreasing importance. If a user do not have enough
time to handle all emails, it is most beneficial to handle
a subset of the most important emails.

Before building a machine learning model to predict
the priority of emails, it is crucial to clarify how email
priorities are determined. An email with high priority
will be placed at the top of the inbox, which means it
gets the user’s attention earlier than emails with lower
priority. Some emails are urgent but not important
while some are important but not urgent. This leads to
a dilemma of whether to put the former above the latter.
According to the Eisenhower Matrix [14], an urgent
but not important task should be delegated while an
important but not urgent task should be planned to be
carried out later. It might not take long to delegate an
urgent task or to reply to an urgent email, but there
could be unfavorable consequences if the message is
not handled in time. Therefore, urgency gets heavier
weight when labeling emails for the experiments done
in this paper. Ultimately, whether by importance or by
urgency, it is up to the end user to decide the priority of
an email. The authors choose 5 as the number of labels
for the experiments in this paper. Those labels are, from
the least to the most important: delete, unimportant read,
important read, reply later, and reply immediately. Some
studies use 3 labels [3, 4] to model email priority while
some others [5, 7] use 5 labels. In general, using more
labels makes it more difficult for the user to label his
emails.

There is also a trend of personalization in email-
related problems. One reason for the emergence of this
trend comes from the fact that email is a type of sensi-
tive data which usually contains personal information

or business-related information. Secondly, it is not
practical/feasible to provide a solution to an email-
related problem that works effectively for all user
groups. There has yet to be any research that pointed
out the common characteristics of email data. Every
user’s inbox is supposed to have unique characteristics.
Therefore, the most reliable clues that can be used to
build predictive models for email-related problems for
a particular user are his received emails.

2.2 Previous Methods

The adoption of social features for spam detection
was first introduced in [6]. In this study, the authors
calculated the clustering coefficient from email social
network to measure the importance of an incoming
email message. In 2009, another study [7] followed a
similar approach to address the email prioritization
problem, combining the textual content and several
social network features. These features of social impor-
tance are extracted from unlabeled data using cluster-
ing algorithms.

Going towards a different approach for email
prioritization, a later study [5] investigated ordinal
regression’s effectiveness against that of the
combination of multiple binary classifiers. This work
utilized only content features from email messages.
Binary classifiers such as the SVMs can be employed
in different voting schemes (OVA, OVO and DAG)
to predict among more than two categories. It was
discovered in [5] that the combination of binary
classifiers outperformed ordinal regression on the
same dataset. The result of this work partially suggests
that email importance levels do not have ordinal
relation with each other.

For real-time application of email prioritization, a
number of studies ([3], [4]) explored the approach of
using weighted keyword rules mechanism of SpamAs-
sassin. Although keyword matching rules are fast to
execute, this approach can only be effective if a good
rule set can be constructed. In [3], the authors aims
to solve the three-level (email-to-read, email-to-delete,
email-to-reply) email prioritization problem by first
using a learning-based method to generate SpamAs-
sassin rule sets which serve as binary classifiers and
then combining these classifiers using different voting
mechanisms (OVA, OVO, DAG) to build a multiclass
classifier. The work reported in [4] further enhanced the
rule generation part by introducing more features (ham
rules) during feature selection. In the same paper, the
effect of automatic sample labeling based on actual user
usage history was also investigated and good results
were obtained.

During the emergence of deep learning techniques
around the 2010s, an attempt to utilize its represen-
tation learning ability has been made [9] in the field
of spam detection. The classification model used in
this study is called stacked auto-encoders. An auto-
encoder’s nature is to compress its input into a repre-
sentation with less dimensions and then de-compress
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the representation back into the original input vector,
effectively reducing the input’s dimensionality while
keeping most of the useful information. The neural
network in [9] is comprised of multiple feed-forward
layers of decreasing sizes and a softmax layer at the end.
These feed-forward layers are taken from the trained
hidden layer of multiple auto-encoders. This chain of
layers reduces an input vector, a traditional one-hot
encoded, into a representation of much lower dimen-
sionality which is then classified by the last softmax
layer to produce the prediction output. By using pre-
trained weights, the author claimed to put the network
close to the optimal solution even before training the
entire network.

New deep network structures continued to be intro-
duced. Using both text and image inputs, a multimodal
network was proposed by [10] for spam classification.
In this network structure, image and text are processed
separately before being combined and further classified
with a fully connected layer and finally a softmax layer.
The image input goes through convolution layers while
the text input is made of word embeddings and goes
through over-time convolution layers and over-time max
pooling layers.

A multilayer perceptron network with 2 hidden lay-
ers was used in [8] for the spam detection task on the
SpamBase dataset. This dataset provides 57 numeric
features which are the frequencies of 48 words, 6 chars
and 3 other measurements regarding the sequences of
capital letters from an email. The MLP was reported
to perform better than the Naïve Bayes classifier on
this task.

LSTM is known for the ability to learn long-term
dependencies in temporal data and has been success-
fully applied in natural language processing tasks such
as text classification and machine translation [12]. The
authors of [11] defined semantic LSTM as the LSTM
network which takes word embeddings as inputs. The
basic idea in [11] is to combine Google’s word2vec
embeddings with WordNet and ConceptNet in order to
maximize the number of words which can be converted
into embeddings. WordNet and ConceptNet can be
used to find semantically similar words. If a word’s em-
bedding cannot be found from word2vec data, the most
similar word’s embedding will be used to represent it
instead.

3 Proposed Method

3.1 Data Pre-Processing

Raw email data contains headers, body and attach-
ments that need to be extracted in order to obtain
useful information. In this work, the sender’s address,
receiver’s address, email subject and the email’s textual
body are extracted. The messages which are in HTML
format have to be stripped of tags while maintaining
paragraph structure. When conducting experiments,
the word2vec algorithm requires separate sentences as
training input instead of the whole text document. The
following heuristics were applied on email body texts

to enable better sentence detection:

• Since all spaces, including line-breaks, in HTML
source code are rendered as spaces on the browser,
it is necessary to strip line-breaking and non-
breaking tags differently to correctly convert the
email content into plain text. Content of a line-
breaking tag will be turned into a single line in
the tag-less output.

• Punctuations are usually good indicators for sen-
tence detection. However, it is to be expected from
email content that the sender does not always
use correct grammar and punctuations. Sentence
detection tools such as the VNCoreNLP toolkit [15]
do not work well when punctuations are missing.
As an alternative, the line-breaks are used as an
additional measure to detect sentences from the
text. The following heuristics are based on the
assumption that humans are not inclined to place
a line-break amidst a sentence. In the stripped
version of the text, each line that doesn’t terminate
with a sentence ender will be modified. A sentence
ender is one of the following three punctuation
marks: a period (“.”), a question mark (“?”) and
an exclamation mark (“!”). If a line is terminated
with a punctuation mark which is not a sentence
ender, it will be replaced with a period (“.”). If a
line does not end with a punctuation, a period (“.”)
will be added to the end of it.

The texts from subject and body also need to be
segmented into separate meaningful words. Unlike En-
glish where the words with multiple syllables are put
together as a continuous sequence of letters, multiple
syllables in a Vietnamese word are separated by spaces.
Based on the specific context, two successive syllables in
Vietnamese can be recognized as a compound word or
two singular words. In this paper, the authors adapted a
method called VNCoreNLP described in [15] to extract
words from email content (subject and plain-text body).
Besides the word segmentation feature which covers
sentence detection, this toolset also incorporates a POS
Tagging method for the determination of word types.
This feature is used to remove unwanted tokens which
do not contribute to the text’s meaning or are too
specific to be good feature. These tokens include dec-
orative symbols, meaningless character sequences and
numeric values. VNCoreNLP outputs a set of detected
sentences, each sentence consists of multiple segmented
words, and each word is associated with its POS tag
(a.k.a. word type).

The proposed method can possibly be applied upon
emails in English or other languages provided that a
suitable word segmentation technique is used. In order
for word embeddings to be effective, each word vector
should be associated with a meaningful word in the
corresponding language. For English, a trivial tool such
as sklearn’s CountVectorizer should be adequate for
content tokenization. In its default behaviour, this tool
extracts words by finding alphanumeric sequences of
at least 2 characters seperated by empty spaces and
punctuations.
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The sender’s address can be an important infor-
mation for determining the importance of an email
message. Our approach to create a vector representation
of the sender is based on the assumption that a sender
would continue to send messages of similar importance
as the ones he had sent in the past. The email messages
in the dataset are labeled as one of the 5 importance
levels. The number of messages from each importance
label of a sender in training data can be counted so
that each sender is associated with a set of 5 integers.
A sigmoid function (1) is used to normalize these integer
values into real values in the range [0, 1).

S(x) =
x

1 + |x| (1)

The number of messages that the sender has received
is also counted. A spammer address usually has little to
no incoming emails. On the other hand, an important
person is expected to receive a high number of emails.
The number of inbound messages is also normalized
using the formula in (1) and added to the sender’s
vector representation, making it a real-valued vector of
6 values.

3.2 Word Embedding
A word embedding is a fixed-length, real-valued

vector which represents a word in natural language.
There are two approaches to using word embeddings:
pre-trained embeddings and online word embeddings.
Pre-trained word embedding is technique of generating
word embeddings from a corpus of sentences using
unsupervised learning. The resulting word embeddings
are then used as initial weights for an Embedding
layer in a neural network. These weights are set to
be untrainable. An Embedding layer takes a document,
represented by a dense vector of word indexes, as
input and outputs an n × m matrix with n being the
document’s length and m being a word vector’s size.
In a neural network, an Embedding layer is usually
the first layer and is usually succeeded by other layers.
Online word embedding is the technique of initializ-
ing random weights for such Embedding layer and
set these weights to be trainable so that they will
be trained along with the rest of the neural network.
In the approach of using pre-trained embeddings, an
implementation of the word2vec embedding training
algorithm in the Gensim toolkit was used to train word
vectors from the training data. It is commonly believed
that word2vec requires a large dataset to train and it
is also popularly advised to use publicly available pre-
trained word embeddings such as those trained with
the Google News corpus 1. However, such pre-trained
embeddings are not readily available for Vietnamese
language. Therefore, the experiments in this paper were
conducted within the scope of available email data. In
the second approach, the Embedding layer from the
Keras deep learning framework is used. This layer is
placed as the first layer of the neural network and is
trained along with the network. Using Embedding layer

1https://code.google.com/archive/p/word2vec

is very different from using pre-trained embeddings.
Embedding layer is trained in a supervised way based
on the model’s loss function. Pre-trained embedding
trains the word vectors in an unsupervised manner (us-
ing auto-encoder mechanism). This article compares the
performance of these approaches in the experiments.

The size (dimensionality) of word embeddings is also
a concern for many researchers. Google chose 300 as
the dimensionality for their published word2vec em-
beddings though the reason behind was not specified.
It is also the most popular choice in other works [16].
In this paper, the authors do not intend to propose
a method for embedding dimensionality selection but
examine the effectiveness of a smaller dimensionality
instead, based on the assumption that a small dataset
would require smaller word embedding dimensionality.
Therefore, in both the first and second approach, the
values of 300 and 128 respectively were chosen as the
size of word vectors, and results obtained from these
two choices were presented in Table II.

3.3 Network Structures

In order to effectively combine sender’s properties
with the email content, we propose the network struc-
ture at Figure 1.

An email’s content is represented by a series of word
vectors. The representation of the content part is an
m × n matrix where m is the length of the text and n is
the dimensionality of the word embeddings. The doc-
ument length n is fixed at 300 to ease the experiments
using the Keras API. Messages which are more than
300 words long are trimmed and those which contain
less than 300 words are left-padded with zeros. There
are 1,472 emails which are more than 300 words long,
which accounts for 12.15% of the dataset. The mean
length of those emails is 554, meaning 254 words are
trimmed from them in average. The proposed method
assumes that it is adequate to read the first 300 words
of an email message to figure out it’s importance level.
This assumption is based on the following reasons: (a)
most email messages in the collected dataset are shorter
than 300 words; (b) typically, the main point or general
idea is placed at the beginning of a message and it is
counter-productive as well as counter-intuitive to do the
opposite. The sender information is encapsulated in a
vector whose size is 6. These two parts do not match
in shape so they cannot be merged directly. However, a
recurrent layer (a.k.a. recurrent network) can be used to
process the series of word embeddings one by one and
produce a vector as output. For textual content, which is
a type of temporal data, a recurrent network such as the
LSTM is the typical choice. An LSTM layer receives one
word vector at a time and outputs one real value per
internal unit. In other words, its output is a real-valued
vector whose size equals the number of internal LSTM
units. Each word vector fed to an LSTM layer causes
its internal state to change, which in turn changes the
values in its output vector. After all word vectors of a
document are fed, the output vector is the prediction
result of the LSTM layer for the input document. It is a
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Figure 1. Proposed neural network structure for combining content features (word embeddings) with social features (sender’s properties).

common practice to use the output of a recurrent layer
as input to a feed-forward network such as MLP, CNN
or perceptron. By concatenating the recurrent layer’s
output with sender’s properties, sender information is
effectively added to the representation of email content
produced by the RNN. The concatenated vector is the
combination of features from both content and sender.
It can be used as input for further classification, e.g.
by subsequent feed-forward layers. The fact that the
output of an RNN is not a type of sequential data
makes feed-forward networks the better candidates for
processing the above-mentioned combined input vector.

3.4 Training the Networks
The training algorithm plays a significant role in

the success of neural network training. Although the
basic approach of training a deep neural network is
using gradient descent with back-propagation, many
specific gradient-based learning methods have been
proposed to suit different network models and data.
Each algorithm prioritizes a different subset of features
and has a different way of moving the model in the
search space, all to serve the purpose of finding an
optimum set of weights for the neural network.

Adagrad [17] computes and maintains learning rates
for individual units. The algorithm seeks to lower the
learning rates of popular (regularly updated) features
and raise that of infrequent ones, making the network
rely more on rare, highly predictive features.

RProp [18] is another gradient descent variation
where weights are adjusted using the sign and not

the magnitude of the gradient. The adjusted amount is
governed by an adaptive step size which is associated to
individual weight. RMSProp [19] is a modified version
of RProp for training with mini-batches. It addresses a
problem with RProp which occurs when the gradients
of successive mini-batches vary by a large amount,
resulting in sudden weight increments or decrements
because of magnified step size.

The Adam [20] algorithm also maintains adaptive
learning rates for each unit’s weight in a layer but,
differently from Adagrad, it does it by incorporating
the momentum mechanism. This mechanism involves
taking a number of recent gradients into account when
determining learning rates for the current iteration of
weight update.

Cross-entropy (a.k.a. log loss or logistic loss) is the
default choice of loss function for classification prob-
lems. This loss measures how confident a model’s
prediction result is. A 5-class classifier with a softmax
(a.k.a. probability) output will generate a probability
distribution which consists of 5 real numbers. Each
number can be considered the prediction score for one
of the 5 classes. The final prediction result is the class
with highest predicted score. The distance between the
score of the predicted class and other scores indicates
how confident the classifier is about its prediction. A
large distance results in a low cross-entropy value,
which means that the classifier is more confident with
its results. Cross-entropy assumes no relativity between
classes, meaning that an email is not concluded as being
more important than another.
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Alternatively, loss functions which are usually used
for regression models (such as Mean Squared Error or
Mean Absolute Error) can be applied for this problem
with the assumption that the emails actually have rel-
ative importance levels and that the distance between
any two consecutive importance levels is fixed. In the
context of this paper, it can be said that the difference
between an important read email and a delete email is
twice as much as that between an important read email
and an unimportant read email.

Over-fitting is an undesirable phenomenon in which
a model fits the training data so well that it loses
generalization and has inferior performance on valida-
tion data. Over-fitting happens especially when training
data is not highly representative. Training data is a
subset of real data and do not cover all possibilities,
thus the objects in the training set are called samples.
The fundamental hypothesis of machine learning is
that an ideal training set is able to represent all real
data since it possesses the necessary features and the
probability distribution of each feature resembles that
of the real data. However, in real practice, there is a
significant difference between the probability distribu-
tion of the training set and that of the real data, making
the training data noisy. Over-fitting happens when the
trained model also learns the noise from the training
data, resulting in inaccurate predictions for the objects
that it has never seen. Some of the techniques to avoid
over-fitting are to improve the training data’s represen-
tativeness or to stop training early to prevent the model
from learning the noise. Dropout [21] is a technique to
avoid over-fitting when training neural networks. This
technique works by randomly disconnecting a portion
of units in a particular layer during training. The aim
is to avoid the situation where only a few units have
significantly stronger impact than the remaining ones
in a layer.

4 Experiments

During the research work, there is not a public email
dataset with suitable labels for 5-level email prioriti-
zation. Therefore, the authors proceeded to build one
by collecting emails from personal inboxes and from
colleagues. The collected emails contain messages in
both English and Vietnamese. For the experiments in
this paper, only Vietnamese emails are selected. A
simple tool was built to detect and remove duplicated
or very similar messages. This tool calculates similarity
between emails based on the Euclidean distances of
one-hot encoding vectors. This tool removes one email
out of a pair when the similar portion between them
is more than 75% of the shorter message. Out of 7
collected email inboxes, 12,118 Vietnamese messages
were selected and labeled by each email account owner.

For each attempt of model training, the dataset is
split into train and test datasets with the ratio of 90% for
training and 10% for testing. In order to conduct k-fold
cross-validation with k = 10, the dataset is divided into
10 parts which have roughly the same ratio of labels.

Each experiment is repeated 10 times so that each part
of the dataset is used once for testing. The reported test
results are averaged values of the measurements.

H(y, ŷ) = −∑ yi ∗ ln ŷi (2)

To evaluate the experimented models, three met-
rics are used: accuracy, cross-entropy loss and macro F1
macro [22]. These metrics are suitable for multiclass clas-
sification problems which do not make the assumption
of relativity between classes. Accuracy is the portion
of correct predictions over all predictions. The cross-
entropy loss (2) is used to measure the difference be-
tween the classification result ŷ with the desired result
y. The closer the prediction to the desired result is,
the lower cross-entropy gets. A low cross-entropy value
indicates that a classifier is more confident with its
predictions.

Pm
∑l

i=1
tpi

tpi+fpi

l
(3)

Macro F1 score (5) is calculated from macro preci-
sion (3) and macro recall (4). The macro metrics are
obtained by first calculating the metrics for each label,
and then take the unweighted average of these values.
In opposite, micro metrics are the global average of met-
rics on individual samples. In classification problems
in general, F1 score is the balance between recall – the
completeness of the prediction results – and precision –
how reliable the prediction results are. In a multiclass
(greater than 2) classification problem, micro F1 score
does not make sense since it is not possible to properly
calculate precision and recall without narrowing the
scope down to each label. Specifically, instead of four
different outcomes as in binary classification (true pos-
itive, true negative, false positive, false negative), there
are only two possible outcomes (correct, incorrect) in a
multiclass problem.

Rm
∑l

i=1
tpi

tpi+fni

l
(4)

All experiments are executed on a c5.4xlarge cloud-
based server on the Amazon Web Services EC2 plat-
form. The c5.4xlarge server is equipped with 16 vCPU,
each vCPU is a thread (a.k.a. a logical core) of an Intel®
Xeon® (Cascade Lake) processor [23], core speed is up
to 3.0 GHz.

Macro F1 =
2 × Pm × Rm

Pm + Rm
(5)

4.1 Experiment 1
The goal of this experiment is to compare different

neural network optimizers. The authors conducted ex-
periments on three popular optimizer choices: Adam,
RMSProp and Adagrad. These algorithms are popular
variations of the classic SGD algorithm. They have
different set of configuration parameters. The suggested
defaults from their papers will be used in this experi-
ment. The variable α is used to denote the initial learn-
ing rate while ε is a small number, usually 10−8 to 10−7,
used for avoiding division by zero. The recommended
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Figure 2. Data pre-processing workflow for experimenting on the network described in Figure 1.

α value for all three algorithms is 0.001. Each algorithm
also has unique tuning parameters. For Adam, the
parameters are set to β1 = 0.9 and β2 = 0.999. For
Adagrad, the initial accumulator value is set to 0.1. For
RMSProp, the discounting factor rho is set to 0.9 and
initial momentum starts at a value of 0.

For the same network model described in Figure 1,
separate attempts will be made using pre-trained
word2vec embeddings and trainable Embedding layer
with dimensionality of 128. The results of this exper-
iment are recorded in Table I using the three men-
tioned metrics. The pre-processing workflows for the
two experiment setups are illustrated in Figure 2. It
is important to clarify the difference between the pre-
trained word embedding configuration and the online
embedding one. The output of Gensim’s word2vec
algorithm consists of a list of words and correspond-
ing word vectors. The Embedding layer of the DNN
(Figure 1) in online embedding experiment does not
require the weights from word vectors. On the other
hand, these weights are needed to initialize weights for
the Embedding layer in pre-trained embedding setup.
Therefore, the same list of words (i.e. vocabulary) is
used by the DNN in the online embedding experiment
for consistency.

4.2 Experiment 2

The RMSProp optimizer has shown the highest over-
all performance in the previous experiment. However,
the effectiveness of different embedding sizes is still in
question. The authors trained the proposed model with
different word embedding dimensionalities, namely
128 and 300, using RMSProp as optimizer. Pre-trained
word2vec embeddings are created from training data
using the word2vec implementation in the Gensim, a
natural language processing toolkit. The resulting word
vectors are imported as weights into an Embedding
layer in the proposed neural network model. This
Embedding layer is set to be untrainable, meaning its
weights are not modified during network training.

4.3 Experiment 3

In this experiment, the authors reproduced the re-
sults of the classification approach from [5] using the
described dataset. The SVC1 model, which is a Python

Table I
Comparing Three Popular Neural Network Training

Algorithms

Optimizer Accuracy Macro Cross-entropy
(a) (b) (a) (b) (a) (b)

Adam 0.6641 0.9115 0.3769 0.8641 6.6992 0.6650
Adagrad 0.5209 0.6448 0.1374 0.5090 1.7875 1.0729
RMSProp 0.7134 0.9126 0.5014 0.8632 5.9510 0.7260
(a) 128-d online embedding, (b) 128-d pre-trained word2vec

Table II
Comparing Different Word Embedding Setups

Accuracy Macro F1 Cross-entropy
128-d pre-trained 0.9126 0.8632 0.7260
300-d pre-trained 0.9185 0.8764 0.7146
128-d online 0.7134 0.5014 5.9510
300-d online 0.7900 0.5918 4.2800
* The RMSProp optimizer is used in the above 4 attempts.

Table III
Comparing the Proposed Neural Network Model Figure 1 to

Multiclass (OVA) SVM Model from [5]

Accuracy Macro F1 Cross-entropy
DNN*, 300-d pre-trained 0.9185 0.8764 0.7146
OVA-SVM, epoch=50 0.7137 0.4529 0.7893
OVA-SVM, epoch=100 0.7847 0.5550 0.6161

implementation of SVM classifier, from the scikit-learn
toolkit is adapted. To carry out this experiment, words
segmented from email content are used to generate TF-
IDF vectors, each vector represents an email message.
To construct sample vectors in TF-IDF format, the email
texts are segmented into words using the same steps
as described in the data pre-processing section. For
the comparison to be consistent, the selected voting
mechanism for multiclass classification is OVA since
the softmax output of the proposed model shares the
same principles – each element of the softmax output
corresponds to the model’s prediction for a particular
label. The multiclass prediction model based on SVM
classifier and TF-IDF features is compared to the pro-
posed model with 128-d word vectors and trained using
RMSProp optimization algorithm.
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5 Conclusion

In this paper, the authors proposed a classification
model for email prioritization based on deep learn-
ing techniques. The proposed neural network utilizes
not only state-of-the-art deep learning techniques, no-
tably the LSTM units, but also a rich set of content
and social features. Word embeddings generated with
the word2vec algorithm are used as content features
to meaningfully denote the email body. The various
sender-related statistics are extracted to build a vector
of social features. Experiments were done on a collected
dataset of Vietnamese personal emails to investigate
the effectiveness of the proposed model. The repre-
sentation of content features using word2vec and the
addition of sender’s properties significantly improve
the performance of a prediction model for email prior-
itization compared with a traditional machine learning
approach such as SVM classifier and TF-IDF feature
extraction. Additionally, this paper presented a few
comparisons between different neural network con-
figurations regarding word embedding dimensionality
and the choice of optimizer. Bi-LSTM has been re-
ported [24] to improve text classification performance
for its capability to simultaneously learn the context
information from both directions of the text. ELMo
and BERT are emerging word embedding techniques
which obtained state-of-the-art performances [25] in
various tasks. However, due to their high computational
complexity, the authors are only capable of using pre-
trained representations and thus decided not to include
them in the current work. In future research, the au-
thors wish to experiment with these techniques for text
representation as well as unexplored neural network
models, such as Bi-LSTM, for the email prioritization
problem.
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