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Abstract– Conventionally, in multi-dimensional spectral estimation techniques, each data snapshot in space is captured
simultaneously. All antenna elements or sensors being used to collect data are sampled at the same time. By doing so, the
size of the antenna array is proportional to the area of interest in space. The antenna array is prohibitively huge if the
area that we want to cover is large. In this paper, in order to reduce the number of antenna elements in use, we propose a
novel multi-dimensional spectrum estimation technique based on displacing small antenna arrays along predefined paths.
It includes a data measurement technique which sequentially collects data samples within each snapshot in space according
to a predefined order, and a spectral estimation technique which is based on the Discrete Fourier Transform (DFT) of the
collected data. The key idea is to create a large synthetic antenna aperture by displacing a small antenna array along a
predefined trajectory. Impinging waves are assumed uniform plane waves. The performance of the proposed technique is
evaluated by simulation. The applications of the proposed technique include synthetic aperture radar, radar image processing
and sonar systems.

Keywords– Multi-dimensional spectral estimation, spatial sampling, wave vector spectrum estimation, uniform plan wave
propagation.

1 Introduction

Multi-dimensional spectral estimation found applica-
tions in many areas, such as sonar, radar, satellite imag-
ing, radioastronomy, geophysics, and telecommunica-
tions [1–5]. Multi-dimensional signals are represented
in the space and time domains while multidimensional
spectra are represented in the wave vector and fre-
quency domains [6, 7]. Similar to unidimensional spec-
tral estimations, multidimensional spectrum estimation
is also a classical and well-established research topic [8–
13]. However, realization and implementation of multi-
dimensional spectrum estimation technique in large-
scale systems are still facing several challenges. One
fundamental challenge is the prohibitively large size
of the antenna systems being used to collect multi-
dimensional data in space and time. Conventionally,
the multi-dimensional spectrum in the wave vector and
frequency domains is estimated by applying DFT on
the signals collected in the space and time domains
with the assumption that data samples on all antenna
elements are collected simultaneously in the time do-
main. In this case, a large number of antenna elements
or sensors is needed to cover a large area in space. In or-
der to implement multi-dimensional spectral estimation
technique, the number of required antenna elements
needs to be reduced.

In this paper, we present a simple and novel multi-
dimensional spectrum estimation technique based on
creation of a large synthetic antenna aperture by dis-

placing a small antenna array along a predefined path.
The proposed technique includes a data collection tech-
nique and a spectrum calculation algorithm. In the data
collection technique, the spatial signal samples are not
collected simultaneously but sequentially along a pre-
determined path, e.g., along the x axis. The spectrum
calculation algorithm is based on the Discrete Fourier
Transform (DFT) and a wave vector calibration proce-
dure which is used to match the estimated spectrum
peaks to the corresponding wave vectors. Simulation
results show that the estimated wave vector spectrum
matches closely the generated signal spectrum. The
inaccuracies and limitations of the proposed methods
are also discussed in this paper.

The paper is organized as follows. The discrete multi-
dimensional Fourier Transform is described in Sec-
tion 2. The proposed measurement technique is pre-
sented in Section 3. The spectrum estimation method
and the wave vector calibration algorithm are presented
in Section 4. Section 5 presents the simulation results
for performance evaluation purpose. Section 6 con-
cludes the paper.

2 Discrete Multidimensional Fourier

Transform

Multi-dimensional Fourier Transform is used to cal-
culate the wave vector spectrum of a signal in the
spatial domain in a uniform plane wave propagation
environment. A location in the three-dimensional (3D)
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space is represented by a location vector ~r having
coordinates

(
rx, ry, rz

)
. The signals in the space and

time domains are first sampled simultaneously in space
at (Nx × Ny × Nz) locations where Nx is the number
of sampling points in rx along the x axis, Ny is the
number of samples in ry (on the y axis), and Nz is the
number of points in rz (z axis). The sampling steps in
the x axis is ∆rx meters, ∆ry meters in the y axis, and
∆rz meters in the z axis. In the time domain, the signal
is sampled at a sampling time interval of ∆t seconds
or, equivalently at a sampling frequency of 1

∆t samples
per second. Therefore, the discrete space-time signal
is represented by a set of Nx × Ny × Nz × Nt samples
where Nt is the number of samples collected in time
at each location in the space domain. At each sampling
instant, a set of Nx × Ny × Nz samples is collected in
the space domain. At each sampling location, a set of
Nt samples is collected in the time domain.

In the wave vector domain, the discrete time-varying
wave vector spectrum is also represented by a (Nx ×
Ny × Nz × Nt) matrix where Nx, Ny, and Nz are the
number of samples along the kx, ky, and kz axis in the
wave vector domain, respectively, and Nt is the number
of samples in the time domain. The time-varying wave
vector spectrum is obtained by applying the 3D DFT
on each signal snapshot among Nt snapshots in space
and at Nt discrete time instants. This relationship is
expressed as follow [1, 2]:

S(~km,n,l , t) =
Nx

∑
p=1

Ny

∑
q=1

Nz

∑
r=1

s(~rp,q,r, t)ej~rp,q,r ·~km,n,l (1)

s(~rp,q,r, t) =
1

(2π)3

Nx

∑
m=1

Ny

∑
n=1

Nz

∑
l=1

S(~km,n,l , t)e−j~km,n,l ·~rp,q,r

(2)

where p, q and r are the discrete indexes of rx, ry and
rz space vector components; m, n and l are the discrete
indexes in the kx, ky and kz wave vector components,
respectively; and t is the time variable. The sampling
steps in kx, ky and kz are ∆kx, ∆ky and ∆kz. The
relationships between the sampling steps in the wave
vector domain and the sampling steps in the space
domain are:

∆kx =
2π

Nx∆rx
, ∆ky =

2π

Ny∆ry
, ∆kz =

2π

Nz∆rz
. (3)

The 3D DFT presented in Eq. (1) and (2), and the
relationship presented in Eq. (3) are valid for space-time
signals of which samples in each spatial snapshot are
collected simultaneously. In the following sections, we
present our proposed signal measurement and process-
ing techniques which do not require the data samples
in each spatial snapshot to be collected simultaneously.
By doing so, we do not need a large number of antenna
elements to cover the whole area of interest. Spatial
signals can be collected sequentially in the time domain
by moving a small antenna array along a predefined
trajectory.

3 Proposed Measurement Technique in

the Space-Time Domain

In our proposed measurement technique, the sampling
locations are not sampled simultaneously but in a
predefined order. The measurement site is discretized
by (Nx × Ny × Nz) locations in space. Denote s the
space-time signal matrix and p the sampling location
matrix. s is a (Nx × Ny × Nz × Nt) matrix containing
signal samples collected in the space and time domains.
p is a (Nx×Ny×Nz) matrix representing the sampling
locations in the space domain. In order to cover the
whole area of interest of (Nx × Ny × Nz) locations,
we displace a rectangular antenna array of (Ny × Nz)
elements along the x axis. The antenna array plane is
perpendicular to the x axis and therefore is parallel to
the yz plane. The antenna elements are separated by
∆ry and ∆rz meters in the y and z axis, respectively.
In the x axis, the signal is sampled once every ∆rx
meters equivalently to once every ∆t seconds in the
time domain. At the kth sampling instant, i.e., time
instant k∆t, the kth lattice of the sampling location
matrix p, i.e., the sampling locations with rx = k∆rx,
is sampled.

After each period of Nx × ∆t seconds, all the sam-
pling locations are sampled. It is assumed that the
signal wave vector spectrum is invariant during an es-
timation period. This assumption is reasonable because
normally the antenna array size is not too big and
the sampling period ∆t is small. After Np estimation
periods, i.e., NpNx∆t seconds, the number of collected
samples is NpNx NyNz samples. During the same time
duration, the number of data samples collected by
classical methods is Nx NyNz×NpNx, which is Nx times
more than the data volume collected by our proposed
measurement technique. More importantly, we replace
the conventional (Nx × Ny × Nz) antenna array by
moving a (Ny × Nz) antenna array Nx steps along the
x axis. This technique reduces the number of antenna
elements and consequently reduces the antenna array
manufacturing cost. It is also a solution to deploy huge
antenna array systems.

Figure 1 shows an illustrative example of the pro-
posed measurement technique. The example is pre-
sented for a two-dimensional (2D) space for simplicity.
In this case, the rectangular antenna array reduces to
a uniform linear antenna array. Antenna elements are
separated by ∆ry meters in the y axis and are moved
along the x axis. The antennas in solid lines represent
real antennas and the antennas in dot lines represent
virtual antennas created by moving the real antenna
array. The sampling distance in the x axis is ∆rx meters
corresponding to ∆t seconds in the time domain. In
the next section, we will present a spectrum estimation
technique used for signals collected by the proposed
measurement technique.
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Figure 1. Virtual antenna array creation by displacement of a small
antenna array along the x axis in 2D space.

4 Wave Vector Spectrum Estimation

In this section, we introduce the wave vector spectrum
estimation technique, which operates on the data col-
lected by the proposed measurement technique. For
simplicity, we describe the spectrum estimation tech-
nique applied on the data collected during one estima-
tion period of Nx × ∆t. The extension of the described
spectrum estimation technique to the whole measure-
ment duration is straightforward. In this case, signal
matrix s is a Nx × Ny × Nz matrix. Denote S the signal
wave vector spectrum matrix. S is also a Nx × Ny × Nz
matrix. s(p, q, r) represents the space-time signal sam-
ple recorded at location vector ~r = (p∆rx, q∆ry, r∆rz)
and at time instant p∆t. S(m, n, l) is the spectrum
component at wave vector ~k = (m∆kx, n∆ky, l∆kz).

4.1 Spectrum Calculation

One observes that the relationship in Eq. (3) cannot
be directly used to determine the sampling step ∆kx in
kx axis because the signal samples are not measured at
the same time along the x axis in the space domain.
In this section we introduce a technique to transform
the recorded signal matrix to space-time signal matrices
which is sampled simultaneously in time. The relation-
ship in Eq. (3) is applicable on these signal matrices.

Considering the spectrum component at wave vector
~k0, S(~k0), as illustrated in Figure 2. Point A is the
sampling location (p∆rx, q∆ry, r∆rz) in the 3D space
domain. In the time domain, the sample at point A
is collected at instant p∆t. Assuming uniform plane
wave propagation, the space-time signal component
corresponding to the wave vector spectrum component
S(~k0) at time instant p∆t at point A is the delayed
version of that component measured at time instant
(p− 1)∆t at point B. The distance BA between the two
points is ∆tvp and vector ~BA points in the direction
of wave vector ~k0. The coordinates of point B are
(p∆rx − ∆tvp sin θ cos φ, q∆ry − ∆tvp sin θ sin φ, r∆rz −
∆tvp cos θ), where φ is the azimuthal angle from the
x axis to the projection of wave vector ~k0 in the x − y
plane, with 0 ≤ φ ≤ 2π, θ is the inclination angle from
the z axis to wave vector ~k0, with 0 ≤ θ ≤ π, and

0
k

z

y

x

θ

φ

p
tv

∆

Figure 2. Transformation from rectangular sampling location matrix
p to non-rectangular sampling location matrix p’ and from non-
rectangular sampling location matrix p’ to rectangular sampling
location matrix p+ in the 3D space domain.

vp is the propagation velocity of electromagnetic waves
in free space, i.e., vp = 3× 108 m/s. Generalizing this
process, we found that the space-time signal component
corresponding to the wave vector spectrum component
S(~k0) at time instant p∆t at point A is the delayed
version of that component measured at time instant ∆t
at location:

(p∆rx − (p− 1)∆tvp sin θ cos φ,
q∆ry − (p− 1)∆tvp sin θ sin φ, (4)
r∆rz − (p− 1)∆tvp cos θ)

Repeating this step for all the sampling locations, the
sampling location matrix p, for which the data samples
are not recorded simultaneously, is transformed into
location matrix p’, where all the data samples would
be recorded simultaneously at time instant ∆t. The
sampling locations of matrix p’ are represented in Eq.
(4) with p = 1, . . . , Nx, q = 1, . . . , Ny, r = 1, . . . , Nz.
However, the transformed sampling location matrix, p’,
is not rectangular and the spectrum estimation based
on this sampling location set is not convenient: another
transformation is required to transform matrix p’ into
a rectangular matrix.

Consider wave front F0, corresponding to wave vector
~k0, at point B. Point D is the intersection of wave
front F0 and the line starting from point A and in
parallel with axis x. Since the wave is assumed to be
uniform and plane, the recorded signals at point B
and at point D are identical. The coordinates of point
D are

(
p∆rx − ∆tvp/(sin θ cos φ), q∆ry, r∆rz

)
. Generaliz-

ing and repeating this transformation for all sampling
locations and considering time instant t = ∆t as the
time reference, the non-rectangular sampling location
matrix p’ in Eq. (4) is transformed to rectangular sam-
pling location matrix p+. The locations of matrix p+

are sampled simultaneously at time instant t = ∆t. The
coordinates of locations in matrix p+ are:(

p∆rx − (p− 1)∆tvp/(sin θ cos φ), q∆ry, r∆rz
)

. (5)

Matrix p+ is called the equivalent sampling location
matrix of wave vector component S(~k0). Two equiv-
alent sampling location matrices are identical if the
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Figure 3. (a) Transformation from rectangular sampling location
matrix p to non-rectangular sampling location matrix p’ and (b) from
non-rectangular sampling location matrix p’ to rectangular sampling
location matrix p+ in the 2D space domain.

corresponding wave vectors have the same propaga-
tion direction. Figure 3(a) illustrates the transformation
from rectangular sampling location matrix p to non-
rectangular sampling location matrix p’. Figure 3(b)
illustrates the transformation from non-rectangular ma-
trix p’ to rectangular sampling location matrix p+. The
illustration is presented in the 2D space domain for
simplicity.

4.2 Wave Vector Calibration
Even if the sampling locations are explicitly ex-

pressed in Eq. (5) for wave vector spectrum component
S(~k0), it is difficult to use this relationship to determine
precisely the sampling steps in space, and therefore the
sampling step in the wave vector domain, since wave
vector ~k0 is unknown a priori. However, Eqs. (4) and (5)
leads to a technique that determines the sampling steps
in space domain, ∆rx, ∆ry and ∆rz, and therefore the
sampling steps in wave vector domain, ∆kx, ∆ky and
∆kz, for any wave vector component S(~k).

Applying the multidimensional discrete Fourier
transform on the collected samples, i.e., on the sig-
nal matrix s in the spatial domain, one obtains a

multidimensional matrix, called the spectrum matrix
S. In order to obtain the wave vector spectrum of
the signal, we need to determine the wave vector, or
equivalently the sampling steps in wave vector, ∆kx,
∆ky and ∆kz, for each spectrum component of the
spectrum matrix S. Considering spectrum component
S(m, n, l), the equivalent sampling steps in ry, rz are ∆ry
and ∆rz, respectively, as the spatial signal is collected
simultaneously in y and z axis in the space domain. The
sampling steps along the wave vector axis ky and kz
are calculated as per Eq. (3), i.e., ∆ky = 2π/Ny∆ry and
∆kz = 2π/Nz∆rz. According to Eq. (5), the wave vector
component S(m, n, l) is estimated with a sampling step
of
∣∣∆rx − ∆tvp/(sin θ cos φ)

∣∣ in the x axis in the spatial
domain. According to Eq. (3), the sampling step in the
kx axis in the wave vector domain is:

∆kx =
2π

Nx
∣∣∆rx − ∆tvp/(sin θ cos φ)

∣∣ (6)

From the definition of azimuthal and inclination
angles, it is noted that:

cos φ =
m∆kx√

(m∆kx)2 + (n∆ky)2

sin θ =

√
(m∆kx)2 + (n∆ky)2√

(m∆kx)2 + (n∆ky)2 + (l∆kz)2

(7)

In Eqs. (6) and (7), the only unknown is ∆kx. An-
alyzing these equations with assumption that ∆rx −
∆tvp/(sin θ cos φ) < 0 one obtains:[

∆r2
x − (∆tvp)

2
]
∆k2

x +
4π

Nx
∆rx∆kx+(

2π

Nx

)2
−
(n∆ky)2 + (l∆kz)2

m2 (∆tvp)
2 = 0

(8)

Eq. (8) is of a quadratic form: ax2 + bx + c = 0, where
constants a, b, c are given by:

a = ∆r2
x − (∆tvp)2

b = 4π
Nx

∆rx

c =
(

2π
Nx

)2
− (n∆ky)2+(l∆kz)2

m2 (∆tvp)2

(9)

Similarly, if ∆rx−∆tvp/(sin θ cos φ) > 0, one obtains:[
∆r2

x − (∆tvp)
2
]
∆k2

x −
4π

Nx
∆rx∆kx+(

2π

Nx

)2
−
(n∆ky)2 + (l∆kz)2

m2 (∆tvp)
2 = 0

(10)

Eq. (10) is of a quadratic form: ax2 − bx + c = 0, where
constants a, b and c are given in Eq. (9).

Once the solutions of Eq. (8) and Eq. (10) are found,
the wave vector corresponding to spectrum element
S(m, n, l) at wave vector ~k = (m∆kx, n∆ky, l∆kz) is
determined. The solution must be positive and satisfy
the assumption on the sign of ∆rx − ∆tvp/(sin θ cos φ).
If ∆rx − ∆tvp < 0, then ∆rx − ∆tvp/(sin θ cos φ) <

0 and both solutions of Eq. (8), i.e., (−b +
√

∆)/2a
and (−b −

√
∆)/2a, where ∆ = b2 − 4ac, could be
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Figure 4. Wave vector calibration algorithm.

positive. In the other situation, if ∆rx − ∆tvp > 0,
∆rx − ∆tvp/(sin θ cos φ) could be either negative or
positive. In this case, both solutions of Eq. (10), i.e.,
(b +

√
∆)/2a and (b −

√
∆)/2a, and the first solution

of Eq. (8), i.e., −b+
√

∆
2a , could be positive. This technique

is illustrated in Figure 4 and used in the simulation to
estimate the signal wave vector spectrum.

5 Simulations results

In the previous sections, we have presented the pro-
posed measurement technique in the 3D space domain
and the spectrum estimation technique in the 3D wave
vector domain. As it is difficult to represent graphically
the spatial signal and the wave vector spectrum in 3D
space and 3D wave vector domains, we present in this
section simulation results in 2D space and 2D wave
vector domains. In these simulations, the sampling
period, ∆t, is Ts/8, the sampling steps in the x axis,
∆rx, and in the y axis, ∆ry, are set to λ/32, where Ts is
the signal period and λ is the signal wavelength. The
considered signals are cos 2π f0t, where the frequency
f0 is 800 MHz, propagating in different directions.

5.1 2-dimensional space and wave vector domains

Figure 5 shows a signal spectrum in the 2D wave
vector domain. The signal in this example propagates
along the direction of the x axis. The spectrum is
estimated by using a 2D discrete Fourier transform
of 32 × 32 FFT points. Figure 5 shows the obtained
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Figure 5. Signal spectrum in 2D wave vector domain: signal
propagation direction is along the x axis.
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Figure 6. Signal spectrum in 2D wave vector domain: the angle
between the signal propagation direction and the x axis is − π

4 .

spectrum matrix, S, with some arrangement so that
we could observe the negative part of the wave vector
spectrum. There are two peaks found at positions (-3,0)
and (3,0). The pair (x, y) refer to the element S(x, y)
in spectrum matrix S since the wave vector calibration
is not performed in this figure. Using the wave vector
calibration technique, described in Section 4, the wave
vector sampling steps, ∆kx and ∆ky, at the two peaks
are found at 5.59 rad/m and 16.76 rad/m, respectively.
The two wave vectors corresponding to the two peaks
are (−16.76, 0) and (16.76, 0). The magnitudes of these
two wave vectors are 16.76 and the corresponding
frequencies are 800 MHz. This means that there are two
complex exponentials at a frequency of 800 MHz and
propagating in the positive and negative directions of
axis x. In this example, the estimated spectrum matches
the expected spectrum.

Figure 6 shows the spectrum matrix of a cosine
function, cos 2π f0t, propagates in the direction of ~k0,
of which the azimuthal angle is −π

4 . One observes
two peaks at positions (−3, 1) and (3,−1). Applying
the wave vector calibration technique, the values of
∆kx and ∆ky at these two positions are found at 3.95
and 11.85, respectively. The wave vectors at the two
peaks are (−11.85, 11.85) and (11.85,−11.85). Therefore
the estimated spectrum consists of two wave vector
impulses with the azimuthal angles of 3π

4 and −π
4 and

at frequencies of 800 MHz.
The signal under consideration in Figure 7 consists

of three cosine functions at a frequency of 800 MHz,
of which, one propagates in the direction of the x axis,
one propagates in the direction of π

6 or 30o and one
propagates in the direction of −π

3 or −60o, with respect
to the x axis. The wave vector spectrum is estimated



V.-H. Pham et al.: A Novel Multi-Dimensional Spectrum Estimation Technique using Antenna Array Displacement 165

Figure 7. Signal spectrum in 2D wave vector domain; the angle
between the signal propagation directions and the x axis are 0, π

6
and − π

3 .

by a 2D DFT of 256× 256 FFT points. Figure 7 shows
an enlargement of the spectrum matrix with 64 × 20
points around the wave vector origin. In this figure,
there are six peaks at positions (-24,0) and (24,0), (-25,-
4) and (25,4), (-28,7) and (28,-7). Using the proposed
technique, the values of ∆kx and ∆ky at positions (-
24,0) and (24,0) are 0.70 and 2.09, respectively. The wave
vectors at these positions are (-16.76,0) and (16.76,0).
These peaks correspond to two wave vector impulses
propagating in the positive and negative directions of
the x axis at frequencies of 800 MHz. Similarly, at
positions (-25,-4) and (25,4), the values of ∆kx and ∆ky
are 0.58 and 2.09, respectively. The two wave vectors
are (-14.45,-8.38) and (14.45,8.38). These peaks equal to
two wave vector impulses propagating in the positive
and negative directions of wave vector ~k1 that forms an
angle of 30.10o with respect to axis x and at frequencies
of 797.48 MHz. At positions (-28,7) and (28,-7), the
values of ∆kx and ∆ky are found at 0.28 and 2.09.
The wave vectors at these positions are (-7.82,14.66)
and (7.82,-14.66). These peaks correspond to two wave
vector impulses that propagate in the positive and
negative directions of wave vector ~k2 that form an angle
of -61.93o with respect to axis x and at frequency of
793.33 MHz.

5.2 Spectrum estimation accuracy

In the example of Figure 7, comparing the generated
wave vector spectrum and the estimated wave vector
spectrum, one found that there is inaccuracy with
the spectrum components at wave vectors ~k1 and ~k2.
At wave vector ~k1, there are errors of 2.52 MHz, or
equivalently 0.32%, in frequency and 0.1o, or 0.33%, in
azimuthal angle. At wave vector ~k2, there are errors of
6.67 MHz, or 0.83%, in frequency and 1.93o, or 3.22%,
in azimuthal angle.

First, since there are three wave vector components
at three different propagation directions, there are also
three different equivalent sampling location matrices,
p+. The measured space-time signal is equivalently the
superposition of three wave vector spectrum compo-
nents sampled simultaneously at time instant ∆t and
at three different sampling location matrices. As the
propagation direction spreads, the estimation precision
degrades.

Second, the FFT resolution used in the wave vector
spectrum estimation process is relatively low. Our tests
show that an increase from 256 × 256 FFT points to
1024 × 1024 FFT points will improve the accuracy of
about 50%.

Third, the equivalent spatial sampling step in x axis,∣∣∆rx − ∆tvp/ cos α
∣∣, is dependent on the propagation

direction, α. As mentioned above, the sampling pe-
riod is Ts/8 while the sampling steps in the x axis
is λ/32. Therefore, ∆rx − ∆tvp/ cos α is negative. As
the azimuthal angle of the wave vectors increase, the
spatial sampling step in x axis,

∣∣∆rx − ∆tvp/ cos α
∣∣,

increases and thus, reduces the spatial resolution and
the estimation accuracy. This is clearly observed in the
example of Figure 7: as the azimuthal angle of wave
vector ~k1 is smaller than the azimuthal angle of wave
vector ~k2, the calibration accuracy at wave vector ~k1 is
better than that at wave vector ~k2.

6 Conclusion

In order to estimate the wave vector spectrum of a spa-
tial signal, the signal samples in each snapshot in space
need to be collected simultaneously. This is not suitable
for systems operating over a large area in the space
since it requires a huge antenna array. In this paper, we
present a measurement technique in which the spatial
signal samples are not collected simultaneously but
sequentially along a predefined path, e.g., in the direc-
tion of the x axis, and a wave vector spectrum estima-
tion technique which is based on the multidimensional
Discrete Fourier Transform. A wave vector calibration
algorithm is also presented in order to match the
estimated spectrum peaks to the corresponding wave
vectors. The key idea behind the proposed technique
is the creation of a large virtual antenna array from
a few of antenna elements by displacing the antenna
array along a predefined path. The performance of the
spectrum estimation technique is evaluated through
a series of simulations in two-dimensional space and
wave vector domains. The simulation results show that
the estimated spectrum closely matches the generated
wave vector spectrum with slight inaccuracies when the
angle of arrival widely spreads. In practical situations,
where high estimation accuracy is not the primary
requirement but low antenna array implementation
complexity and fast response are indeed required,
the proposed measurement and spectrum estimation
techniques can be used for beam detection and AoA
estimation. The proposed techniques find applications
in synthetic aperture radar (SAR), radar processing and
sonar applications.
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