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Abstract– Transform domain Wyner-Ziv video coding (TDWZ) has shown its benefits in compressing video applications
with limited resources such as visual surveillance systems, remote sensing and wireless sensor networks. In TDWZ, the
correlation noise model (CNM) plays a vital role since it directly affects to the number of bits needed to send from the
encoder and thus the overall TDWZ compression performance. To achieve CNM with high accurate for TDWZ, we propose in
this paper a novel CNM estimation approach in which the CNM with Laplacian distribution is adaptively estimated based on
a deep learning (DL) mechanism. The proposed DL based CNM includes two hidden layers and a linear activation function
to adaptively update the Laplacian parameter. Experimental results showed that the proposed TDWZ codec significantly
outperforms the relevant benchmarks, notably by around 35% bitrate saving when compared to the DISCOVER codec and
around 22% bitrate saving when compared to the HEVC Intra benchmark while providing a similar perceptual quality.

Keywords– Transform domain Wyner-Ziv video coding (TDWZ); correlation noise model (CNM); deep learning (DL);
DISCOVER CODEC, High Efficiency Video Coding (HEVC).

1 Introduction

In conventional video coding standards, such as
H.264/AVC [1] and HEVC [2] the compression perfor-
mance is obtained by exploiting spatial and temporal
redundancies. However, due to the complicated mo-
tion estimation process, the encoder usually has high
complexity. On the contrary, the decoder is very light
because the original video is simply reconstructed by
following the instructions of the received information.
This architecture is naturally designed for downlink
applications in which the video sequence is encoded
once and decoded many times. Clearly, this becomes
disadvantageous for uplink applications such as wire-
less sensor networks and surveillance systems (see Fig-
ure 1) in which many encoders deliver data to a central
decoder and devices only have constrained resources in
terms of battery and processing capability. To overcome
this problem, some researches focus on low complexity
video algorithms for predictive video coding [3, 4].

Another approach to meet this scenario is distributed
video coding (DVC) which has been introduced in
the last decade [5–8]. DVC is developed based on
the Slepian-Wolf [5] and Wyner-Ziv [6] theorems. The
Slepian-Wolf theorem states that when two statisti-
cally dependent signals are independently encoded
but jointly decoded, the same rate is achieved when
compared to jointly encoded and decoded systems. The
Wyner-Ziv theorem, an extension of Slepian-Wolf for
the lossy compression, becomes the theoretical basis
for distributed video coding. Based on this concept, the

Figure 1. Examples of uplink video applications: (a) surveillance
system; (b) wireless sensor networks.

high burden motion estimation part can be shifted from
the encoder to the decoder.

Following the theoretical developments, some prac-
tical Wyner-Ziv (WZ) video codecs have been intro-
duced [7, 8]. One of the most popular DVC approaches
is the Stanford DVC codec [8], proposed by Stanford
University using a feedback channel to support the de-
coding process. Later, hundreds of advances have been
proposed by many researchers in order to improve DVC
rate-distortion (RD) performance. So far, DISCOVER
project [9] has been commonly used as the perfor-
mance benchmark in DVC research community. In this
architecture, video frames are split into key frames
and WZ frames. While the key frames are encoded by
using predictive coding solutions, the WZ frames are
encoded by using distributed coding principles. Parity
bits for WZ frames are generated by using channel
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encoder and only these parity bits are transmitted to
the decoder while the systematic bits are eliminated.
In order to reconstruct the original WZ frames at the
decoder, its estimation called side information (SI) is
created. In this case, SI is considered as a noisy version
of the WZ frames and its errors can be corrected by
using parity bits received. Therefore, the compression
performance of DVC codec is improved if the difference
or noise between the created SI and the original WZ
frame is estimated more accurately. However, noise
correlation modeling is very complicated because the SI
is only available at the decoder while the original WZ
frame only exists at the encoder. In addition, SI quality
changes frame by frame and even within each frame. In
other words, estimating the distribution of noise needs
take into account non-stationary characteristics, both in
the temporal and spatial direction.

In the literature, correlation noise modeling parame-
ters can be estimated based offline or online processing.
Offline CNM estimation [8–10] refers to the case CNM
parameters are estimated at the encoder using the
original WZ frame and online CNM estimation [11–
13] means that CNM parameters are estimated at the
decoder without using the original WZ frame. Al-
though offline approaches give better RD performance
than online approaches but it receives little attention
because it is an undesirable scenario. The encoder must
perform the complex motion estimation to create the SI
as the decoder and consequently encoder complexity
is increased. Another approach direction on estimating
correlation noise is proposed in [14–16]. In these works,
the correlation noise model determines the number of
least significant bit (nLSB) bitplanes which is encoded
and transmitted to the decoder and nLSB is computed
at both the encoder and the decoder. While in [14],
an asymmetric CNM solution in which nLSB is seper-
ately computed at encoder and decoder by different SI
generation solutions has been proposed, the solution
in [15] uses the same way in determining correlation
information at both encoder and decoder. In order to
avoid the correlation information mismatch between
the encoder and decoder but keeping the low complex-
ity encoder, adaptive CNM is proposed in [16] using
rate distortion optimization approach. This helps the
codec maintain the low complexity while providing the
better RD performance.

In DVC codecs, CNM is usually modeled by the
Laplacian distribution [17] because it provides the
balance between complexity and model accuracy. In
order to further explore the noise correlation, several
distributions have been examined in the past. In [18],
an exponential power model, sometimes named “Gen-
eralized Gaussian”, is used. Another approach [19]
proposes a combination of two distributions to model
the noise distribution adaptively upon the content of
video sequence. In this work, Laplacian distribution
is still used for AC coefficients but DC coefficients
use alternatively Gaussian distribution and Laplacian
distribution for low motion frames and high motion
frames, correspondingly. To estimate CNM more pre-
cisely, the parameter of CNM is continuously updated

after decoding each bitplane or band [20, 21]. That is
because the more information obtained from previously
decoded bitplanes/bands is exploited for decoding next
bitplanes/bands. The authors in [22] propose a cluster-
ing method for DCT blocks to estimate the Laplacian
parameter of CNM. Results showed that although the
proposed method is performed on cluster level, it can
outperform the noise model at coefficient level.

Recently, neural networks have been applied and
obtained significant success in many areas including
video compression. For traditional video compression
algorithms, a lot of neural network based methods have
been proposed for particular modules such as intra
prediction and residual coding [23], entropy coding [24]
in order to improve the performance of system. For
distributed video coding, several deep learning based
SI generation methods [25, 26] have been proposed.
Authors in [25] use a deep belief network with four
16× 16 key frame blocks as the input blocks to predict
the side information. In [26], extreme learning machine
neural network is used to estimate transformed coeffi-
cients of the WZ frame. These proposed SI generation
schemes have obtained improvements in terms of both
qualitative and quantitative measures.

With remarkable results of using neural networks for
video compression, this paper aims to exploit strong
abilities of neural networks for further performance
enhancement of the TDWZ codec. In this paper, deep-
learning based correlation noise modeling (DL-CNM)
technique that estimates CNM parameters at band level
is proposed. The learning process is carried out on
the residual frame which is created based on the de-
coded key frames at the decoder. Experimental results
shown that the advanced TDWZ with DL-CNM signif-
icantly outperforms the relevant benchmarks, notably
by around 35% bitrate saving when compared to the
DISCOVER codec and around 22% bitrate saving when
compared to the HEVC Intra benchmark while provid-
ing a similar perceptual quality.

The rest of this paper is structured as follows. In
Section 2, the proposed transform domain Wyner-Ziv
architecture is presented. The proposed deep learning
based correlation noise modeling method is introduced
on Section 3. The experimental results and analyses
are described in Section 4. Finally, the conclusions are
presented in Section 5.

2 Architecture of the Proposed

Transform Domain Wyner-Ziv Codec

The transform domain Wyner-Ziv codec proposed and
used to evaluate in this paper is depicted in Figure 2
with the novel modules highlighted. Basically, it fol-
lows the structure of DISCOVER DVC codec [9] with
the exception of DL- CNM block, SI generation block
proposed in [27] and using HEVC Intra [28] instead
of H.264/AVC Intra for key frame coding. Therefore,
we will present in this Section the walkthrough of the
proposed TDWZ encoder and decoder.
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Figure 2. Architecture of proposed TDWZ codec.

2.1 TDWZ Encoder

The video sequence is divided into two kinds of
frames: key frames and Wyner-Ziv frames. In this pa-
per, the size of Group of Pictures (GOP) is equal 2, this
means there is one WZ frame between two key frames.

The key frames are intra encoded where the temporal
redundancy is not exploited by using a conventional
video coding standard which is adopted as commonly
used in DVC literatures [7, 9, 17]. Different from DIS-
COVER [9], key frames in this codec are coded by
HEVC Intra instead of H.264/AVC Intra. Using the
same principle as H.264/AVC Intra coding, HEVC Intra
coding extends it to allow representing a larger range
of textural and structural information in images [28].
HEVC Intra coding saves 22.3% bitrate compared to
H.264/AVC Intra coding with the same objective qual-
ity [28]. For distributed video coding, HEVC Intra
coding is also utilized and assessed in [29]. Experiments
performed allow to conclude that when key frames
are coded by HEVC Intra instead of H.264/AVC Intra,
compression performance of the system is significantly
improved. It is the reason why HEVC Intra coding is
chosen for coding key frames in this paper.

The WZ frames are encoded based on distributed
video coding principles. Each WZ frame is divided into
block size of 4× 4 and each block is transformed into
the DCT coefficients by using a blockwise 4× 4 DCT
transform. These transformed coefficients are arranged
into bands in which coefficients with the same positions
from different blocks belong the same band. In this case,
16 bands are generated and uniformly scalar quantized.
Quantization matrices corresponding to different rates
are chosen as in [30]. Quantized DCT bands are bina-
rized and bits with same significance are grouped into
bitplanes. Bitplanes are given into low density parity
check accumulate encoder (LDPCA) to generate parity

bits. The parity bits, together a Cyclic Redundancy
Check (CRC) computed for each encoded bitplane, are
stored in the buffer. Depending on the request from the
decoder through the feedback channel, parity bits are
transmitted in chunks to the decoder and CRC will be
used to aid the decoder in detecting errors.

2.2 TDWZ Decoder

First, HEVC Intra decoder is used to decode the
key frames and decoded key frames are stored in
the buffer. After that, the side information is created
based on decoded key frames by using a SI generation
technique. In this paper, the advanced SI generation
method proposed in [27] is used. The previously de-
coded key frames are also used to create the residual
frame that expresses the difference between the original
WZ frame and corresponding SI. The detail of proposed
correlation noise modeling used in this paper is intro-
duced in Section 3. The LDPCA decoder corrects the
errors in the side information by using correlation noise
information and parity bits sent from the encoder. After
that, the original DCT coefficients are reconstructed
and then inversely DCT transformed to get the original
WZ frame.

3 Proposed Deep Learning based

Correlation Noise Model for TDWZ
Codec

To understand the proposed DL-CNM method, this
Section will start by introducing the TDWZ noise mod-
eling. After that, it introduces the architecture of the
DL-CNM and the training process. Finally, the Section
will conclude by describing how to use the DL-CNM
in TDWZ.
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Figure 3. Example of noise distribution.

3.1 Correlation Noise Model for TDWZ Codec

In TDWZ codec, SI frame is considered as a cor-
rupted version of corresponding WZ frame and it
provides the input information for LDPCA decoder.
If the estimated SI is more similar to the WZ frame,
the number of errors that need to be corrected by
the decoder is fewer. So, estimating the correlation
noise between SI frame and the original frame is very
important for the RD performance of the codec.

In the literature, this statistical noise can be mod-
eled by various distributions such as Laplacian dis-
tribution [17], Generalized Gaussian [16] or Gaussian
distribution [19]. However, Laplacian distribution is
often chosen because it provides the good compromise
between the model accuracy and the complexity. The
residual frame R = WZ(x, y)− SI(x, y) is modeled as
Laplacian distribution in Equation (1) below:

fR(r) =
α

2
e−α|r|, (1)

where fR(·) is the probability density function and the
Laplacian distribution parameter, α, is computed by:

α =

√
2
σ2 , (2)

where σ2 is the variance of the residual frame.
For TDWZ codec, Laplacian distribution parameter α

can be estimated at different granularity levels: frame
level, DCT band level and coefficient level [17]. Figure 3
illustrates the real histogram of a residual frame in pixel
domain for Foreman sequence.

3.2 Proposed Deep Learning based Correlation
Noise Model

As mentioned above, the Laplacian distribution is
usually chosen to estimate the correlation noise in DVC
codecs. Therefore, in this work, the Laplacian distribu-
tion is also selected for modeling the correlation noise
of the DCT coefficients of the residual frame. Normally,
α is deduced based on the residual frame which is
computed from two motion compensated key frames.
However, α estimated in this manner is different from
the actual value computed by WZ frame at the encoder

Figure 4. Architecture of DL-CNM.

and the SI frame at the decoder. Therefore, to improve
further the correctness of α, a deep learning based
correlation noise model (DL-CNM) in which inputs are
features of DCT coefficients is proposed. The detail of
this method is explained in the following sub-section.

3.2.1 Architecture of DL-CNM: In this study, we im-
plement a neural network including one input layer,
two hidden layers and an output layer as shown in
Figure 4. The input layer with four values X1, X2, X3,
X4 appropriately are four features Min, Max, Mean,
Variance of DCT coefficients in a band of the residual
frame. All layers in network are fully connected. In the
hidden layers 1 and 2, the ReLU activation function is
used. Assuming that X is the set of four inputs, Ŷi,k is
the output at the kth neuron of the ith layer. The output
at a neuron is computed as follows:

Ŷ1,k = g (W1,k ∗ X + B1) , k = 1, 4

Ŷ2,k = g
(

W2,k ∗ Ŷ1 + B2

)
, k = 1, 2

(3)

where Wi,k and Bi are weight matrix and bias parame-
ters of layer i, Ŷ1 is a matrix of outputs at hidden layer
1. g(·) is activation function ReLU and is defined as
follows:

g(x) =
{

0 if x < 0,
x if x ≥ 0. (4)

At the output layer, the linear activation function is
used to compute the predicted value α̂ for a DCT
coefficient band in the correlation noise frame as the
follows:

α̂ = W3 ∗ Ŷ2 + B3, (5)
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where W3 is a weight matrix and Ŷ2 is matrix of outputs
at hidden layer 2.

3.2.2 Training: To obtain the optimal Laplacian pa-
rameters, we use ten video sequences Coastguard, Hall-
Monitor, News, Container, Flower Garden, Mobile, Mother,
Claire, Grandma, Harbour having resolution of 176× 144
(QCIF) and number of frames per sequence is 300 and
frame rate is 15 fps. The reason to select these video
sequences for training is that content of the sequences
includes both low and high motion characteristics. To
extract features for inputs of DL-CNM, ten sequences
are HEVC Intra encoded and decoded with four quanti-
zation parameter (QP) values. The features of kth frame
in a video sequence are extracted at decoder as the
following steps:
• Step 1: Computing the residual frame

Rk(x, y) = F
′
k−1(x, y)− F

′
k+1(x, y), (6)

where (x, y) is coordinate of pixel in a frame, Rk
is the residual frame, F

′
k−1, F

′
k+1 are two motion

compensated decoded key frames.
• Step 2: Transforming the residual frame

Residual frame Rk is divided into 4× 4 blocks then
DCT transform is applied block by block to obtain
DCT coefficients.

Tk(u, v) = DCT [Rk(x, y)] , (7)

where (u, v) is coordinate of blocks 4 × 4 in
a frame.

• Step 3: Extracting features of a DCT transformed frame
DCT coefficients of frame Tk are grouped into
sixteen bands in which Tk,0 includes DC coeffi-
cients and Tk,b (b = 1, 15) refers to AC coefficients
from AC1 to AC15. In each band, four features are
computed as the followings:

X1 = Min
{

Tk,b(i)
}

,
X2 = Max

{
Tk,b(i)

}
,

X3 =
1
N

N

∑
i=1

Tk,b(i),

X4 =
1
N

N

∑
i=1

T2
k,b(i)−

(
1
N

N

∑
i=1

Tk,b(i)

)2

,

(8)

where b is index of bands, N is number of 4 ×
4 blocks in a frame, i is index of coefficients in
a band.

In order to extract the target values of α parameter,
the WZ frame at the encoder is used together with the
SI frame at the decoder to compute oracle correlation
noise parameter. The target value αk,b for b band of kth

frame is extracted as follows:
• Step 1: Computing the actual residual frame Rk(x, y)

Rk(x, y) = WZ(x, y)− SI(x, y) (9)

• Step 2: Transforming the residual frame Rk(x, y)
The frame Tk(u, v) is created by using the Equa-
tion (7) with Rk(x, y) is replaced by Rk(x, y).

• Step 3: Computing the average variance σk,b
The average variance σk,b for b band of kth frame

Figure 5. First frames of test sequences: (a) Akiyo; (b) Foreman;
(c) Carphone; (d) Soccer.

Figure 6. Four quantization matrices.

is computed as Equation (10):

σ2
k,b =

1
N

N

∑
i=1

T2
k,b(i)−

(
1
N

N

∑
i=1

Tk,b(i)

)2

, (10)

where Tk,b is the b band of the residual frame
Rk(x, y)

• Step 4: Computing the oracle value
The oracle value is computed as followings:

αk,b =

√
2

σ2
k,b

. (11)

After encoding and decoding ten video sequences,
the deduced dataset including input and target values
is fed into DL-CNM network to train. In this work, DL-
CNM is implemented and trained by using Google Co-
laboratory [31] with 500 epochs and batch-size equals
to 4. The result of training process is a set of weights.

3.2.3 Using DL-CNM in Transform Domain DVC Codec:
At the decoder, the residual frame and features of DCT
coefficients are computed as Equation (6), Equation (7)
and Equation (8). Using the set of weights in DL-CNM
learned from the above training process, the predicted
parameter α̂ corresponding to the residual frame is
obtained.

4 Experimental Results and Analyses

4.1 Experimental Setup

As mentioned above, with a low complexity encoder,
DVC codec is well suited for applications such as
visual surveillance networks with low resolution due
to small data volumn. Therefore, in this experiment,
four video sequences Foreman, Akiyo, Carphone and
Coastguard with the size of 176 × 144 are adopted to
test. These sequences are chosen because of diverse
characteristics and variety of texture contents. Figure 5
illustrates the first frames of these video sequences. WZ
frames of these sequences are encoded with four 4× 4
quantization matrices (QM) describe in Figure 6. To
achieve the similar quality of WZ frames, key frames
are HEVC Intra encoded using suitable quantization
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(a) (b)

(c) (d)

Figure 7. Comparison of estimated α values.

parameters (QP). For Akiyo, Foreman and Carphone se-
quences, QPs = 40, 34, 29, 25 and for Soccer sequence,
QPs = 44, 36, 31, 25.

The performance of our proposed video codec named
DL-CNM codec is assessed and compared with the
following benchmark schemes:

HEVC Intra: This benchmark codec uses the HEVC
reference software HM [32] with Intra coding mode.

DISCOVER-HEVC codec: This codec is transform do-
main DVC architecture DISCOVER [9] with key frames
are coded by HEVC Intra instead of H.264/AVC Intra.

TDWZ codec [27]: This codec refers to TDWZ codec
described in [27] in which SI generation is performed
by refining progressively in decoding process.

4.2 DL-CNM accuracy assessment
In this sub-section, α parameter, which is estimated

by proposed DL-CNM method and denoted by α̂, is
compared with the α parameter computed in CNM
of DISCOVER codec [9]. If the estimated parameter is
closer to the oracle parameter, the estimation is con-
sidered more accurately. In this assessment, four video
sequences Akiyo, Foreman, Carphone, Soccer are used.
Figure 7 illustrates the comparison of α parameters
which are computed by CNM [9] and proposed DL-
CNM method with the oracle parameter. As shown in
the figures, α̂ value estimated by DL-CNM method is
closer to the target value αk,b than the parameter α
computed by CNM [9], especially with the low mo-
tion video sequences such as Akiyo and Carphone. This

shows that the proposed neural network has improved
the accuracy of CNM.

4.3 Decoded Frame Quality Assessment

In this sub-section, the decoded frame qualities of the
proposed TDWZ codec, measured in terms of PSNR,
are compared with relevant benchmarks. A compari-
son of decoded frame qualities achieved with different
video codecs named HEVC Intra, DISCOVER-HEVC,
TDWZ [27] and DL-CNM TDWZ is presented in Table I
and is illustrated in Figure 8.
• DL-CNM TDWZ codec versus HEVC Intra:

HEVC Intra is used as a benchmark for compari-
son because it represents low complexity conven-
tional video codec. As demonstrated in Table I,
the proposed codec achieves higher PSNR value
than HEVC Intra codec for almost sequences with
exception of Carphone sequence. The improvements
for low motion sequences and high motion se-
quences are different. For low motion sequences,
such as Akiyo, the PSNR gains up to 1.37 dB but
the result is not good for the high motion sequence
Carphone. The reason is that the Carphone sequence
is considered high motion with abrupt changes
in content. In particular, in this sequence, scene
changes occur at the 89th and 115th WZ frames.
This leads to an decrease in SI quality and CNM
accuracy. Consequently, the PSNR is dramatically
dropped at these frames.
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Table I
Average PSNR (dB) Values of the Decoded Frames

Sequence Codec QP1 QP2 QP3 QP4 Average

Akiyo

HEVC Intra 30.92 35.21 38.98 41.97 36.77
DISCOVER-HEVC 28.34 32.79 36.68 40.55 34.59
TDWZ [27] 30.97 35.53 39.98 43.74 37.56
DL-CNM TDWZ 31.80 36.39 40.46 43.91 38.14

Foreman

HEVC Intra 29.18 33.08 36.66 39.71 34.66
DISCOVER-HEVC 29.69 33.71 37.42 40.92 35.44
TDWZ [27] 29.77 33.79 37.49 40.98 35.51
DL-CNM TDWZ 29.97 33.97 37.74 40.92 35.65

Carphone

HEVC Intra 29.94 34.04 37.73 40.80 35.63
DISCOVER-HEVC 26.69 31.54 34.98 38.39 32.90
TDWZ [27] 29.31 33.01 36.34 39.68 34.59
DL-CNM TDWZ 29.79 33.22 36.39 39.64 34.76

Soccer

HEVC Intra 28.22 32.45 35.32 39.47 33.86
DISCOVER-HEVC 28.83 32.60 35.83 39.81 34.27
TDWZ [27] 28.87 32.66 35.90 39.88 34.33
DL-CNM TDWZ 28.87 32.67 35.93 39.91 34.35

(a) (b)

(c) (d)

Figure 8. PSNR values of decoded frames with QP1.

• DL-CNM TDWZ codec versus other DVC codecs:
The other DVC codecs refers to DISCOVER-HEVC,
TDWZ [27]. Our proposed codec achieves better
results than the others for all video test sequences.
In comparison with DISCOVER-HEVC codec, the
PSNR of proposed DL-CNM TDWZ codec has
been improved up to 3.55 dB e.g Akiyo sequence.

Compared with TDWZ [27] codec, similar im-
provements are obtained.

4.4 TDWZ Compression Performance Assessment
In this assessment, the proposed method is com-

pared with relevant benchmarks in terms of bitrate
and PSNR of each luminance frame. In addition, the
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(a) (b)

(c) (d)

Figure 9. RD performance for the video sequences: Akiyo, Foreman, Carphone and Soccer.

Table II
A Comparison of BD Rate and BD PSNR between DL-CNM

TDWZ and HEVC Intra

Sequence
DL-CNM TDWZ vs. HEVC Intra

BD Rate BD PSNR

Akiyo -57.34 6.58

Foreman -50.59 4.00

Carphone -17.99 0.94

Soccer 37.88 -1.62

Average -22.01 2.47

Bjontegaard metrics [33] including bitrate saving (BD
rate) and PSNR gain (BD PSNR) are used to compare
two RD performance curves. The RD plots for Akiyo,
Foreman, Carphone and Soccer sequences are shown in
Figure 9. BD Rate, BD PSNR gains obtained with the
proposed TDWZ codec over other benchmark schemes
are presented in Table II and Table III. From the results
achieved, the following observations are drawn:
• DL-CNM TDWZ codec versus HEVC Intra: The

RD performance of the DL-CNM TDWZ codec is
better than that of HEVC Intra for almost all test

Table III
A Comparison of BD Rate and BD PSNR between DL-CNM

TDWZ and other DVC Codecs

Sequence
vs. DISCOVER-HEVC vs. TDWZ [27]

BD Rate BD PSNR BD Rate BD PSNR

Akiyo -72.76 8.94 -52.62 5.37

Foreman -14.46 0.86 -11.24 0.65

Carphone -51.46 4.15 -20.79 1.25

Soccer -2.43 0.14 0.52 -0.03

Average -35.27 3.52 -21.03 1.81

video sequences except the highly complex motion
sequence Soccer. For low motion sequences, the
proposed codec overcomes HEVC Intra because
of good quality SI and accurate CNM. Measured
by Bjontegaard bitrate metric, the proposed codec
saves up to 57.34% for low motion sequences such
as Akiyo. For four test sequences, an average 22.01%
birate saving and 2.47 dB BD-PSNR gain are ob-
tained.

• DL-CNM TDWZ codec versus other DVC codecs:
The proposed DL-CNM TDWZ RD performance is
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significantly better than the other DVC codecs for
all test video sequences. RD improvements for low
motion sequences are higher than for complex mo-
tion sequences. In comparison with DISCOVER-
HEVC codec, BD-PSNR gain up to 8.94 dB and
BD-rate reduces 72.76% for Akiyo sequence. For
complex and high motion sequences, it is difficult
in generating good quality SI and correct CNM.
Therefore, it is hard to obtain such big improve-
ment. However, our proposed codec achieved an
average bitrate reduction of 35.27% when com-
pared with DISCOVER-HEVC and 21.03% when
compared with TDWZ [27].

5 Conclusion

In this work, a method to improve the accuracy of
correlation noise model is proposed for transform do-
main Wyner-Ziv video coding. In this proposal, the
α parameter is estimated by deep learning network
with two hidden layers. Based on the trained model,
the α parameter is predicted more accurately. The ex-
perimental results show that the proposed codec can
significantly improve RD performance when compared
with relevant benchmark schemes. In particular, com-
pared with low complexity conventional video coding
HEVC Intra, RD performance of our proposed codec
is better for almost test video sequences, especially
the low motion sequences. Compared with previous
DVC codecs, such as DISCOVER-HEVC, our proposed
codec can achieve significant improvements for all test
sequences.
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