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Abstract– This paper studies a cognitive radio (CR) network which consists of a full-duplex (FD) multi-user (MU) multiple-
input multiple-output (MIMO) secondary user (SU) networks operating within the coverage of multiple primary users (PUs).
It is assumed that the channel state information (CSI) matrices associated with SU systems are perfectly known whereas the
CSI ones from SUs to PUs are imperfectly estimated. The problem of interest is to design robust precoding matrices at the
SUs to maximize the CR sum rate subject to the SU transmit power constraints and harmful interference restrictions at PUs.
Due to non-concavity of the objective function and intractability of robust PU interference constraints, the design problem
is non-convex and challenging to directly solve. We exploit the difference of two concave functions to recast the sum rate
objective function as a lower bounded concave one. In addition, a linear matrix inequality (LMI) transformation is used to
handle the semi-infinite robust interference constraints. Then, the sequential convex programming method is carried out
to iteratively solve a convex optimization problem in each iteration. The simulation results are provided to investigate the
CR sum-rate (spectral efficiency) performance and the robustness against the CSI uncertainty.

Keywords– Cognitive Radio, Full-Duplex, Multi-user MIMO, Robust Precoding Design, Imperfect CSI.

1 Introduction

The substantial spectral efficiency (SE) improvement of
full-duplex (FD) transmission modes as compared to
traditional half-duplex counterparts has been demon-
strated in FD multi-user multiple-input multiple-output
(MU-MIMO) cellular networks [1–4]. The sum rate
maximization (SRM) algorithm based on the sequential
convex programming (SCP) approach was proposed for
a single cellular FD MU-MIMO network without and
with the impact of co-channel interference (CCI) in [1]
and [2], respectively. Reference [3] jointly designed pre-
coding matrices for bidirectional FD interference chan-
nel (IC) systems by minimizing the system sum mean
squared error (MSE), and then expanded this algorithm
for FD cellular systems. Alternatively, reference [4] pro-
posed a novel SCP for multicell FD MU-MIMO, namely
successive quadratic convex programming (SQCP). Ho-
wever, almost all above works adopted the assumption
of perfect channel state information (CSI) knowledge
at transceivers. This assumption is difficult to achieve
in practice. Hence, to be more precise on practical
conditions of wireless communication systems, the CSI
errors are taken into consideration for single cell and
multi-cell FD MU-MIMO systems in [5, 6].

Along with FD techniques, cognitive radio (CR) ap-
proaches have attracted an extensive consideration [7–
12] since they can efficiently reuse spectral resources.
Reference [7] developed a robust linear transceiver
design algorithm for ad hoc cognitive network ba-
sed on the MSE minimization under imperfect CSIs

with both uncertain models, namely norm bounded
error (NBE) and stochastic error (SE). Reference [8]
designed the transmit covariance matrices and receive
filters to optimize the MSE performance under CSI
inaccuracy assumptions. On the other hand, the in-
terference alignment (IA) based algorithms were de-
veloped for multiple pair of SUs and PUs to mini-
mize the system MSE or maximize the network energy
efficiency in [9] and [10], respectively. Alternatively,
in the scenario of the cognitive MU-MIMO downlink
model, reference [11] used zero-forcing methods to
cancel inter-user interferences and, then, developed a
barrier interior-point method to optimize the system
throughput under transmit per-antenna power and in-
terference temperature constraints. Reference [12] intro-
duced an iterative quadratic convex algorithm to max-
imize the sum-rate by jointly designing beamformers
and antenna selection for secondary quality of service
requirements in multiple-input single-output (MISO)
broadcast channels. More recently, the combination of
both FD transmission and CR techniques was studied
in [13, 14]. The authors in [13] considered the design
problems based on minimum sum MSE or minimum-
maximum MSE for CR FD MU-MIMO systems. Refe-
rence [14] addressed two robust algorithms based on the
MSE under the channel uncertainties.

Motivated from above works, this paper considers
an underlay FD MU-MIMO secondary system opera-
ting within the multiple multi-antenna PU coverage as
[13, 14]. The CSI knowledge of all links in the secondary
FD network is assumed to be perfectly known, however
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the CSI of the links from SUs to PUs are imperfectly
known. Additionally, the NBE model is used to capture
the SUs-PUs channel uncertainties [8]. Different from
the works in [13, 14] which are based on the MSE
minimization, the present paper aims at maximizing
the spectral efficiency of the CR network. More spe-
cifically, the transmit precoder matrices at both base
station (BS) and uplink users in the secondary network
are jointly designed to maximize the sum rate (i.e.,
spectral efficiency) of the secondary system under the
constraints of the harmful interference caused to the
PUs. The considered robust design is an intractable
optimization problem due to the non-concavity of the
achievable rates along with robust interference semi-
infinite constraints. Thus, it is difficult to directly find
the optimal points. In this paper, by making the use
of the fact that the objective function can be expressed
as the difference of two concave (d.c.) ones, the sum-
rate objective function can be lower-bounded by a
concave function [1, 2, 15]. On the other hand, to cope
with the semi-infinite robust interference constraints,
the S-procedure is used to transform the interference
constraints into linear matrix inequality (LMI) ones. As
a result, an iterative algorithm is derived to find the
optimal precodes by solving the convex optimization
in each iteration. The numerical results are conducted
to evaluate the convergence behaviors of the iterative
algorithm and to investigate the system sum-rate per-
formance and robustness of the designed precoders.

The rest of this paper is organized as follows.
Section 2 introduces the signal and system models and
the assumptions considered in the paper. Section 3
presents the design problem for maximizing the system
sum-rate and describes the iterative optimization algo-
rithm. Finally, the simulation results and conclusions
are provided in Section 4 and Section 5, respectively.

Notations: Bold lower and upper case letters represent
vectors and matrices, respectively. Y†, Tr (Y) and |Y|
are the Hermitian, trace and determinant operators
of Y, respectively. Y < 0 means that Y is a positive
semidefinite matrix and In represents n × n identity
matrix. The notation Y⊗M refers to the Kronecker
product of Y and M. <{·} returns the real values. The
vec(M) function denotes the vectorization of M.

2 System Model

Consider an FD MU-MIMO CR network as illustrated
in Figure 1 where one secondary system is sharing the
spectrum with P primary users (PUs). In the secondary
network, one FD base station (BS), denoted by B, is
enable to simultaneously communicate with U uplink
(UL) users (ULUs) in UL channels, and D downlink
(DL) users (DLUs) in DL channels. The set of ULUs,
DLUs, PUs are denoted by U = {1u, 2u, . . . , Uu}, D =
{1d, 2d, . . . , Dd}, and V = {1p, 2p, . . . , Pp} respectively.
Base station B is equipped with NB receive antennas
for uplink transmission and MB transmit antennas for
downlink transmission, while ULU `u and DLU kd have
M`u and Nkd antennas, respectively. PU np is equipped

1u . . . ℓu

UuDd1d
. . .

kd 

,kF d u

F

np

Pp
. . .1p 

kG
d Hu ,nK p u

,nK p

Figure 1: The FD MU-MIMO underlay spectrum
sharing cognitive system.

Lnp receive antennas. Throughout this paper, we use
kd ∈ D, `u ∈ U and np ∈ V to refer to the k–th user in
the DL channels, the `–th user in the UL channels and
the n–th user in the set of PUs, respectively.

2.1 Signal Model

Let skd ∈ C
dkd
×1, s`u ∈ Cd`u×1 be the vectors

of symbols intended to DLU kd and from ULU `u,
where dkd and d`u , satisfying dkd ≤ min

(
Nkd , MB

)
,

d`u ≤ min (M`u , NB), are the numbers of data streams
associated with users kd and `u, respectively.

In UL channels, the received vector signal at B, i.e.
yB ∈ CNB×1, is given by

yB = ∑
`u∈U

H`u A`u s`u︸ ︷︷ ︸
Desired signals

+ ∑
kd∈D

FB Bkd skd︸ ︷︷ ︸
Self-Interference

+ nB︸︷︷︸
Noise

, (1)

where H`u ∈ CNB×M`u , FB ∈ CNB×MB are the channel
gains of `u → B link and SI link from transmit to
receive antennas at the BS, respectively. Furthermore,
A`u ∈ CM`u×d`u , Bkd ∈ C

MB×dkd denote precoding
matrices for user `u, kd, respectively. nB ∈ CNB×1 refers
to the additive white Gaussian noise (AWGN) at B with
zero mean and covariance matrix σ2

B INB .
In addition, the received signal at DLU kd, denoted

by ykd ∈ C
Nkd
×1, can be expressed as

ykd = Gkd Bkd skd︸ ︷︷ ︸
Desired signals

+∑id∈D \{kd}
Gkd Bid sid︸ ︷︷ ︸

Multi-User Interference

+ ∑tu∈U Fkd,tuAtustu︸ ︷︷ ︸
Co-channel Interference

+ nkd︸︷︷︸
Noise

,
(2)

where Fkd,tu ∈ C
Nkd
×Mtu represents the CCI channel

coefficient at kd from ULU tu, and nkd ∈ C
Nkd
×1 repre-

sents the AWGN at kd with zero mean and covariance
matrix σ2

kd
INkd

.

Define Qkd , Bkd B†
kd

and R`u , A`u A†
`u

which are
the transmit covariance matrices associated with the
kd-th DLU and `u-th ULU, respectively. For notation
simplicity, we define QD ,

{
Qkd | kd ∈ D

}
and RU ,

{R`u | `u ∈ U} are the sets of DL and UL covariance
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matrices, respectively. Thus, the achievable data rate of
user kd in the DL channel can be defined by

Rkd (QD, RU) = log2

∣∣∣∣INkd
+
(

σ2
kd INkd

+Ωkd

)−1
Ckd

∣∣∣∣ ,

(3)
where Ckd , Gkd Qkd G†

kd denotes the covariance matrix
of desired signal and Ωkd , ∑id∈D \{kd}Gkd Qid G†

kd +

∑tu∈U Fkd,tu Rtu F†
kd,tu is the covariance matrix of the

multi-user plus co-channel interferences of kd.
Furthermore, from (1) the total achievable rate of UL

channels can be formulated as

RB (QD, RU) = log2

∣∣∣∣INB +
(

σ2
BINB + ΩB

)−1
CB

∣∣∣∣ , (4)

where ΩB , ∑kd∈D FBQkdF†
B , CB , ∑`u∈U H`uR`uH†

`u
are covariance matrices of SI and desired signal at BS
respectively.

2.2 Robust Interference Power Constraints

Concerning interference at PU devices, the covariance
matrix of the received signals at PU np with np ∈ V is
given by

Cnp = ∑`u∈U Knp,`u R`u K†
np,`u + Knp,BQsum

kd K†
np,B , (5)

where Knp,`u ∈ CLnp×M`u , Knp,B ∈ CLnp×MB are the
channel coefficients at np from `u and B, respectively
while we have defined Qsum

kd , ∑kd∈D Qkd . Hence, the
total interference power at PU np can be given by

Inp (QD, RU) = Tr
(
Cnp

)
. (6)

In the considered system, the PUs have higher prio-
rity to access the spectral resource than the SUs. Con-
sequently, the FD MU-MIMO CR network is designed
to guarantee that the total interference power at each
PU caused from the CR system is not greater than a
predetermined allowable threshold. Supposing that the
allowable interference threshold at PU np is γnp , the
interference constraints can be formulated by

Inp (QD, RU) ≤ γnp , ∀ np ∈ V . (7)

However, by the reason of not full cooperation be-
tween the FD cognitive MU-MIMO and PU systems,
the channel gains between these links cannot be per-
fectly known [8]. Thus, the robust interference power
constraints under imperfect known CSI is expressed as

Inp (QD, RU) ≤ γnp , ∀Knp,B ∈ KNBE
np,B ,

∀Knp,`u ∈ K
NBE
np,`u ,

∀ np ∈ V , ∀ `u ∈ U ,

(8)

where KNBE
np,B and KNBE

np,`u are probable sets of inaccuracy
CSI. In this paper, the imperfect CSI errors are modelled
by norm-bounded error (NBE) models [5–7, 14]

KNBE
np,`u ,

{
K̂np,`u + ∆np,`u :

∥∥∥∆np,`u

∥∥∥
F
≤ εnp,`u

}
, (9)

KNBE
np,B ,

{
K̂np,B + ∆np,B :

∥∥∥∆np,B
∥∥∥

F
≤ εnp,B

}
. (10)

Here, K̂np,`u and K̂np,B are estimated channels. ∆np,`u
and ∆np,B denote channel error matrices. εnp,`u and εnp,B
represent the uncertainty bounds.

3 Robust Precoding Designs for Sum Rate

Maximization of FD CR MU-MIMO System

This section aims at finding the optimal precoding ma-
trices to maximize the sum rate under the constraints
of per user power constraint (PUPC) at each UL device,
sum power constraint (SPC) at B and the interference
constraint at each PU.

3.1 Sum Rate Maximization Problem
The overall system achievable rate is given by

RTot(QD, RU) , RB (QD, RU) + ∑
kd∈D

Rkd (QD, RU).

(11)

The robust sum-rate maximization (SRM) design pro-
blem subject to the transmit power constraints and
interference constraints under the imperfect CSI of links
from B and ULUs to np is mathematically formulated as

max
{QD,RU}<0

RTot(QD, RU) (12a)

s.t. Tr (R`u) ≤ P`u,max, ∀ `u ∈ U , (12b)

∑kd∈D
Tr
(
Qkd

)
≤ PB,max, (12c)

(8), (12d)

where P`u,max, PB,max, γnp are the maximum transmit
power at UL `u, total maximum transmit power at BS
and the maximum allowable interference power at PU
np, respectively. Note that (12b) imposes the PUPC at
each UL user, (12c) is the SPC at B, and (12d) represents
the robust interference power constraints to each PU.

3.2 Difference of Two Concave Functions
As can be seen from problem (12), the objective

function is a non-concave which makes the optimiza-
tion problem intractable. Thus, we derive an algorithm
based the SCP approach to handle this challenging
non-convex problem. The key idea of the SCP method
is to iteratively find the optimal solution of a convex
problem in each iteration. Therefore, in the sequel, we
will derive an alternative problem by approximating
the objective function into a concave one. Exploiting the
concavity of logdet function, one has [16, p.69], [1, 2, 15]

log2 |M+Y| ≤log2 |M+Y0|

+
1

ln (2)
Tr
[
(M+Y0)

−1 (Y−Y0)
]

,

(13)
for any M, Y, Y0 < 0 and the equality is achieved when
Y0 = Y. Then, we can rewrite the achievable rate at
DLU kd in (3) as

Rkd (QD, RU) =log2

∣∣∣σ2
kd INkd

+Ωkd + Ckd

∣∣∣
− log2

∣∣∣σ2
kd INkd

+Ωkd

∣∣∣ ,
(14)
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and the total UL rate at B (4) as

RB (QD, RU) =log2

∣∣∣σ2
BINB + ΩB + CB

∣∣∣
− log2

∣∣∣σ2
BINB + ΩB

∣∣∣ .
(15)

It is worth noting that both (14) and (15) are the diffe-
rence of two concave functions. Hence, by applying (13)
on the second term of right hand side in (14), the
approximation of kd DLU rate at a feasible set of F (κ) ,{

Q(κ)
`u

, R(κ)
kd
|kd ∈ D, `u ∈ U

}
can be formulated as

Rkd (QD, RU) ≥ φkd (QD, RU) = −log2

∣∣∣Φ(κ)
kd

∣∣∣
+ log2

∣∣∣∣∣σ2
kdINkd

+ ∑
id∈D

GkdQidG†
kd + ∑

`u∈U
Fkd,`uR`uF†

kd,`u

∣∣∣∣∣
− 1

ln (2)
Tr

(Φ
(κ)
kd

)−1
∑

id∈D \{kd}
Gkd

(
Qid −Q(κ)

id

)
G†

kd


− 1

ln (2)
Tr

[(
Φ

(κ)
kd

)−1
∑
`u∈U

Fkd,`u

(
R`u − R(κ)

`u

)
F†

kd,`u

]
,

(16)
where Φ

(κ)
kd

, σ2
kd

INkd
+ ∑id∈D \{kd}GkdQ(κ)

id
G†

kd +

∑`u∈U Fkd,`uR(κ)
`u

F†
kd,`u .

Similarly, the lower bound of the UL sum rate in (15)
can be formulated at F (κ) as

RB (QD, RU) ≥ φB (QD, RU) = −log2

∣∣∣Φ(κ)
B

∣∣∣
+ log2

∣∣∣∣∣σ2
BINB + ∑

kd∈D
FBQkdF†

B + ∑
`u∈U

H`uR`uH†
`u

∣∣∣∣∣
− 1

ln (2)
Tr

[(
Φ

(κ)
B

)−1
∑

kd∈D
FB
(

Qkd −Q(κ)
kd

)
F†
B

]
,

(17)
with Φ

(κ)
B , σ2

BINB + ∑kd∈D FBQ(κ)
kd

F†
B . Therefore, the

total sum rate is tightly lower bounded by

φTot (QD, RU) ,φB (QD, RU) + ∑kd∈D
φkd (QD, RU)

≤ RTot (QD, RU).
(18)

It is a concave function with respect to {QD, RU}.
Therefore, the SRM problem (12) can be rewritten as
a convex one in iteration κ as

max
{Q}<0

φTot (QD, RU) (19a)

s.t. (12b), (12c), (12d). (19b)

Although the objective function now is convex, the
interference power constraints (12d) is quite intractable
to handle since they are semi-infinite constraints.

3.3 Linear Matrix Inequality (LMI) Transformation
for Robust PU Interference Power Constraints

By introducing the auxiliary variables γnp,`u , and
γnp,B with `u ∈ U , np ∈ V , the interference con-

straints (8) can be recast as

∑`u∈U γnp,`u + γnp,B ≤ γnp , ∀ np ∈ V , (20a)

γnp,`u ≥ 0, γnp,B≥ 0, ∀ `u ∈ U , (20b)

Tr
(

Knp,`u R`u K†
np,`u

)
≤ γnp,`u , ∀Knp,`u ∈ K

NBE
np,`u , (20c)

Tr
(

Knp,BQsum
kd K†

np,B

)
≤ γnp,B , ∀Knp,B ∈ KNBE

np,B . (20d)

Then, we define the term Tr
(

Knp,`u R`u K†
np,`u

)
, βnp,`u

in (20c) and substitute Knp,`u = K̂np,`u + ∆np,`u to yield

βnp,`u =Tr
(

K̂np,`uR`uK̂†
np,`u

)
+2<

[
Tr
(

K̂np,`uR`u∆†
np,`u

)]
+ Tr

(
∆np,`uR`u∆†

np,`u

)
. (21)

By defining gnp,`u , vec
(

∆†
np,`u

)
and utilizing

following equalities of the trace functions
Tr(M†YM)=vec (M)† (Ib ⊗ Y) vec (M), and Tr(T†M)=
vec (T)† vec (M) [8] where Y is the a× a matrix and T
and M are the a× b matrices, (21) can be rewritten as

βnp,`u =Tr
(

K̂np,`uR`uK̂†
np,`u

)
+ 2<

[
vec
(

R†
`u

K̂†
np,`u

)†
gnp,`u

]
+ g†

np,`u

(
IN`u
⊗ R`u

)
gnp,`u ,

(22)

and the condition
∥∥∥∆np,`u

∥∥∥
F
≤ εnp,`u is now rewritten by

g†
np,`uIM`u Lnp

gnp,`u ≤ ε2
np,`u . (23)

To handle the robust interference constraints in (20c)
and (20d), we adopt the following lemma [16,
p. 655], [8].

Lemma 1. S-Procedure lemma [16, p. 655]
Consider Y, M are the n × n Hermitian matrices; b is

the complex vector size n × 1; c, e are two real numbers;
and assume the interior condition holds, i.e. there exists an
ȳ satisfying ȳ†Mȳ < e. Then two following inequalities

y†Yy + 2<
(

b†y
)
+ c ≥ 0, and ∀y†My ≤ e (24)

hold if and only if there exists θ ≥ 0 such that[
θM + Y b

b† c− θe

]
< 0. (25)

In spirit of Lemma 1 and light of (22) and (23),
constraints (20c) and (20d) can be recast as LMIs as
in (26) and (27), respectively (at the top of next page).

3.4 An Iterative Algorithm Based on Convex
Optimization

The non-convex robust SRM problem (12) can be ite-
ratively solved by solving the following convex problem

max
{QD,RU}<0,{θ},{γ}

φTot (QD, RU) (28a)

s.t. (12b), (12c), (20a), (20b), (26), (27),
(28b)
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 θnp,`uIM`u Lnp
−
(

ILnp
⊗ R`u

)
− vec

(
R†
`u

K̂†
np,`u

)
− vec

(
R†
`u

K̂†
np,`u

)†
γnp,`u − θnp,`uε2

np,`u
− Tr

(
K̂np,`uR`uK̂†

np,`u

)
 < 0, θnp,`u > 0. (26)

 θnp,BIMBLnp
−
(

ILnp
⊗Qsum

kd

)
− vec

(
(Qsum

kd )†K̂†
np,B

)
− vec

(
(Qsum

kd )†K̂†
np,B

)†
γnp,B − θnp,Bε2

np,B − Tr
(

K̂np,BQsum
kd K̂†

np,B

)
 < 0, θnp,B > 0. (27)

Table I: Simulation parameters

Parameter Value

Outer and inner cell radius 40 m and 5 m
System bandwidth 10 MHz
Thermal noise power density −174 dBm/Hz
Noise figure B: 13 dB, DLU: 9 dB
Power budget at the BS, PB,max 26 dBm
Power budget at the ULUs, PU,max 23 dBm
Path loss between B and a user, LBU 103.8 + 20.9log10(d) dB
Path loss among users, LUU 145.4 + 37.5log10(d̂) dB
SI cancellation capability [17], CSI 90 dB

Algorithm 1 Algorithm for Robust SRM Optimization

Initialization: Set κ = 0 and input the error tolerance
ε > 0, maximum iteration κmax, random F (κ) satisfying
constraints in (8), (12b) and (12c).

repeat
Compute φB (QD, RU) and φkd (QD, RU) with kd ∈ D at
F (κ);
Find Q?

kd , ∀ kd ∈ D and R?
`u

, ∀ `u ∈ U by solving (28);
Update κ ← κ + 1;
Update Q(κ)

kd
= Q?

kd , ∀ kd ∈ D and R(κ)
`u

= R?
`u

, ∀ `u ∈ U ;

Compute ∆φ =
φ
(κ)
Total − φ

(κ−1)
Total

φ
(κ−1)
Total

;

until tolerance reaches |∆φ| ≤ ε or number of iteration
reaches κmax;

Output: Qopt
kd

, ∀ kd ∈ D and Ropt
`u

, ∀ `u ∈ U ;

Find: Aopt
`u

, ∀ `u ∈ U and Bopt
kd

, ∀ kd ∈ D from (29).

where {θ} ,
{

θnp,`u , θnp,B : `u ∈ U , np ∈ V
}

, and {γ} ,{
γnp,`u , γnp,B : `u ∈ U , np ∈ V

}
.

The problem (28) now can solved by utilizing convex
optimization solver packages, such as CVX [18] or
MOSEK [19]. The detailed procedure to handle the
robust sum rate optimization problem is summarized
in Algorithm 1. After obtaining the optimal solutions
Qopt

kd
, ∀ kd ∈ D and Ropt

`u
, ∀ `u ∈ U we compute the Cho-

lesky decomposition Qopt
kd

= Mopt
kd

(Mopt
kd

)† and Ropt
`u

=

Topt
`u

(Topt
`u

)†. Then, the optimal precoder matrices, i.e.
Bopt

kd
and Aopt

`u
, are given by

Bopt
kd

= Mopt
kd

, ∀ kd ∈ D,

Aopt
`u

= Topt
`u

, ∀ `u ∈ U .
(29)

4 Numerical Results

In this section, the effectiveness of the robust sum rate
maximization algorithm and impacts of imperfect CSI
errors on system performance are validated through
numerical simulations. The system parameters are set
as: the number of ULU, DLU and PU are U = D = P =
2 users; the each user is equipped with M`u = Nkd = 2
antennas for all `u, kd; BS is equipped MB = NB = 4
antennas; the number of data-streams d`u = M`u ,
dkd = Nkd . We also set P`u,max = PU,max, ∀`u ∈ U ,
and γnp = γPU, ∀ np ∈ V with particular value in each
simulation. Additionally, a single small cell model as
in [5, 6] is adopted which includes a BS in the center
and users uniformly and randomly distributed within
the cell coverage. The uncertain NBE factors are set as
a function of channel qualities, i.e. εnp,B = υ‖K̂np,B‖F
and εnp,`u = υ‖K̂np,`u‖F

, with υ ∈ [0, 1) [5]. The typical

channel matrix gain is generated as MX =
√

δ2
XM̃ with

MX ∈ {K̂np,B , K̂np,`u , Fkd,`u , Gkd , H`u , } and, the elements
of the nominal small-scale fading M̃ are randomly
realized as independent complex Gaussian distribution
with zero mean and unit variance. The values δ2

kd
, δ2

`u
,

δ2
np,B follow the base station-to-user path loss 10−LBU/10

and, δ2
kd,`u

, δ2
np,`u

obey the user-to-user model 10−LUU/10,
for all kd, `u, np. The residual self-interference channel

at BS follows FB ∼ CN
(√

δ2
BK

1+K F̃, δ2
B

1+K IMB ⊗ INB

)
with

δ2
B = 10−CSI/10 and SI mitigation level CSI, we also set

Rician factor K = 1 and deterministic matrix F̃ to be the
matrix of all ones [13, 14]. Unless stated otherwise, the
simulation parameters are given in Table I. The error
tolerance of the iterative algorithm is set to ε = 10−4
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Figure 2: The convergence of the algorithm with various
values of γPU and υ under a specific given channel and
location realization.

and the maximum number of iterations is κmax = 100.
Furthermore, the elements in initial feasible set F (0) is
set as α I with approriate dimensions and α is scaled to
satisfy the constraints in (12).

Example 1: This simulation considers a specific
random location and channel to investigate the con-
vergence behaviour and the robustness of interference
constraints. In Figure 2, the convergence of the iterative
algorithm is depicted for difference values of uncertain
channel errors υ and interference thresholds γPU. As
can be seen from this figure, the total sum rate first
monotonically increases through about few tens of
iterations, then converges at an optimal point. The sum
rate performance of the CR network is degraded when
the interference constraints are more restricted. It can
be explained that the FD MU-MIMO CR network must
trade-off its sum-rate performance for the guarantee of
no harmful interference to the PUs. The FD cognitive
users tend to reduce their transmit power when the
allowable interference threshold is reduced. In addition,
the system achievable sum-rate decreases for the larger
value of imperfect CSI errors. This is due to that the
users tend to reduce the transmit power to ensure the
interference levels below an acceptable threshold even
for the worst CSI errors.

In order to demonstrate the effectiveness of the ro-
bust algorithm in terms of guaranteeing interference
constraints under the imperfect CSI, the cumulative
distribution function (CDF) of interference power at PU
is plotted in Figure 3. This figure is simulated for 100
random channels with 50 random channel uncertainties
in each and fixed user locations. It can be seen that
the robust design guarantees that the PU interference
power is always smaller than the allowable threshold of
γPU = −60 dBm (i.e., 10−9 W, highlighted by a vertical
line in Figure 3). On the contrary, the non-robust design
exhibits the violation of interference constraints about
40% of channel realizations.

Example 2: In this example, we investigate the system
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Figure 3: The CDF of interference power with difference
values υ.
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Figure 4: The average achievable sum-rate versus allo-
wable interference thresholds for difference values of υ.

performance by Monte Carlo simulations of 100 runs
of user locations and channel realizations. Figure 4
demonstrates the average sum rate versus interference
thresholds γPU. It is clear that the average achievable
sum rate increases as the allowable interference thres-
hold increases. An increase in the imperfect CSI errors
degrades the system sum rate. However, the achievable
sum-rate is not significantly affected by the CSI errors
when the interference threshold is large enough. The
reason is that the SUs can transmit the maximum trans-
mit power when the interference constraints are relaxed
and almost all SU transmissions are likely to satisfy the
interference constraints for all possible CSI errors.

5 Conclusion

This paper has presented an optimization algorithm
which robustly designs precoding matrices for a secon-
dary FD MU-MIMO network under imperfect CSI of
SU-PU links. The problem of interest is to maximize
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the sum-rate of the secondary network under the SUs
and BS transmit power constraints and PU interference
power constraints. To deal with the non-concavity of
the sum-rate objective function and the semi-infinite
robust interference constraints, we have adopted d.c.
program and the LMIs of S-Procedure to transform
the design problems into a successive convex program.
The numerical simulation results have demonstrated
the designed precoders are robust to the CSI imper-
fectness. The results have also revealed the impacts of
the interference thresholds and the CSI errors on the
sum-rate performance of the CR networks.
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