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Abstract– We introduce a low-rank and sparse penalized optimization model for solving the problem of radar imaging
of indoor targets in the presence of strong wall clutter from compressed data measurements. Compressive through-wall
radar imaging (TWRI) accelerates data collection and reduces operation cost, but incomplete radar data makes wall clutter
mitigation and target image reconstruction become more challenging. This paper aims to tackle these difficulties by
formulating the task of wall clutter suppression and target image formation as a penalized minimization problem with
low-rank and sparse regularizers. The former penalty is used to model the low-dimensional attribute of the wall reflections
and the later regularizer is used to represent the image of the behind-the-wall targets. We develop an iterative algorithm
based on the forward-backward proximal gradient technique to solve the regularized minimization problem, which removes
wall interferences and forms an indoor target image simultaneously. The effectiveness of the proposed approach is validated
using extensive experiments on both simulated and real radar data.

Keywords– Through-wall radar imaging, wall clutter mitigation, compressed sensing, target image reconstruction, proximal
gradient techniques.

1 Introduction

Through-wall radar (TWR) imaging is an emerging and
powerful technology for sensing targets behind walls
and other opaque structures. The ability of penetrating
through-wall is very useful for numerous potential ap-
plications in military operations, civilian applications,
and search-and-secure missions [1–3]. In such appli-
cations, it is highly demanding for the development
of a successful TWRI system that can provide high-
quality images of desired targets and combat unwanted
interferences of wall clutter. The imaging system also
provides high-resolution images with fast data col-
lection and optimal data storage. To this end, this
article introduces an efficient approach that performs
wall clutter mitigation and target image formation in
compressive sensing operations.

Conventionally, TWRI techniques require a complete
dataset to generate an image of indoor targets using
backprojection, such as delay-and-sum beamforming [1,
2, 4]. In other words, such techniques are effective for
image formation only for the case in which all the
antennas and frequencies are available for data acquisi-
tion. However, this data collection mode makes data ac-
quisition prolonged and system storage ineffective. To
accelerate data collection and provide high-resolution
imaging, several TWRI approaches have been consid-
ered using the compressive sensing (CS) framework [5–
7]. As CS is a powerful signal processing technique that
allows compressive sampling and precise reconstruc-
tion of sparse signals, it has been applied to TWRI for
image formation from far reduced measurements [8–

10]. Using CS, the task of image formation is for-
mulated as an `1 penalized minimization problem,
in which the `1 regularizer is used to promote the
sparseness of the target scene. It has been shown that
this minimization model is suitable for the situations
where strong wall clutter has been completely removed
prior to image reconstruction through background sub-
traction. Having the access to a background scene,
however, is impossible in many practice operations. In
fact, the presence of wall clutter causes the `1-penalized
approaches ineffective; they reconstruct only the pixels
belonging to wall clutter that tend to dominate the
target pixels, making target detection very difficult.

To alleviate wall interferences, the problem of tar-
get image formation in conjunction with wall clutter
mitigation has been considered in several CS-based
studies that consist of two major stages [11–14]. The
first stage performs wall clutter mitigation, followed
by image formation in the second stage. In the wall
clutter suppression stage, a full data volume needs to
be estimated from the reduced dataset before spatial
filtering [15] or subspace projection [16] techniques are
applied to the estimated data for wall clutter removal.
The wall-clutter free data are then used in the second
stage for image formation through an `1 minimization.
Due to the multistage signal processing, these CS-
based approaches may be affected by suboptimality and
uncertainly; the performances of wall clutter mitigation
and target image formation are sensitive to the estima-
tion error arising in the signal recovery stage.

Instead of performing multistage independently, the
key idea of the proposed approach in this paper is
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to perform wall clutter mitigation and target image
reconstruction in CS TWRI simultaneously through an
optimization model. This optimization model is formu-
lated by incorporating two intrinsic signal structures:
(1) low-dimensional structure of wall clutter and (2) the
sparsity profile of the target scene. The former structure
is due to the fact that the electromagnetic reflections
from the front wall received along the antenna array are
highly correlated. As a result, if the wall antenna signals
are arranged as columns of a matrix, this matrix is low-
rank. The later attribute of the model is because target
pixels occupy only a small region in the form image. In
other words, the target image is sparse. Intuitively, we
could perform these two important tasks even better
if we represent the model more precisely and com-
pletely. By incorporating further prior knowledge into
the model, we hope to improve the model performance.

The idea of joint wall clutter mitigation and image
formation, and preliminary results have been presented
in [17]. This paper extends this work in three respects:
model formulation, iterative algorithm, and experimen-
tal evaluation. The problem formulation is described
completely in this paper, for both full and compressive
sensing operations. Furthermore, the problem formu-
lation is discussed and compared with the two ex-
isting techniques of DS beamforming and multistage
CS-based models, which highlights the advantages of
the proposed model. In terms of algorithm design,
this paper presents rigorous steps for solving the joint
nuclear-norm and `1-norm regularized least squares
(LS) minimization problem, based on the proximal
forward-backward splitting framework [18–20]. This
generic technique, its application to TWRI, and how the
proximal evaluations of the two key operators, namely
singular value thresholding and soft-thresholding to
overcome the challenging nonsmooth nature of the
penalty terms are detailed in this paper. Algorithm
analysis, its convergence, and computational complex-
ity are discussed. Extensive simulations and experi-
ments are conducted to evaluate the performance of the
proposed model. In addition, performance comparisons
with several state-of-the-art methods are described and
analyzed in different CS settings.

This article is organized as follows. Section 2 presents
TWR signal model briefly. Section 3 describes the prob-
lem formulation of the proposed low-rank and sparse
regularized LS model and presents an iterative algo-
rithm based on the forward-backward proximal tech-
nique for wall clutter suppression and indoor target
image formation. Experimental evaluation on simulated
and real radar data is given in Section 4 and finally,
Section 5 concludes the paper.

2 Through-Wall Radar Signal Model

This section gives a brief introduction about the sig-
nal model of a monostatic stepped-frequency synthetic
aperture radar system used to sense targets residing
behind the wall. Such targets are imaged by placing a
transceiver in front of the wall at a standoff distance
zoff. This sensor transceives the signal and then moves

to another places along a horizontal line parallel to the
wall to interrogate the scene. Suppose an M stepped-
frequency signal has been used to image P indoor
targets by a synthesized N antennas. Let zm,n denote
the received signal for the mth frequency by the nth
antenna. This signal is modeled as a superposition of
the wall clutter zw

m,n, target signal zt
m,n, and noise υm,n:

zm,n = zw
m,n + zt

m,n + υm,n. (1)

The wall component zw
m,n is modeled as the sum of wall

reverberations [11, 21]

zw
m,n =

R

∑
r=1

σware−j2π fmτr
n,w . (2)

Here, σw denotes the wall reflectivity, R is the number
of wall reverberations, ar is the path loss of the rth wall
reverberation, and τr

n,w represents the rth wall return
travel delay. This round propagation delay is similar
along the antenna array and given by τr

n,w = 2zoff
c with c

being the speed of light in free-space. The target signal
can be modeled as a superposition of all the targets
present in the imaged scene [12, 13]

zt
m,n =

P

∑
p=1

σpe−j2π fmτn,p , (3)

where σp is the pth target reflectivity, and τn,p denotes
the round-trip signal travel time from the nth antenna
to the pth target. Let zn = [z1,n, . . . , zM,n]

T denote the
column vector formulated by stacking M frequency
measurements collected along the nth antenna. The
signal model in (1) can be represented in vector-form:

zn = zw
n + zt

n + υn. (4)

Arranging the N vectors zn, for n = 1, . . . , N, as
columns of the matrix Z ∈ CM×N , we have the fol-
lowing matrix form:

Z = [z1, . . . , zN ] = Zw + Zt + Υ. (5)

For target image formation, the target space con-
sidered as a rectangular grid is partitioned into Q
pixels along the crossrange (horizontal) and downrange
(vertical) directions. Let s be a vector that represents
the target grid. This grid relates to the reflectivity of
the targes as follows:

sq =

{
σp, if the pth target occupies the qth pixel;
0, otherwise.

(6)
This implies that the value sq of the qth pixel on the grid
is modeled as a weighted indicator function used to
represent the pth target reflectivity. In TWRI, the targets
tend to occupy as groups consisting of points popu-
lated accurately on the image-pixel locations. From (3)
and (4), we can relate the target measurement vector
zt

n to the image scene s = [s1, . . . , sQ]
T , through a dic-

tionary matrix Ψn ∈ CM×Q:

zt
n = Ψn s. (7)

Here, the (m, q)th element of matrix Ψn is computed
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as ψn(m, q) = exp(−j2π fmτn,q). In this computation,
the term τn,q plays an important role in focusing the
targets because it takes into accout the signal de-
lays before, through, and after the wall in its calcula-
tion [2, 4, 22]. Arranging all target measurement vec-
tors, zt = [(zt

1)
T , . . . , (zt

N)
T ]T , and dictionary matrices,

Ψ = [ΨT
1 , . . . , ΨT

N ]
T , for N antennas, we have the linear

model,

zt = vec(Zt) = Ψ s, (8)

hereafter vec(· ) denotes the vectorization operator
forming a composite column vector by stacking the
columns of a matrix in lexicographic order.

It is followed from (8) that the target image s can
be estimated from the target signal zt using DS beam-
forming or direct CS technique. The DS beamforming
generates the image s by premultiplying the target
signal zt with the adjoint operator ΨH :

s = ΨH zt. (9)

While the DS beamforming does not exploit any
prior knowledge, the direct CS guarantees the spar-
sity of s and yields a target image by solving an `1-
regularization problem:

s = arg min
s

{
1
2
‖zt −Ψ s‖2

2 + λ ‖s‖1

}
, (10)

with λ being a positive parameter. It is worth noting
here that the target signal zt is not available for image
formation; in fact, we have only the the radar signal
z that comprises the dominated wall clutter zw, target
signal zt, plus noise, see (4). Due to the dominance of
the wall component zw, in the formed target image s
by either DS beamforming in (9) or direct CS technique
in (10), the wall clutter pixels mask those of the targets,
making target detection very difficult. Therefore, prior
to target image formation, strong wall clutter needs to
be suppressed. Unfortunately, performing wall clutter
mitigation is even more challenging in CS operations
where the radar data is incomplete. Wall clutter mit-
igation techniques, such as subspace projection [16],
can be applied if the same frequency measurements are
available at all antennas. In general compressed sensing
TWR, however, only a subset of frequency samples is
acquired, which may vary from one spatial position
to another. To address this issue, multistage CS-based
imaging techniques have been considered, where the
missing measurements are first estimated, followed by
wall clutter mitigation applied to full recovered mea-
surements, and target image formation. To alleviate
the shortcomings of multistage processing, this paper
proposes a model that comprises rank-deficient and
sparsity regularizations to mitigate wall clutter and
reconstruct a target image jointly.

3 Rank-Deficient and Sparse Regularized
TWRI

In this section, we first describe the formulation of
the rank-deficient and sparse regularized optimization

problem arising in TWRI in Subsection 3.1. Then, Sub-
section 3.2 presents a proximal gradient-based iterative
algorithm to solve the nuclear and `1-norm optimiza-
tion problem, capturing wall clutter and yielding an
indoor target image.

3.1 Nuclear and `1-norm Regularized LS Problem

The signal model presented in Equations (4) and (5)
assumes a full set of (M× N) measurements collected
at all N antennas using M frequencies. For fast data
acquisition and efficient data storage, we consider the
problem in the CS operation where only a reduced set
of measurements is collected for imaging targets. Sup-
pose that a subset of K data samples (K � M× N) is
acquired. The reduced dataset can be obtained by using
a selection matrix Φ ∈ RK×MN ; Φ has only one non-
zero element (equal to 1) in each row that represents
the selected frequency for a particular antenna used.
The compressive measurement vector y ∈ CK is related
to the full measurement data Z as,

y = Φ vec(Z) = A(Z). (11)

In (11), A can be regarded as a linear operator acting
on the space of M× N matrices, i.e., A : CM×N → CK.
Note here that the matrix Z can be obtained from y via
the adjoint operator A∗ as Z = mat(Φ† y) = A∗(y),
where † is the pseudo-inverse operator and mat is the
operator converting a column vector having MN entries
into an M× N matrix. Combining (5) and (11) yields

y = Φ vec(Z) = Φ vec(Zw) + Φ vec(Zt) + Φ vec(Υ).
(12)

Exploiting the model that relates the target signal and
the image in (8), vec(Zt) = zt = Ψ s, we have the linear
model

y = Φ vec(Zw) + Φ Ψ s + Φ vec(Υ). (13)

Given the measurement vector y, the aim is to esti-
mate a matrix Zw carrying wall clutter and a vector s
representing the target image. Towards this aim, prior
knowledge about the model needs to be considered.
In other words, the attributes of Zw and s should be
exploited for the constraints of the solutions. Here, two
important structures are used. The first structure is
the rank-deficient of Zw, which reflects the fact that
its columns are highly correlated. The rank-deficient
of Zw is also evident from the model in Equation (2)
that the wall reflection is similar among the antenna
location. The second assumption is the sparseness of the
target image s, which holds true in practice as target
pixels occupy only a small part of the whole imaged
scene. It is worth noting that the low-rank and sparse
constraints can be modeled efficiently through their
convex relaxations: low-rank via nuclear norm [23, 24]
and sparse via `1-norm [6, 7]. By so doing, we can attain
the wall component Zw and the image s as the solution
to the following optimization problem:

min
Zw , s

‖Zw‖∗ + λ ‖s‖1

subject to ‖y− [A(Zw) + D s]‖2
2 ≤ ε,

(14)
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where we have defined D = Φ Ψ, ‖Zw‖∗ is the nuclear-
norm defined as the sum of the singular values of
Zw, ‖Zw‖∗ = ∑J

j=1 λj(Zw) with λj(Zw) being the jth
largest singular value of matrix Zw of rank at most J,
‖s‖1 is the `1-norm defined as the sum of absolute
entries of s, ‖s‖1 = ∑Q

q=1 |sq|, λ is a regularization
parameter, and ε is a noise bound. Problem (14) can
be handled efficiently by casting into the standard
Lagrangian form:

min
Zw ,s

{
f (Zw, s) ≡ 1

2
‖y− [A(Zw) + D s]‖2

2

+ γ ‖Zw‖∗ + λ ‖s‖1

}
.

(15)

Convex theory has proved that the solutions to (14)
and (15) are equivalent if γ and ε obey certain rela-
tionships [25]. Minimizing f (Zw, s) produces the wall
clutter matrix Zw and indoor target image s jointly.
Before presenting the algorithm to minimize f (Zw, s),
it is worth noting here that in comparison with the
conventional DS beamforming model in (9) considering
no prior knowledge, and the direct CS-based technique
in (10) taking into account only the sparsity of target
image, the proposed approach in (15) encompasses
a more complete and precise knowledge, which can
enhance model performance.

3.2 Iterative Algorithm

This subsection introduces an iterative algorithm to
solve the low-rank and sparse regularized LS problem
in (15). Although this minimization problem is convex,
it is complicated to solve it directly due to the non-
smoothness of the regularization terms. To handle this
issue, we develop an algorithm based on the proximal
forward-backward splitting (PFBS) technique. Before
presenting the algorithm, let us consider a generic case
of minimizing a composite objective function:

min
x
{ f (X) = g(X) + h(X)}, (16)

where g(X) is convex and differentiable with a C-
Lipschitz continuous gradient ∇g, and h(X) is convex
but not necessary smooth. PFBS handles Problem (16)
by an iterative scheme that involves a forward gradient
evaluation of g(X) and a backward proximal operator
of h(X). Let Xt denote an estimate of the solution at the
tth iteration. The next estimate is obtained by

Xt+1 = proxµth︸ ︷︷ ︸
backward step

(Xt − µt∇g(Xt))︸ ︷︷ ︸
forward step

. (17)

Here, the stepsize µt satisfies 0 < µt ≤ 1/C to en-
sure convergence, and the proximal operator is defined
as [20]

proxµth(Z) = arg min
X

{
1
2
‖Z− X‖2

F + µt h(X)
}

. (18)

In other words, let Zt denote the result of the gradient
step evaluated using the current estimate Xt,

Zt = Xt − µt∇g(Xt). (19)

The next estimate of the solution is obtained by proxi-
mal evaluation,

Xt+1 = proxµth(Zt). (20)

As the forward gradient is simple, the proximal evalua-
tion is the main computation cost. Hence, this algorithm
is computational-efficient if the proximal operator has
a closed-form solution.

The generic PFBS scheme in (19)–(20) is used to
minimize Problem (15). Let (Zw

t , st) denote an estimate
of the wall component and target image at the tth
iteration. The solution is obtained by the following
forward gradient and backward proximal evaluations:

Zt =Zw
t +A∗(D st)−A∗(A(Zw

t )+D st−y), (21)

(Zw
t+1, st+1) = arg min

Zw ,s

{
1
2
‖Zt − Zw −A∗(D s)‖2

F

+ γ‖Zw‖∗ + λ‖s‖1

}
.

(22)

In Equations (21) and (22), the stepsize µt is omitted
because it is set to µt = 1/C with C = λmax(Φ

TΦ) = 1.
Since the two variables Zw and s are separable, Prob-
lem (22) can be handled using the variable splitting
technique, leading to solving the following two sub-
problems:

Zw
t+1 = arg min

Zw

{
1
2
‖[Zt −A∗(D st)]− Zw‖2

F

+ γ ‖Zw‖∗
}

,
(23)

st+1 = arg min
s

{
1
2
‖Zt−Zw

t+1−A∗(D s)‖2
F + λ‖s‖1

}
.

(24)

The remaining task is to solve Subproblems (23)
and (24), which can be handled efficiently via
shrinkage/soft-thresholding techniques. In particular,
the LS problem regularized by the nuclear-norm term
in (23) is solved using the singular value soft-thresholding
(SVT) technique [24, 26]. The solution is obtained by
applying an SVT operator, Sγ(·), to the input matrix:

Zw
t+1 = Sγ(Zt −A∗(D st)). (25)

In general, the SVT operator Sτ(Z) comprises two main
tasks: singular value decomposition of the input matrix
Z followed by a shrinkage operator with level τ apply-
ing to the obtained singular values. Let Tτ(x) denote
the shrinkage or soft-thresholding operator defined as
follows:

Tτ(x) = sgn(x)max(|x| − τ, 0) =
x
|x| max(|x| − τ, 0).

(26)
For vectors or matrices, Tτ(·) is applied to each element
(entrywise). The SVT operator Sτ(Z) is now evalu-
ated as

Sτ(Z) = U Tτ(Λ) VH , (27)

where Z = U Λ VH is the singular value decomposition
of Z. The `1 regularized minimization (24) is solved by
the following forward gradient and backward proximal
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steps,

bt = st − βt DH(D st −A(Zt − Zw
t+1)), (28)

st+1 = arg min
s

{
1
2
‖bt − s‖2

2 + βtλ ‖s‖1

}
, (29)

where the stepsize βt > 0 can be set to βt = 1/C with
C = ||D||22 to ensure the convergence [27]. Problem (29)
has a closed-form solution equivalent to the shrinkage
operator,

sk+1 = Tβtλ(bt). (30)

In summary, the PFBS-based iterative algorithm to
solve Problem (15) is provided in Table I, which is
referred as Algorithm 1. The input into Algorithm 1
includes the measurement vector y, regularization pa-
rameters γ, λ, and a tolerance tol. Setting values for
these parameters is described in Section 4. It can be
observed that Algorithm 1 performs gradient compu-
tation (Step 2), followed by the proximal evaluations
of SVT operator for wall clutter estimation (Step 3)
and shrinkage operator for target image reconstruction
(Step 4). Evaluations of these two operators are the most
time-consuming steps and thereby forming the compu-
tational complexity of Algorithm 1. The computational
complexity of the SVT operation in Step 3 is O(MN2),
and the time complexity of the shrinkage operator in
Step 4 is O(Q). Thus, the overall computation complex-
ity of each iteration is O(MN2 + Q).

It is worth noting here that in the minimization, the
wall clutter matrix is estimated via SVT applied to
the data matrix in which the recent estimated target
component has been fixed and subtracted. Likewise, the
scene image is reconstructed by applying the shrinkage
operator to the measurement vector in which the recent
estimated wall component is fixed and segregated.
Algorithm 1 terminates after it reaches a local opti-
mum. We implement this termination condition as the
change of the cost function is very small (Step 5). After
convergence, the formed target image is obtained by
reshaping the column vector s into a 2-D matrix.

4 Experimental Results and Analysis

This section presents experimental evaluation for the
proposed rank-deficient and sparse approach using
simulated and real radar data. The performance of the
proposed approach is tested under different sensing
conditions, especially when the data measurements
are reduced drastically. Comparison results with other
existing compressive TWRI models are also provided.
First, Subsection 4.1 describes results using synthetic
data. This is followed by the experimental results with
real radar data in Subsection 4.2.

4.1 Experimental Results with Synthetic Data
4.1.1 Simulation setup: A synthetic aperture radar

(SAR) system was simulated for TWR data acquisition.
The transceiver was placed parallel to a 0.15 m thick
concrete wall, at a standoff distance of 1 m. It is
moved horizontally along the wall to synthesize a linear

Table I
Algorithm 1: Wall-Clutter Removal and Target-Image

Estimation in Compressive TWRI using the Proximal
Forward-Backward Splitting Technique
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st+1 = arg min
s

{
1
2
‖bt − s‖2

2 + βtλ ‖s‖1

}
, (29)

where the stepsize βt > 0 can be set to βt = 1/C with
C = ||D||22 to ensure the convergence [27]. Problem (29)
has a closed-form solution equivalent to the shrinkage
operator,

sk+1 = Tβtλ(bt). (30)

In summary, the PFBS-based iterative algorithm to
solve Problem (15) is provided in Table I, which is
referred as Algorithm 1. The input into Algorithm 1
includes the measurement vector y, regularization pa-
rameters γ, λ, and a tolerance tol. Setting values for
these parameters is described in Section 4. It can be
observed that Algorithm 1 performs gradient compu-
tation (Step 2), followed by the proximal evaluations
of SVT operator for wall clutter estimation (Step 3)
and shrinkage operator for target image reconstruction
(Step 4). Evaluations of these two operators are the most
time-consuming steps and thereby forming the compu-
tational complexity of Algorithm 1. The computational
complexity of the SVT operation in Step 3 is O(MN2),
and the time complexity of the shrinkage operator in
Step 4 is O(Q). Thus, the overall computation complex-
ity of each iteration is O(MN2 + Q).

It is worth noting here that in the minimization, the
wall clutter matrix is estimated via SVT applied to
the data matrix in which the recent estimated target
component has been fixed and subtracted. Likewise, the
scene image is reconstructed by applying the shrinkage
operator to the measurement vector in which the recent
estimated wall component is fixed and segregated.
Algorithm 1 terminates after it reaches a local opti-
mum. We implement this termination condition as the
change of the cost function is very small (Step 5). After
convergence, the formed target image is obtained by
reshaping the column vector s into a 2-D matrix.

Table I
Algorithm 1: Wall-Clutter Removal and Target-Image

Estimation in Compressive TWRI using the Proximal
Forward-Backward Splitting Technique

1) Initialize Zw
0 ← A∗(y), s0 ← 0, and t← 0.

2) Compute gradient evaluation using (21):
Zt←Zw

t +A∗(D st)−A∗(A(Zw
t ) + D st−y).

3) Perform wall clutter estimation using (25):
Zw

t+1 ← Sγ(Zt −A∗(D st)).

4) Reconstruct an image of the targets using (28) and (30):
bt ← st − βtDH(D st −A(Zt − Zw

t+1)),
st+1 ← Tβtλ(bt).

5) Compute the objective function f (Zw
t+1, st+1) using (15),

if
| f (Zw

t+1,st+1)− f (Zw
t ,st)|

| f (Zw
t ,st)| < tol then terminate the algorithm,

otherwise increase t← t + 1 and go to Step 2.

4 Experimental Results and Analysis

 !"  #"

Figure 1. The behind-wall target space: (a) ground-truth target image,
(b) image formed by DS beamforming technique, Equation (9), using
full data volume Z.

aperture consisting of N = 25 elements, with a spacing
between elements of 0.05 m. A stepped-frequency sig-
nal consisting of M = 201 frequencies, ranging from 1
to 3 GHz, with 10-MHz frequency step, was used to
scan the scene. The scene contains (P = 3) targets and
the front wall. The three targets (each covering 2 pixels)
placed behind the wall are centered at positions p1 =
(−1 m , 1.5 m), p2 = (0 m, 3 m), p3 = (1 m, 2 m). The
downrange and crossrange of the scene extend from 0
to 4 m, and −2 to 2 m, respectively. The target reflection
coefficients are σp1 = 1, σp2 = 0.8, and σp3 = 0.5. The
wall reflections, on the other hand, are dominant those
of the targets. The wall coefficient was set to σw = 10,
and the number of wall reverberations is R = 48. The
pixel size was set to the Rayleigh resolution of the radar,
which gives an image of size 53 × 48 pixels, i.e., the
number of total pixels Q = 53× 48 = 2,544.

With these settings, the wall matrix Zw and target
matrix Zt of size M × N = 201 × 25 were generated
using Equations (2) and (3), respectively. Due to the
column dependency, Zw is a low-rank matrix with rank
J = 1. The received radar matrix Z was generated using
Equation (5), in which the component Υ was assumed
to follow white Gaussian noise (WGN) with target
(signal)-to-noise ratio (SNR) = 10 dB. For references,
Figure 1 depicts the ground-truth image and the DS
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beamforming image, Equation (9), reconstructed using
the full measurement Z. It is evident from Figure 1(b)
that the wall clutter dominates the targets, making
target detection impossible. Note that in this article, the
target images are plotted with the maximum intensity
value normalized to 0 dB.

4.1.2 Clutter mitigation & target image reconstruction:
In the first experiment, we evaluate the performance
of the proposed low-rank and sparse regularized ap-
proach under incomplete data. The reduced dataset
comprising only 50% of the full data volume was
generated by randomly selecting half the frequencies
at all antenna locations (K = 2,525 out of the full
5,025 samples). Thus, the input measurement vector
y is of size 2,525 × 1. The resulting dictionary D is
overcomplete with the size of K×Q = 2,525 × 2,544.
Using y and D, clutter mitigation and target image
reconstruction can be performed with Algorithm 1.
This algorithm requires three parameters γ, λ, and tol,
which need to be selected appropriately. Parameter γ
controls the importance of the low-rank term and uses
in SVT to estimate the low-rank wall clutter matrix,
see Step 3 in Algorithm 1. Setting γ to a very large
value, e.g., γ = ‖A∗(y)‖2, leads to the solution of Zw

being rank 0, whereas choosing a small value, e.g.,
γ = 10−4‖A∗(y)‖2 makes the algorithm converge very
slowly. The values 10−4‖A∗(y)‖2 and ‖A∗(y)‖2 can
be regarded as the lower and upper bounds for γ,
respectively. Here, in the experiments, γ was set to
γ = 10−2‖A∗(y)‖2. While γ controls the rank of ma-
trix Zw, the parameter λ guarantees the sparsity level
of the target image s. For λ ≥ ‖DH y‖∞, the unique
solution to Problem (15) for s is the zero matrix. In the
following experiments, λ was set to λ = 10−2‖DHy‖∞.
The algorithm converges if the relative change of the
objective function is smaller than tol=10−6 (see Step 5
in Algorithm 1).

Figure 2 shows the realization of the target image st
estimated by Algorithm 1 at different iterations. It can
be observed that after few initial iterations, the targets
are undetectable due to the dominance of the strong
wall returns, as illustrated in Figures 2(a) and (b).
When further iterations are reached, the targets become
realizable, see Figure 2(c). The targets are localized
after convergence (126 iterations), as demonstrated in
Figure 2(d), where target pixels are visible and wall
clutter as well as background noise are significantly
mitigated.

To quantify the quality of wall clutter suppression
and image reconstruction, the target-to-clutter ratio
(TCR) is used as a performance measure [3, 11, 13]. Let
At and Ac be, respectively, the regions of target and
clutter on the reconstructed image I, and let Nt and Nc
be, respectively, the number of target and clutter pixels.
The TCR (in dB) measures the ratio of the average
powers of the target region over the clutter region:

TCR = 10 log10(
1

Nt
∑q∈At |Iq|2

1
Nc

∑q∈Ac |Iq|2
). (31)

The target region is chosen in the vicinity of the true
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Figure 2. The realization of indoor target images reconstructed by
Algorithm 1: (a) target image s30 estimated at the 30th iteration, (b)
target image s70 estimated at the 70th iteration, (c) target image s90
estimated at the 90th iteration, and (d) target image s126 estimated at
the 126th iteration.
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Figure 3. Evolution of the rank values of the wall component Zw

and the objective function f (Zw, s) during minimization: (a) the rank
values of matrix Zw as a function of the number of iterations, (b)
f (Zw, s) as a function of the number of iterations.

targets, and the clutter region is defined as the en-
tire image, without the target region. Using (31), we
compute the TCRs for images shown in Figure 2. As
expected, the TCR values increase from −0.38 dB for
Figure 2(a), 16.09 dB for Figure 2(b), to 26.69 dB for
Figure 2(c), and 43.09 dB for Figure 2(d).

Further insights into the proposed optimization
model can be observed from the change of the rank
values for the wall component matrix Zw, shown in
Figure 3(a) and the evolution of the objective function
f (Zw, s), shown in Figure 3(b). As demonstrated in
Figure 3(a), the rank value starts at 25, i.e., min(201, 25)
and achieves a value of 1 at the steady-state. Likewise,
the cost function is monotone-decreasing and converges
well after 126 iterations.

4.1.3 Comparisons with different CS-based clutter mit-
igation & image reconstruction: This experiment aims
to evaluate the performance of the proposed low-
rank and sparse approach in comparison with other
existing CS-based imaging methods. For comparison,
we implement the existing direct CS and multistage
CS-based approaches for wall clutter mitigation and
target image reconstruction using 50% reduced dataset
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Figure 4. Images produced by different CS-based wall clutter re-
duction and target image reconstruction methods using 50% of
full measurements: (a) direct `1-norm minimization without clutter
mitigation, (b) multistage CS approach with signal estimation, spatial
filtering, and `1-norm minimization, (c) multistage CS approach with
signal estimation, subspace projection, and `1-norm minimization,
and (d) proposed joint nuclear-norm and `1-norm method.

acquired in the same manner as in Subsection 4.1.2.
While the direct CS method reconstructs a target im-
age from the raw reduced data vector y, the existing
multistage approaches first perform data recovery, then
employ a spatial filtering [15] or a subspace projection
technique [16] for wall-clutter mitigation, i.e., removing
the wall component Zw, and finally reconstruct a target
image by solving the `1-norm regularized problem
in (10) using the wall-clutter subtracted data.

Figure 4 shows the target images formed by the
different imaging methods. Without clutter removal, the
direct CS method forms an image shown in Figure 4(a).
Clearly, strong wall clutter dominates the targets, mak-
ing target localization very difficult. On the other hand,
by using the spatial filtering for wall clutter migration,
the multistage CS approach produces the target image,
shown in Figure 4(b), in which strong wall clutter has
been significantly mitigated, but this image still con-
tains a high level of false alarms. Figure 4(c) presents
the image reconstructed by the multistage CS method,
but the subspace projection is used, instead of the
spatial filtering, for wall clutter mitigation. The quality
of the target image is enhanced slightly due to better
level of clutter mitigation, i.e., the subspace projection
outperforms the spatial filtering in terms of clutter
suppression. The proposed rank-deficient and sparse
approach yields the image depicted in Figure 4(d),
where the target pixels are further enhanced and clutter
pixels are alleviated considerably.

The TCR values of the target images, shown in
Figure 4, formed by the different CS-based methods are
computed and listed in Table II. As we expect from the
visual interpretation, the proposed joint nuclear-norm
and `1-norm approach significantly enhances the image
quality in terms of TCR; it yields the target image with

Table II
Performances of Different Wall Clutter Mitigation and

Target Image Formation Methods in Terms of TCR using 50% of
Full Measurements

Clutter mitigation & image formation
methods

TCR (dB)

Direct `1 min. without clutter −19.22mitigation [8, 9]
Multistage signal esti. & spatial filt.

29.19& `1 min. [11, 15]
Multistage signal esti. & sub. proj.

30.60& `1 min. [11, 16]
Proposed rank-deficient and sparsity

42.33approach

a TCR value of 42.33 dB, the highest TCR value among
those of the evaluated CS-based imaging approaches.

4.1.4 Performance under different noise levels: In this
experiment, the performance of the proposed model
is examined under different noisy sensing conditions.
In doing so, we use the 50% dataset generated in the
same protocol as in Subsection 4.1.2, but the complex
WGN component Υ is added to the received radar
signals with SNR varying from −15 to 15 dB. For each
noise level, the proposed model is evaluated, and the
TCR of the formed images, the rank, and the number
of iterations are recorded for 100 trials. Table III lists
the averaged computational results for all trials. It is
evident that the algorithm estimates the rank of the wall
matrix consistently even under highly corrupted noise.
It also yields good image quality in terms of TCR for
all noisy levels. However, more iterations are required
for convergence under highly corrupted noise levels.

4.1.5 Effects of incomplete measurements: This experi-
ment aims to test the effects of reducing measurements
on the performance of the proposed algorithm. For this
purpose, different incomplete datasets comprising 20%,
25%,..., 50% of the full measurements are generated
by selecting measurements randomly. These reduced
subsets, corrupted by noise with SNR=10 dB, are used
as input for evaluating the proposed model. For each
dataset, the rank of the wall component Zw, the value
of the cost function, the relative change of the objective
function, the number of iterations, and TCR values
of the formed images are recorded after convergence.
Table IV presents the results for all datasets, averaged
over 50 trials. Three noticeable observations made from
the results include: (1) the proposed algorithm con-
verges and estimates the rank correctly for the all levels
of reduced datasets, (2) far fewer iterations are needed
for convergence when more data samples are available,
and (3) the TCR values enhance together with the use
of the number of measurements.

4.2 Experimental Results with Real Data

4.2.1 Experimental setup: Real radar datasets were
collected from a scene, shown in Figure 5, that consists
of one dihedral target placed behind a wooden wall.
This behind-wall scene is sensed by a 81-element linear
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Table III
Computational Results of the Proposed Low-rank and Sparse Regularized Model for Different Noise Levels using 50% of the

Total Measurements

SNR (dB) Rank(Zw)
| f (Zw

t+1, st+1)− f (Zw
t , st)|

| f (Zw
t , st)|

Iterations TCR (dB)

−15 1 9.63× 10−7 155 19.45
−10 1 9.31× 10−7 143 30.96
−5 1 8.86× 10−7 135 40.60

0 1 8.54× 10−7 134 43.49
5 1 8.34× 10−7 134 43.58
10 1 8.56× 10−7 132 44.75
15 1 8.31× 10−7 130 45.86

Table IV
Computational Results of the Low-rank and Sparse Model for Different Reduced Datasets

Dataset Rank(Zw)
| f (Zw

t+1, st+1)− f (Zw
t , st)|

| f (Zw
t , st)|

Iterations TCR (dB)

20% 1 6.90× 10−7 567 25.07
25% 1 7.97× 10−7 368 32.26
30% 1 7.59× 10−7 253 34.07
35% 1 8.01× 10−7 203 37.64
40% 1 7.71× 10−7 168 38.87
45% 1 8.05× 10−7 144 42.59
50% 1 7.84× 10−7 134 44.79
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Figure 5. Layout of the imaged scene containing a wooden wall
and one dihedral used as target for through-the-wall radar data
acquisition.

antenna array synthesized by a monostatic radar system
with the inter-element spacing of 0.01 m. The radar
system transceives a 801-step frequency signal covering
the bandwidth of [1–3 GHz]. This stepped-frequency
SAR system was positioned in front of the 0.16 m-thick
wooden wall, at a standoff distance of 1.0 m.

4.2.2 Clutter mitigation & image reconstruction: This
experiment evaluates the proposed rank-deficient and
sparse approach under generic CS operations where
both antennas and frequencies are highly compressed.
CS radar imaging acquires a reduced dataset, instead of

full data volume, by randomly selecting only half of the
available antennas (41 out of 81). Each selected antenna
uses only 20% (160 out of 801) frequencies, which are
randomly sampled. Thus, the used dataset constitutes
only 10% of the full data volume. For comparison, we
also implement the existing direct CS and multistage
CS-based approaches for wall clutter mitigation and
target image reconstruction using the same reduced
dataset.

Figure 6 depicts the target images reconstructed
using the different imaging methods. The direct CS
method yields a degraded image shown in Figure 6(a)
due to the presence of strong wall interferences, hin-
dering target identification. The multistage CS-based
methods with the spatial filtering and subspace projec-
tion produce the target images in Figures 6(b) and (c),
respectively. In these formed target images, strong
wall clutter is suppressed, which enables the target
localization. The proposed joint low-rank and sparse
model gives the image shown in Figure 6(d), where the
target pixels are highlighted and background clutter are
substantially reduced.

Table V presents the performance measure of TCRs
by the different CS-based techniques. It can be observed
from the table that the proposed joint nuclear-norm and
`1-norm approach outperforms the exisiting CS-based
imaging techniques in terms of TCR; it has the highest
TCR value of 29.97 dB, followed by the multistage
CS with subspace projection of 16.74 dB, multistage
CS with spatial filtering of 6.05 dB, and direct CS of
1.13 dB.
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Figure 6. Images produced by different CS-based wall clutter reduc-
tion and target image reconstruction methods with 50% antennas and
20% frequencies (collectively represent only 10% of full measure-
ments): (a) direct `1-norm minimization without clutter mitigation,
(b) multistage CS approach with signal estimation, spatial filtering,
and `1-norm minimization, (c) multistage CS approach with signal
estimation, subspace projection, and `1-norm minimization, and (d)
proposed joint nuclear-norm and `1-norm method.

Table V
Target-to-Clutter Ratio Performances for the Images

Produced by Several CS-based Techniques with 50% Antennas
and 20% Frequencies (Collectively Represent only 10% of Full

Measurements)

Clutter mitigation & image formation
methods

TCR (dB)

Direct `1 min. without clutter
1.13mitigation [8, 9]

Multistage signal esti. & spatial filt.
6.05& `1 min. [11, 15]

Multistage signal esti. & sub. proj.
16.74& `1 min. [11, 16]

Proposed rank-deficient and sparsity
29.97approach

To evaluate the capability of target detection by dif-
ferent wall clutter mitigation and image reconstruction
methods, we apply a thresholding technique to the
target images formed by the different methods shown
in Figure 6. Here, the input image is partitioned into
two classes: object and background. The threshold used
for classification is found by maximizing the between-
class variance. Figure 7 presents the detection results
after applying the same threshold value to the form
images. As expected, without wall clutter mitigation,
the direct CS fails to localize the target as demonstrated
in Figure 7(a). By contrast, it can be observed from
Figures 7(b) and (c) that the multistage CS approach
can detect the target with a high level of false alarms.
The detection result in Figure 7(d) shows that the pro-
posed model is able to localize the target well, with no
appearance of false alarms.
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Figure 7. Detection of target by thresholding the images produced
by different CS-based wall clutter reduction and target image recon-
struction methods with 50% antennas and 20% frequencies (collec-
tively represent only 10% of full measurements): (a) direct `1-norm
minimization without clutter mitigation, (b) multistage CS approach
with signal estimation, spatial filtering, and `1-norm minimization, (c)
multistage CS approach with signal estimation, subspace projection,
and `1-norm minimization, and (d) proposed joint nuclear-norm and
`1-norm method.

5 Conclusion

This paper introduced a rank-deficient and sparsity
regularized optimization model to address two im-
portant problems of wall clutter mitigation and target
image formation in compressive indoor radar imaging.
The task of wall clutter suppression and target image
reconstruction is formulated as a composite nuclear and
`1-penalized minimization problem and an iterative
algorithm based on the proximal forward-backward
splitting technique is developed, which captures wall
clutter and yields an indoor target image simultane-
ously. Through extensive experimental evaluations on
simulated and real radar data, we found that exploiting
both rank-deficient and sparsity structures improves
the accuracy of clutter suppression and enhances target
detection even with highly compressed measurements.
Furthermore, the proposed model enables the process-
ing of wall and target signals jointly, which results in a
significant better performance than those of multistage
approaches where the wall clutter removal and target
image reconstruction are performed separately.
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