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Abstract– This paper proposes an applicable and scalable approach which allows deploying the fingerprint Wi-Fi localization
algorithm for different mobile devices. The original fingerprint localization algorithm performs accurately when the mobile
device used in the deployment phase is the same as the mobile device used in the training phase. However, when a different
mobile device is used in the deployment phase, a time-consuming re-training step (in the order of hours or days) is required
to achieve the equivalent degree of accuracy. Our proposed approach replaces this re-training step by a short period of
calibration (in the order of a few minutes), which can be done transparently to the user. To validate our approach, we did
an analysis on collected data from a large scale experiment (14 laptops and 2 smartphones with 224-hour of collected data)
and evaluated the performance on the real devices.
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1 Introduction

In ubiquitous computing, locating user’s mobile device
is one of the key issues to enable transparent and
immediate services to user. Several localization tech-
niques have been proposed that are based on GPS [1],
cellular [2–4] or Wi-Fi [4–19] technologies. Although
GPS-based technology has been improved to get the
accuracy of up to a few meters [1], it can only be applied
for outdoor locations since GPS signals from the satel-
lites can be blocked easily by buildings, trees and other
obstacles. Other localization approaches using Blue-
tooth devices are for short distances since Bluetooth
signals cannot propagate very far. Approaches using
cellular technology [2–4] can work for both outdoor
and indoor locations (covered by cell towers) but offers
low accuracy (several hundred meters). Recently, many
approaches using Wi-Fi (802.11) signals [4–19] have
been proposed for indoor locations thanks to their high
accuracy rate and the increasingly popularity of the
802.11 access points. According to [5, 6], Wi-Fi based
localization algorithms can be divided into four main
categories: range-based, range-free (such as centroid [7,
8]), scene matching (such as fingerprint [5, 9]), aggre-
gate and singular. Each of them has different strengths
and weaknesses. Among those, fingerprint algorithms
have been shown to offer very good results with high
accuracy [5, 9] comparing to other approaches.

Techniques using fingerprint algorithm usually have
two phases: training and testing (deployment). In the
training phase, signal strengths are collected from all
locations to infer the characteristics (fingerprint) of each
location. After that each location is associated with
the characteristics of OSSes (observed signal strengths)
from the available APs. In the deployment phase, the

location of the mobile device is detected using the
knowledge from the training phase. More specifically,
the algorithm chooses k locations with the smallest
distances (such as Euclidean distances) between the
locations’ fingerprints and the OSSes. The location of
the device is then reported to be within those k loca-
tions. The choice of k depends on the accuracy of the
applications.

Fingerprint approaches yield high accuracy com-
pared to other approaches [5, 9]. However, the knowl-
edge inferred in the training phase relies on a specific
training mobile device, and thus the localization algo-
rithm in the deployment phase may not work accu-
rately for new mobile devices since different mobile
devices, with different hardware and operating sys-
tems, may observe Wi-Fi signals differently. Our initial
test showed that the accuracy may degrade severely
(15 times) when different mobile devices are used
in the training and deployment phases comparing to
when the same mobile device is used in both phases.
Hence, full re-training is normally required for each
new mobile device to obtain the highest accuracy. This
full training, however, is very expensive because it
may require user to collect Wi-Fi signals from many
positions for a long duration (in the order of hours
or more depending on the accuracy and the size of
the locations). For scenarios with many mobile devices
from different users, full training for each new mobile
device becomes impossibly practical.

In this paper, we described a method to allow deploy-
ing fingerprint algorithm for different mobile devices in
the deployment phase without requiring the expensive
re-training step. In this method, a sample mobile de-
vice is used in the training phase (as in the original
fingerprint algorithm). However, in the deployment

1859-378X–2011-0305 c© 2011 REV



168 REV Journal on Electronics and Communications, Vol. 1, No. 3, July – September, 2011

phase, each new mobile device is calibrated through
a partial training (in the order of a few minutes) to
infer the conversion formulas. Once the formulas are
inferred, the Wi-Fi signals observed by the new device
can be converted to the sample mobile device and
thus, the fingerprint algorithm can work on the new
device immediately. The advantage of this method is
the replacement of the expensive re-training step by
a quick calibration step. Note that our approach does
not change the fingerprint algorithms. Instead, it works
together with any existing fingerprint algorithms to
minimize the cost of training new mobile devices. For
generality, we assume no knowledge of the source code
of the underlying operating systems or wireless card’s
drivers of the mobile devices.

2 Related Work

2.1 Localization Applications
Maps and navigation systems are the most pervasive

application. It is useful for both civilian and army
purposes. Based on the reported user’s current loca-
tion, other enhanced assistances such as identifying the
nearest restaurant or bank can be applied. Location
tracking can be used for security enhancement such as
theft detection (e.g. software iLocalis [20] for iPhone);
child monitoring for parents to supervise their children,
(e.g. software SniperSpy [21]). Some locative media ap-
plications such as Smart Party [22] or Location-Driven
Fiction [23] also need localization techniques. Addition-
ally, location is an important factor to be considered for
research on user’s behaviors or data mining.

2.2 Localization Algorithms
Many localization techniques using 802.11 have been

developed recently. For outdoor environment, GPS is
likely the best choice because it gives very high ac-
curacy, up to a few meters [1]. Nevertheless, it does
not work in indoor environment (Section 1). Techniques
using cellular technology can work both in indoor
and outdoor but give low accuracy [2–4]. With the
rapid increasing of 802.11 APs, Wi-Fi is a favorable
technology nowadays [4–19].

There are several Wi-Fi based localization algorithms.
Most of them contain two phases: off-line (training)
phase and on-line (deployment) phase. In the off-line
phase, they build a map which contains location indica-
tors. In the deployment phase, the estimated location is
obtained by searching the map for the most appropriate
location corresponding to the OSSes. Based on the
method used to build the location indicators and how
to use them in deployment phase [5, 6], classifies some
of localization algorithms as following.

Range-based family: These algorithms extract the
received signal strength index (RSSI), time of arrival (TOA),
time difference of arrival (TDOA), angle of arrival (AOA)
from APs to estimate the distances. For instance, in the
RSSI [10], the relationship between the signal loss and
the propagation distance can be expressed as following:

I(r) = cr−a, (1)

where I(r) represents OSS at distance r, c > 0 is
a constant or environment dependent variation, and
parameter a > 0 is not fixed and depends on situa-
tion. Since OSS is some interpretation of wave energy,
for ideal case, a is 2 (i.e. wave energy is inversely
proportional to the square of distance [11]). However,
for indoor environment with many obstacles, these
algorithms do not yield high accuracy because they do
not take into account the effects of obstacles on the OSS.
Furthermore, for short distance, it is extremely difficult
to calculate the time-of-flight mentioned earlier.

Range-free family: Rather than use precise physi-
cal property measurements, range-free algorithms use
coarser metric like connectivity or hop-counts to land-
marks to place bounds on candidate positions. Centroid
algorithm [7, 8] is an example. Techniques using the
centroid algorithm are simple and very fast to compute
and do not require wave propagation model. They
build a lookup table: each entry represents an AP
with its coordinates. In the on-line phase, the estimated
location is the center of all coordinates from observable
APs. Weighting by OSSes is an improved version of this
algorithm. However, many experiments [7, 8] show that
the algorithms in this family do not give high accuracy
for indoor and even outdoor environment.

Scene matching: Many algorithms fall into this cat-
egory [11–16]. A radio map of the environment is
constructed, either by measuring actual samples, using
signal propagation models, or some combination of the
two. A node then measures a set of radio properties
(often just the OSSes of a set of landmarks), the finger-
print, and attempts to match these to known locations
on the radio map. These approaches are almost always
used in indoor environments because signal propa-
gation is extensively affected by reflection, diffraction
and scattering, and thus ranging or simple distance
bounds cannot be effectively employed. Matching fin-
gerprints to locations can be cast in statistical terms,
as a machine-learning classifier problem [13], or as a
clustering problem [16]. Among these, fingerprint is a
simple algorithm [5, 9] but achieves high accuracy [5, 9].
The fingerprint localization algorithm also includes two
phases as mentioned earlier. In the training phase, each
location is associated with average signal strengths ob-
served by the sample device for each AP at this location.
In other words, each location i can be represented
as a vector xi containing average signal strengths of
each AP. In the deployment phase, the location k of
a deployed mobile device is estimated based on the
observed x of that device at that location. The estimated
location of k is the location with minimum Euclidean
distance to x. The algorithm works best only when the
sample device and the deployed device are the same.
When the deployed device is different from the sample
device, the accuracy degrades significantly (8.6 meters
on average and more than 15 meters on the worst case
in our experiment) because the capabilities of Wi-Fi
observation of two mobile devices are different due to
hardware, wireless card, operating system, drivers and
other software. The current solution to this problem is
to build a new training set for this new mobile device.
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However, this re-training step is extremely expensive.
For example, it may take up to more than three hours
for training an area of 80 meter square. Thus, it is
not scalable for deployment with different user devices.
Therefore, in this paper, we proposed an approach to
solve this problem by introducing the calibration step
for each new device. The purpose of the calibration
step is to infer the conversion formulas so that the
knowledge from the training step can be used for the
deployment step. This calibration step can be done
quickly and transparently when the user first enters the
site (at the ticket booths or the entrances).

Aggregate or singular: Aggregate approaches use
collections of many nodes in the network in order to
localize (often by fooding), while localization of a node
in singular methods only requires it to communicate to
a few landmarks. For example, algorithms using opti-
mization [17] or multidimensional scaling [18] require
many rounds of estimates between nodes.

3 Proposed Approach to Make

Fingerprint Localization Algorithm

Accurate & Scalable

3.1 Our Approach

According to 2.2, the main problem of fingerprint lo-
calization algorithm is the reduction of accuracy when
the deployed device is different from the sample device.
A full re-training step for new devices can increase
the accuracy but also requires lots of time and efforts,
which makes the algorithm not scalable. In order to
solve this problem, we propose a new stage called
calibration phase, which takes a few minutes. This
phase occurs before the deployment phase (Figure 1).

In our approach, full training is performed only once
for the sample device as in fingerprint approach. In
the calibration phase, the newly deployed device is
put at some well-known locations (usually a few) and
observes signal strengths from APs. From these data
together with the data of the sample device also at
these well-known locations, we can infer a relationship
between signal strengths observed by two mobile de-
vices in a form of a conversion formula. From now
on, the deployed mobile device can be localized with
the training set of the sample mobile device. Indeed,
in the deployment phase, the OSSes of the deployed

Figure 1. The scheme of our approach.

mobile device are converted through the conversion
formula which makes them applicable to the OSSes of
the sample mobile device. This calibration step is much
less expensive than the full re-training as in the original
fingerprint algorithm. This is an important factor to
make it scalable. The next paragraph will discuss how
to find the conversion formula.

According to [11], the signal strength is inversely
proportional to the square of distance. In other words,
if y is the signal strength value and x is the distance
between the current location and the AP, we have y = a
/ x2 + b. Different devices may have different coefficient
values (a, b) due to the differences in hardware, device
drivers, and OSs. This explains why different devices
may observe different value of signal strength at the
same location. If the OSSes follow the formula above,
we expect the conversion formula between two different
devices is linear (even when the values (a, b) vary
for different mobile devices/APs). To verify this, we
deploy Pearson product-moment correlation coefficient,
or correlation for short [24]. Let X and Y be the
random variables indicating the signal strengths from
two devices respectively. Correlation coefficient is a
quantitative scalar ranging from –1 to 1 inclusive, where
values of ±1 indicate a perfectly linear relationship
between two variables (+1 indicates X increases as Y
increases and –1 indicates X decreases as Y increases)
and a value of 0 indicates no linear relationship. The
correlation coefficient r is determined by the following
formula.

r =
n ∑ xy−∑ x ∑ y√(

n ∑ x2 − (∑ x)2
) (

n ∑ y2 − (∑ y)2
) , (2)

where n is the number of samples, i.e. the number of
correspondence signal strengths between two mobile
devices.

In the next section, we are going to present our data
collection, which is needed for the calculation of these
correlation coefficients between pairs of mobile devices.

3.2 Data collection

In this experiment, we collected an extensive set
of OSSes from different mobile devices at different
locations. The purpose of this large scale experiment
is to analyze the behavior of the signal strengths which
might affect the conversion algorithms in the calibration
step. The data is also used to validate the performance
of our approach described in Section 4. The data was
collected at floor 5 and 7 in an 11-floor building on
two different days (two trials). At each day (trial), we
collected data from both floors 5 and 7. The two trials
were one month apart to analyze the variance of signal
strengths over time and its effects. Each floor is divided
into 58 cells (representing 58 locations), where each
cell is 1.2m x 1.2m. At each cell, each mobile device
recorded the OSSes from all available APs. On average,
there were at least 10 APs observed in all locations of
the experimental area. 14 laptops and 2 smart phones
(Table I) were used to collect the data. These devices,
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Table I
Information of Devices Used to Collect Data

Device Platform OS Wi-Fi card
1 Sony VPCEB Win

7x64
Atheros AR9285

2 Asus X82 Q Win 7 Atheros
3 Toshiba Satellite

A105-s4064
Win 7 Intel(R) 3945ABG

4 Dell latitude d630 Win 7 Intel(R) 3945ABG
5 Asus Win 7 Atheros AR5007EG
6 Dell Vostro 1400 Win XP Intel(R) 3945ABG
7 Toshiba Satellite

u305-s2806
Win 7 Intel(R) 3945ABG

8 HP Compaq 6730s Win 7 Intel(R) 5100 AGN
9 Acer Aspire 4920G Win 7 Intel(R) 3945ABG

10 Acer Aspire 5740 Win 7 Atheros AR5B93
11 Compaq Presario

F577AU
Win 7 Broadcom

802.11b/g WLAN
12 Dell Inspiron 1545 Win 7 Dell 1397 WLAN

Mini-Card
13 Toshiba Satellite

L310
Win 7 Intel(R) 4965AGN

14 Dell Win 7 Intel(R) 3945ABG
15 Phone Sony

Ericsson X10
Android

1.6
Unknown

16 Phone HTC Desire Android
2.1

Unknown

equipped with various wireless cards and operating
systems, were provided from a group of volunteer
students. The wireless signals were recorded at all cells
using Vistumbler software [25]. At each cell, the device
was put at center, aimed eastward and collected signals
from all APs continuously for at least 200 scanning
points (4 to 6 minutes). More than 60 students volun-
tarily helped collecting data for four full days (2 trials
× 2 floors). The total size of the collected data from
all devices is equivalent to 224 hours of recording Wi-
Fi signals. Figure 2 shows the position of the cells at
floor 5. The same layout was applied at floor 7. At
each location, different devices may observe wireless
signals differently. This is because different devices may
be equipped with different wireless cards from dif-
ferent manufacturers. Additionally, different OSs may
interpret the raw data observed by the wireless card
differently and may adjust them accordingly before
reporting it back to our monitor software. Therefore,
we assume no knowledge of the source code of the
device driver or how the operating system re-adjusts
the OSSes for each device.

3.3 Correlation Results

From the collected data above, we now can calculate
the correlation coefficients (Section 3.1) for all pairs of
devices.

Table II shows the correlation coefficients r of 13
pairs of devices. Because of the transitivity of linear
relationship, it is sufficient to calculate the correlation
coefficients of device 1 to the remaining devices. The
result from Table II shows that these pairs have high
values of r. In fact, the r values of all pairs are greater
than 0.76. Among those, the r values of 13 pairs (87
percent of the pairs) are greater than 0.9. Since the
values of r’s are very close to 1, there is strong evidence
that signal strengths from a pair of devices have linear

Figure 2. The map of 58 cells in floor 5 with positions of some APs.

Table II
Correlation Coefficients of Pairs of Devices

Pair of devices r value
1 – 2 0.948
1 – 3 0.878
1 – 4 0.921
1 – 5 0.759
1 – 6 0.946
1 – 7 0.933
1 – 8 0.949
1 – 9 0.927

1 – 10 0.906
1 – 11 0.916
1 – 12 0.928
1 – 13 0.950
1 – 14 0.841
1 – 15 0.940
1 – 16 0.927

relationship. Based on this observation, in Section 4,
we proposed a conversion formula to allow the quick
deployment of fingerprint localization algorithm for
new devices without the expensive re-training step.

4 Calibration Algorithm and Results

4.1 Calibration Algorithm
As discussed in Section 3, our goal is to design a

calibration step which takes input as corresponding
signal strengths from two mobile devices at some “well-
known” locations and produces the conversion formula
f . We will formulate the problem by calling the corre-
sponding average mean of signal strengths from the
deployed and sample devices are xi and yi respectively
(i = 1, . . . , n), where n is the number of correspondence
signal strengths between two mobile devices. We need
to find coefficients b1 and b0 of the line (y = b1x + b0)
such that E in (3) is minimized.

E =
n

∑
i=1

(yi − b1x1 − b0)
2 . (3)

This model is called linear regression [24]. We see that E
is convex and the domains of b1 and b0 are convex sets.
Hence, its only one critical point is the local minimum,
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and also the global minimum. We can find it by taking
derivatives of E with respect to b1 and b0.

∂E
∂b1

=
n

∑
i=1
−2xi (yi − b1xi − b0)

∂E
∂b0

=
n

∑
i=1
−2 (yi − b1xi − b0)

(4)

Setting these derivatives to 0 yields
n

∑
i=1

xiyi = b1

n

∑
i=1

x2
i + b0

n

∑
i=1

xi

n

∑
i=1

yi = b1

n

∑
i=1

xi + b0n
(5)

This is a linear system of b1 and b0. Solving this system,
we obtain the solution in (6).

b1 =
∑n

i=1 xiyi − 1
n ∑n

i=1 xi ∑n
i=1 yi

∑n
i=1 x2

i −
1
n (∑n

i=1 xi)
2

b0 =
1
n

n

∑
i=1

yi −
a
n

n

∑
i=1

xi

(6)

For computational simplicity (especially with some
CAS like Matlab), we can use matrix representation for
these calculations. Let view the original data as matrix
representation as following:

y =
[

y1 y2 . . . yn
]T , (7)

X =

[
1 1 . . . 1
x1 x2 . . . xn

]T
, (8)

b =
[

b0 b1
]T . (9)

Thus E can be expressed as following:

E = ‖Xb− y‖2 = (Xb− y)T (Xb− y)

= bTXTXb− 2bTXTy + yTy
(10)

Taking derivative of E with respect to vector b, we
obtain:

∂E
∂b

= 2XTXbT − 2XTy. (11)

Setting (11) to 0 and solving for b, we obtain:

b =
(

XTX
)−1

XTy. (12)

The solution in (12) and (6) is the same and it is the
unique solution of the original problem. In (11) to (12),
we implicitly assume that XTX is invertible. Indeed, in
most of the cases, this is true because we obtain X by
measurements (observations from deployed devices).
All measurements cannot be identical. Thus, X is full
column rank, so XTX is full rank and it is invertible.
In the case that the deployed device actually observes
identical values, we need to go to another location for
the calibration step.

(a)

(b)

Figure 3. Linear conversion of AP AP1-Lau5 from phone 15 to
laptop 1.

4.2 Results

Evaluate the conversion formula: This evaluation is
only based on the two devices’ signal strengths, and
is independent with localization algorithm. We only
show the conversions of two APs from two pairs of
devices. Other pairs have similar pattern. Note that our
calibration method can be applied for most Wi-Fi based
localization algorithms with the same problem of the
expensive re-training step (as in fingerprint approach).
Figure 3 and Figure 4 show the performance of the
linear regression approach when converting the signals
observed by smartphone 15 to laptop 1 and laptop 6
to laptop 1 for 9 different locations. In Figure 3, the
white and black bars are the AP1-Lau5 signals observed
by device 1 and device 15 respectively. The crossed-
bar is the converted signals from the observed ones
by device 15. The closer between the white and the
crossed bars are, the better it is. In this figure, the
calibration is at cells 10 to 15. Figure 3 shows the
signal strengths of device 1 (a laptop), device 15 (a
smart phone), and converted signals from device 15 to
device 1 using linear formula (confidence intervals are
at 90%). We show only the first 18 cells (the other cells
experience similar pattern). Similarly, Figure 4 shows
the conversion of FIT signal strengths from laptop 6 to
laptop 1. From Figures 3 and 4, the converted signals
are much closer to the signals of sample device. We
tried all pairs of devices but due to the space limit, we
cannot display all results here.
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(a)

(b)

Figure 4. Linear conversion of AP FIT from laptop 6 to laptop 1.

Validate our calibration approach with the fingerprint
localization algorithm: To validate our approach, we
implemented the calibration step using the linear con-
version method on a simple fingerprint localization
algorithm. Note that our approach does not depend on
a particular localization algorithm. It can be applied for
other localization algorithm. We chose the fingerprint
to deploy our calibration since it is simple and has
been shown to provide good accuracy level [5, 9]. We
used 60% of the data collected from each mobile device
for the training set. The remaining 40% of the data
was for the testing set. In the deployment phase, the
location with the smallest Euclidean distance to the
OSSes (from testing set) was reported. We evaluated
the performance of our linear approach by comparing:
non-converted for the same device (NCSD), non-converted
for different device (NCDD), and converted for different
device (NCDD). The NCSD is the original fingerprint
algorithm where the same device is used for both
deployment and training phases. This is the ideal case
but not very realistic on real deployment since new
user can bring in any new device. The NCDD is the
original fingerprint algorithm where the device used
in the deployment phase is different from the one used
in the training phase without calibration. The CDD is
our calibration approach where the device used in the
deployment phase is different from the one used in the
training phase and calibrated.

Table III shows the average errors of the three ap-
proaches over 58 cells. In Table III, the cells marked with
“x” are not applicable. For example, the pair laptop 1

Table III
Average Errors in Meters over 58 Cells

Sample–Deployed Devices Average Errors in Meters
NCSD NCDD CDD Gain

Laptop 1 – Laptop 1 0.71 x x x
Laptop 1 – Laptop 2 x 7.71 3.29 4.42
Laptop 1 – Laptop 3 x 2.72 1.92 0.80
Laptop 1 – Laptop 4 x 7.28 4.72 2.56
Laptop 1 – Laptop 5 x 3.91 3.04 0.87
Laptop 1 – Laptop 6 x 2.46 2.48 –0.02
Laptop 1 – Laptop 7 x 3.57 3.03 0.54
Laptop 1 – Laptop 8 x 4.79 2.68 2.11
Laptop 1 – Laptop 9 x 3.07 2.81 0.26

Laptop 1 – Laptop 10 x 2.92 2.86 0.06
Laptop 1 – Laptop 11 x 2.18 2.20 –0.02
Laptop 1 – Laptop 12 x 7.23 5.18 2.05
Laptop 1 – Laptop 13 x 8.60 6.48 2.12
Laptop 1 – Laptop 14 x 5.69 2.98 2.71

Laptop 1 – Smartphone 15 x 15.57 3.03 12.54
Laptop 1 – Smartphone 16 x 12.52 5.55 6.97

and 2 cannot have NCSD because they are two different
devices. The gain column describes how much CDD
is better than NCDD, which is actually the difference
between these values. For NCSD (the ideal case), the
average error is extremely low, only 0.71m. Without the
conversion, different devices may suffer an error that
is 15 times worse than when using the same device
(Smarphone 15 and Laptop 1) (15.57m comparing to
0.71m). However, with our approach, the error is much
better, only 3.03m. In Table III, there are two cases of
laptop 6 and laptop 11 where we obtain negative gains
(i.e. our approach is worse than the original fingerprint
algorithm). This is because these devices happen to
observe very similar AP signals and thus, do not need
to be calibrated. Note that these negative gains are too
small and can be negligible. In addition, we observe
that the errors are severe when the deployed devices
are very much different (laptop versus smartphone).
It means that mobile devices from different categories
are strongly recommended to use our calibration step
before deployment.

5 Conclusions

We have proposed a scalable method to convert the
signal strengths between two devices that can work
together with the fingerprint algorithm. Our approach
is validated by the analysis on correlation coefficients
(Section 3) and a real deployment on a simple fin-
gerprint localization algorithm (Section 4.2). Our ap-
proach only requires a few minutes of user time for
the calibration step, which is more practical comparing
to the original fingerprint algorithm, which requires a
full re-training step for every new device. Through a
large set of data collected from many mobile devices,
our approach showed acceptable accuracy when work-
ing with fingerprint algorithm. In other words, there
is strong evidence that our method is applicable for
different mobile devices and makes Wi-Fi localization
become more practical with high accuracy. Moreover,
our approach can be used in other localization algo-
rithms which require conversion of signal strengths.
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6 Future Work

In our experiment, we have not focused on filtering
APs. Different set of APs may yield different accuracy
level. Thus, an AP weighted conversion may improve
the accuracy of the calibration step. Besides, we will
study more about the calibration strategies such as the
time required for calibration, the number of locations
required for calibration, and also the positions of cali-
brated locations. Picking the right device to use as the
sample device may also affect the accuracy. Thus, it
is interesting to discover some criteria for picking the
sample device in the future work.
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