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Abstract- Tensor decomposition has recently become a popular method of multi-dimensional data analysis in various
applications. The main interest in tensor decomposition is for dimensionality reduction, approximation or subspace
purposes. However, the emergence of “big data” now gives rise to increased computational complexity for performing
tensor decomposition. In this paper, motivated by the advantages of the generalized minimum noise subspace (GMNS)
method, recently proposed for array processing, we proposed two algorithms for principal subspace analysis (PSA) and two
algorithms for tensor decomposition using parallel factor analysis (PARAFAC) and higher-order singular value decomposition
(HOSVD). The proposed decomposition algorithms can preserve several desired properties of PARAFAC and HOSVD while
substantially reducing the computational complexity. Performance comparisons of PSA and tensor decomposition of our
proposed algorithms against the state-of-the-art ones were studied via numerical experiments. Experimental results indicated
that the proposed algorithms are of practical values.
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1 INTRODUCTION

Over the last two decades, a number of large-scale
datasets have been increasingly collected in various
fields and can be smartly mined to discover new valu-
able information, helping us to have deeper under-
standing of the hidden values [1]. Various examples
are seen in physical, biological, social, health and engi-
neering science applications, wherein large-scale multi-
dimensional, multi-relational and multi-model data are
generated. Therefore, data analysis techniques using
tensor decomposition now attract a great deal of at-
tention from researchers and engineers.

A tensor is a multi-dimensional array and often
considered as a generalization of a matrix. As a result,
tensor representation gives a natural description of
multi-dimensional data and hence tensor decomposi-
tion becomes a useful tool to analyze high-dimensional
data. Moreover, tensor decomposition brings new op-
portunities for revealing hidden and new values in the
data. As a result, tensor decomposition has been used
in various applications. For example, in neuroscience,
brain signals are inherently multi-way data in general,
and spatio-temporal in particular, due to the fact that
they can be monitored through different brain regions
at different times. In particular, an electroencephalog-
raphy (EEG) dataset can be represented by a three-way
tensor with three dimensions of time, frequency and

electrode, or even by multi-way tensors when extra di-
mensions such as condition, subject and group are also
considered. Tensor decomposition can be used to detect
abnormal brain activities such as epileptic seizures [2],
to extract features of Alzheimer’s disease [3] or other
EEG applications, as reviewed in [4].

1.1 Tensor Decompositions

Two widely used decompositions for tensors are
parallel factor analysis (PARAFAC) (also referred to
as canonical polyadic decomposition) and Tucker de-
composition. PARAFAC decomposes a given tensor
into a sum of rank-1 tensors. Tucker decomposition
decomposes a given tensor into a core tensor associated
with a set of matrices (called factors) which are used
to multiply along each mode (way to model a tensor
along a particular dimension).

In the literature of tensors, many algorithms have
been proposed for tensor decomposition. We can cat-
egorize them into three main approaches, respectively,
based on: divide-and-conquer, compression, and opti-
mization. The first approach aims to divide a given
tensor into a number of sub-tensors, then estimate the
factors of the sub-tensors and finally combine them
together into the true factors. The central idea behind
the second approach is to reduce the size of a given
tensor until it becomes manageable before computing a
specific decomposition of the compressed tensor, which
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retains the main information of the original tensor.
In the third approach, tensor decomposition is cast
into optimization and is then solved using standard
optimization tools. We refer the reader to important
surveys in [5-7] for further details on the different
approaches.

1.2 Objectives

In this paper, we focus on the divide-and-conquer
approach for PARAFAC and Tucker decompositions of
three-way tensors. With respect to the later, we focus on
a specific orthonormal form which is called high-order
singular value decomposition (HOSVD). Examples of
three-way tensors are numerous. Image-row x image-
column X time tensors are used in video surveillance,
human action recognition and real-time tracking [8-10].
Spatial-row x spatial-column X wavelength tensors are
used for target detection and classification in hyper-
spectral image applications [11, 12]. Origin X destina-
tion X time tensors are used in transportation networks
to discover the spatio-temporal traffic structure [13].
Time X frequency x electrode tensors are used in EEG
analysis [2].

Recently, generalized minimum noise subspace
(GMNS) was proposed by Nguyen et al. in [14] as
a good technique for subspace analysis. This method
is highly beneficial in practice because it not only
substantially reduces the computational complexity in
finding bases for these subspaces, but also provides
high estimation accuracy. Several efficient GMNS-based
algorithms for principal subspace analysis (PSA), mi-
nor subspace analysis (MSA), and principal component
analysis (PCA) were proposed and shown to be ap-
plicable in various applications. This motivates us to
propose in this paper new implementations for tensor
decomposition based on GMNS.

1.3 Contributions

The main contributions of this paper are summarized
as follows. First, by expressing the right singular vectors
obtained from singular value decomposition (SVD) in
terms of principal subspace, we derive a modified GMNS
algorithm for PSA with running time faster than the
original GMNS, while still retaining the subspace esti-
mation accuracy.

Second, we introduce a randomized GMNS algorithm
for PSA that can deal with several matrices by perform-
ing the randomized SVD.

Third, we propose two GMNS-based algorithms for
PARAFAC and HOSVD. These algorithms are highly
beneficial and easily implemented in practice, thanks
to its parallelized scheme with a low computational
complexity. Several applications are studied to illustrate
the effectiveness of the proposed algorithms.

1.4 Paper structure

The structure of the paper is organized as follows.
Section 2 provides some background for our study,
including two kinds of algorithms for PSA and tensor

decomposition. Section 3 presents modified and ran-
domized GMNS algorithms for PSA. Sections 4 and 5
respectively present the GMNS-based algorithms for
PARAFAC and HOSVD, respectively. Section 6 carries
out simulated experiments to study the effectiveness
and performance of the proposed algorithms, in com-
parison with several state-of-the-art algorithms. Sec-
tion 7 concludes the paper.

1.5 Notations

We use bold calligraphic letters to denote tensors
(e.g., A), meanwhile boldface capital letters are used
for matrices (e.g., A). Vectors and scalars are denoted
by boldface lowercase letters (e.g., a), and lowercase
letters (e.g., a) respectively. For operators on tensors,
A denotes the mode-n unfolding (fiber) of A and
the n-mode product of the tensor A with a matrix
U is denoted by A x, U. For matrix products, ®,
® and * denotes the Kronecker product, the Khatri-
Rao product and the Hadamard product respectively.
The AT, A*, A" and A* denote the transpose, the
complex conjugate, the complex conjugate transpose
and the pseudo-inverse of A respectively. For vector’s
operators, a o b denotes the outer product of a and b.
Also, ||-|| denotes the Frobenius norm of a vector, matrix
and tensor.

2 PRELIMINARIES

Before showing how GMNS can be used for tensor de-
composition, it is of interest to first explain the central
idea of the method. In addition, a divide-and-conquer
algorithm for PARAFAC called alternating least-square
(ALS) is also provided.

2.1 Principal Subspace Analysis based on GMNS

Consider a low rank matrix X = AS under the con-
ditions that A € C"*?,S € CP*™ with p < min(n,m),
and A € C"*" is full column rank.

Under the constraint of having only a fixed number k
of digital signal processing (DSP) units, the procedure
of GMNS for PSA includes: dividing the matrix X
into k sub-matrices {X1,Xp,...,X;}, then estimating
each principal subspace matrix W; = A;Q; of X;, and
finally combining them to obtain the overall principal
subspace matrix of X. Clearly, we should choose the
number of DSP units so that the size of resulting sub-
matrices X; must be larger than rank of X, p < n/k.
The algorithm was proposed in [14] and summarized
in Algorithm 1.

First, the principal subspace matrix W; of X; can
be obtained from the eigenspace of its corresponding
covariance matrix,

EVD
Rx, = B{X;X["} = ARsAF "= w,AWH, (1)

where W; = A;Q;, with Q; € RP*?, is an unknown full
rank matrix.
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Algorithm 1: GMNS-based PSA [14]

Algorithm 2: Parallel ALS-based PARAFAC [18]

Input: Matrix X € C"*™, target rank p, k DSP units
Output: Principal subspace matrix Wx € R"*? of X
1 initilization

2 Divide X into k sub-matrices X;

3 Form covariance matrix Rx, = %X1X{I

4 Extract principal subspace W1 = eig(Rx,, p)

5 Construct matrix U; = W?Xl

6 main estimate PSA : // updates can be done in parallel
7 fori=2—k do

8 Form covariance matrix Ry, = %Xin{

9 Extract principal subspace W; = eig(Rx;, p)
10 Construct matrix U; = Win

1 Construct rotation T; = UiU*‘it

12 Update W; < W,T;

13 return Wy = [WT W1 .. w]l]T

Given the directions of Xy, we look for (k — 1) rotation
matrices T; to align the principal axes of each X; with
these directions of Xj. Specifically, let

U; = WX, )
then
U; = (A,Q)"A;S = Q;'s. 3)

On the other hand, combining with (1), the signal
subspace can be written as

AQ A10,0;'Q WiT,

A2Q A,Q:0,'Q W,T,
W=AQ=| . |= : - :

AQ]  [AQQ '] LWiTi

It then yields rotation T; that can be computed as T; =
Ql._lQl. Thus, T; can be estimated, without knowing

Q,, as
T; = Q;'Q1 = Q7 '88'Q = Q7's(Q;'s)" = y;UT.
where U; can be easily computed from (2).

As a result, the principal subspace matrix of X can
be updated as

W= [W] (W,T)T... (W,Ty)T]" = AQy.

2.2 PARAFAC based on Alternating Least-Squares

Several divide-and-conquer based algorithms have
been proposed for PARAFAC, such as [15-20]. The
central idea of the approach is to divide a tensor X
into k parallel sub-tensors Aj, then estimate the factors
(loading matrices) of the sub-tensors, and then combine
them together into the overall factors of A. In this
section, we want to describe the algorithm proposed
by Nguyen et al. in [18], namely parallel ALS-based
PARAFAC, and is summarized in Algorithm 2. This
algorithm provides us with inspiration to develop other
algorithms in later sections.

Input: Tensor X € RIXJxK target rank p, k DSP units
Output: Factors A € RI*?P, B € RI*P,C € RK*P

1 function

2 Divide X into k sub-tensors X7, X5, ..., X}

3 Compute Ay, Bj, C; of & using ALS

4 Compute factors of sub-tensors: // updates can be
done in parallel

5 fori=2—k do

6 Compute A;, B; and C; of X; using ALS

L Rotate A;,B; and C; /7 (7)

8 | Update A,B,C // (8)
9 return A,B,C

7

Without loss of generality, we assume that a tensor X
is divided into k sub-tensors &, &>, ..., Xy, by splitting
the loading matrix C into Cy,Cy,...,Cy so that the
corresponding matrix presentation of the sub-tensor A;
can be determined by

X; = (C;® A)BT. (4)

Here, X; is considered as a tensor composed of frontal
slices of X, while X; is to present the sub-matrix of its
matrix representation X of X.

Exploiting the fact that the two factors A and B are
unique when decomposing the sub-tensors, due to the
uniqueness of PARAFAC (see [6, Section IV] and [7,
Section III]), gives

X =TI x1 A X2 B x3C;. ©)

As a result, we need to look for an updated rule in
order to concatenate the matrices C; into the matrix C,
while A and B can be directly obtained from PARAFAC
of X].

In particular, the algorithm can be described as fol-
lows. First, by performing PARAFAC of these sub-
tensors, the factors A;, B;, and C; can be obtained from
decomposing

X; = (C;® A)B/, (6)

using the ALS algorithm [21]. Then, A;, B;, C; are ro-
tated in the directions of X to yield

A; < AP, DY, (7a)
B; + B,P,D®), (7b)
C; « CP,D'Y, (70)

where the permutation matrices P; € RR*R are given
by

[(Ai(,u), A1 (:,0))]|
ClAG )l A o)l
0, otherwise,

1, f
Py(1,0) = or max
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Algorithm 3: Proposed modified GMNS-based PSA

Input: Matrix X € R"*™, target rank p, k DSP units
Output: Principal subspace matrix W of X
1 function
Divide X into k sub-matrices: X1, Xp, ..., Xg
Compute SVD of X; to obtain [Wy, Uz = svd(Xq)
// updates can be done in parallel
fori=2—k do
L Compute W; = X,'U*i’e

o U e W N

7 return Wy = [W] WI ... WlT

and the scale matrices Dg) € RR*R are given by

(A) B ||A1(Z,'U)||
Dy ) = TR o), Ay (o))
DgB)(u,u) = Bl

|<Bi(:f ”)/ Bl (:/ Z))> ’ ’

D () = (DI (u,u) D™ (1, 1))

1 1

-1

Finally, we obtain the factors of X

A+ A4, (8a)
B « By, (8b)
c«[cIcl ... " (80)

3 PROPOSED MODIFIED AND RANDOMIZED
GMNS-BASED PSA ALGORITHMS

In this section, we introduce two modifications of the
GMNS for PSA. Specifically, by expressing the right sin-
gular vectors obtained from SVD in terms of principal
subspace, we derive a modified GMNS algorithm for
PSA which runs faster than that of the original GMNS,
while still retaining the subspace estimation accuracy.
In addition, we introduce a randomized GMNS algo-
rithm for PSA that can deal with several matrices by
performing the randomized SVD [22].

3.1 Modified GMNS-based Algorithm

Consider again the low-rank data matrix X = AS,
as described in Section 2.1. We first look at the true

principal subspace matrix Wy, which is obtained via
SVD of X, that is,

XY WevH = Wy Uy,

where Wx and Uy present the left singular vectors and
the right singular vectors of X respectively.

Hence, the column space of A is the same as the
column space of Wy. In particular, X can be expressed

by
X =AS =AQQ7's,

where Q is an unknown full rank matrix such that
Wx = AQ,
Ux =0Q°!s.
In GMNS, the original matrix X is split into Xy, ..., Xy

sub-matrices. Suppose that the principal subspace ma-
trix of each sub-matrix X; can be determined from

SVD
X; * Wy, Ux,,

where Wy, = A;Q; and Uy, = Q;lS. Then, we obtain
the following property:

(A4S Wx, Q;!
A,S Wx,Q,!

X = . = .
LA(S Wx, Q!
[ le le
Wx,Q,'0, ) W
[Wx, Q;'Q4 Wi

Hence, the relationship between the sub-matrices
X; and their corresponding subspace matrices can be
given by

X; = W;Uy,,
W; = X; U .

As a result, we derive a new implementation of the
GMNS algorithm. First, perform SVD of Xj,

X; °F WUy,
where Wi is the left singular vector matrix of X; and
U; = X1V, is to present its right singular vector matrix.
Next, obtain the principal subspace matrices of other
sub-matrices X;, i = 2,...,k, by projecting these sub-
matrices onto the pseudo-inverse right singular vector
matrix of Xj, that is,

w; = X; Ut

Finally, obtain the principal subspace matrix of Xby
concatenating the principal subspace matrices of X; as

w=[wlwl . wl|T,
X = WU,.

The modified GMNS algorithm for PSA can be sum-
marized in Algorithm 3.

3.2 Randomized GMNS-based Algorithm

Although the original GMNS method in [14] provides
an efficient tool for fast subspace estimation with high
accuracy, it is only useful for the type of low-rank
matrices addressed in Section 2.1. This motivates us to
look for an improvement on GMNS that can deal with
arbitrary matrices.

In order to apply GMNS, we want to produce a
good approximation X =YZ of a given matrix X that
not only satisfies the conditions of GMNS, but also
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covers the span and preserve important properties of X.
Therefore, the matrix Y = XQ can be a good sketch of
X where Q) is a sketching matrix like a column selection
or random projection matrix. Several studies have been
proposed to solve the problem so far. For example,
we can apply randomized algorithms and sketching
techniques in [22-24] for matrices and data to estimate
Y, hence Z.

In this work, we are interested in Gaussian ), whose
entries are iid. samples generated from N(0,1). The
Gaussian random matrix has been successfully applied
in several matrix analysis methods, such as [22, 25, 26].
It is noted that the Gaussian random matrix has many
desired properties, such as the following;:

o For all vector x in the row space of X, its length will

not change much if sketching by Q: ||x||> ~ ||xQ||%;

o In general, random vectors of Q) are likely to be

linear position and linearly independent;

e There is no linear combination falling in the null

space of X.
As a result, Y = XQ is a high quality sketch and can
span the range of X.

After finding a good sketch Y from the Gaussian
random matrix (), the next problem is low-rank matrix
approximation such that its result has to hold the
Frobenius norm error bound with high probability. This
leads to the following optimization problem:

: 2 2
L IX-YZIR < (1 )X - X}
N
=(1+e) } a(X), (10
i=k+1
where 0;(X) is the i-th singular value of X and Xj is the
best rank-k approximate of X.

Let Qy contain orthogonal bases of the sketch Y of X.
Clearly, since Qy shares the same column space with
Y, the optimization problem of (10) can be rewritten as

Z* = argmin ||X — QyZ|3. (11)
rank(Z)<k

The solution of (11) can be computed more easily as
Z* = QX (12)

Therefore, with Qy, the Frobenius norm error in
the problem (10) can be extended to a stronger error
measure, that is, the spectral norm error bound (we
refer the reader to [24, Section 4.3] for further details),
as follows:

IX — QyQYX|3 < (1+€)[IX = X3 = (1 + €)ai1(X).

From now, we have an approximate basis for the
range of X, that is,

X ~ QyQIX.
Let us define A = Q]X. We then have
X~ QyA

Accordingly, the principal subspace matrix Wz of A
can be computed by using the original GMNS or the
modified GMNS proposed in Section 3.1. Then we can

Algorithm 4: Proposed randomized GMNS-
based PSA
Input: Matrix X € R"*™, target rank p, k DSP units
Output: Principal subspace matrix W of X.

1 function

2 Draw a Gaussian random matrix Q € R"™%! [ > p
3 Form the sketch Y € R"™*! of X: Y = XQ

4 Extract principal subspace Q from Y using QR
decomposition

5 Construct A = QTX

6 Estimate Wy of A using GMNS

7 return Wy = QW3

estimate the principal subspace of an arbitrary matrix
X by

Wx =~ QyWjp.

This randomized GMNS algorithm for PSA is summa-
rized in Algorithm 4.

Remark

Recall that GMNS is with a parallel computing archi-
tecture in practice. Therefore estimating the orthogonal
basis of the sketch Y based on QR decomposition
should be implemented in a parallelization scheme. In
this work, we can parallelize the randomized GMNS
algorithm by using a type of distributed QR decompo-
sition, namely TSQR [27].

Specifically, we divide X into k sub-matrices X;, as
in the original GMNS and the modified GMNS al-
gorithms. First, we find all the sketch Y; of the sub-
matrices X; under the sketching ). Next, we perform
standard QR decomposition on each sub-matrix Y; to
obtain Q; ; and Ry ;. The resulting matrices R; ; are then
gathered into a single matrix Ry which is then decom-
posed into Q, . again. As a result, the original factor Q
of Y can be obtained from multiplying the resulting the
Q. with Q5 ., which can be already distributed among
the DSP units. Finally, we find the orthogonal basis of
the sketch A = Q'Y by using the original GMNS or
modified GMNS algorithms, and hence the principal
subspace matrix of X. We refer the reader to [27] for
further details.

3.3 Computational Complexity

For the sake of simplicity, we assume that standard
algorithms for computing matrix multiplication and
different types of matrix decomposition (i.e., EVD, SVD,
QR) are applied in this work, while costs of transfer
and synchronization among the DSP units are ignored.
Specifically, to decompose a rank-p matrix of size
n x n into factors, the standard EVD requires a cost of
O(n?p). Considering a non-square matrix of size n x m,
the full Householder QR algorithm is computed in
2nm? —2/3m?> flops, while the truncated SVD typically
needs nmp flops to derive a rank-p approximation by
using the partial QR decomposition. These methods are
surveyed in [28]. To multiply a matrix A of size n X p
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with a matrix B of size p x m, we consider the standard
algorithm which is to perform n dot products of rows
in A and columns in B whose cost is O(nmp).

Now, we analyse the computational complexity of
the modified and randomized GMNS algorithms for
PSA. The former consists of two main operations: (i)
perform the truncated SVD of X;, which costs nmp/k
flops, and (ii) perform (k — 1) matrix multiplications
between sub-matrices X; and the right-singular vector
matrix of X;, which requires nmp/k flops. Therefore,
the overall complexity is O(nmp/k). Meanwhile, the
computational complexity of the original GMNS algo-
rithm or PSA is O(n?(m + p)/k?). Since m,n > p,
the original and the modified GMNS algorithms have
lower complexity than that of the well-known method
using EVD of the global covariance matrix that costs
O (n*(m+p)) flops.

The randomized GMNS algorithm consists of three
main operations: (i) estimate a good sketch Y of X,
(ii) orthonormalize the columns of Y, and (iii) update
its subspace matrix. In the first operation, deriving a
standard Gaussian matrix Q € R"*! and hence a good
sketch Y € R"*! demands a cost of O(mnl). In the
second operation, QR decomposition, used to compute
the orthogonal basis of Y, demands a cost of 2nl? —
2/31% flops. In the last operation, two matrix products
are used to compute the matrix A and update Wy,
demanding a cost of nl(m + p) flops. In addition,
the algorithm uses the same order of complexity for
estimating the subspace of A using GMNS. Moreover,
we can use the structured random matrix Q) using the
subsampled random FFT instead, to reduce the overall
complexity. Specifically, it allows us to compute the
product of X and Q in nmlog(l) flops; and the row-
extraction technique to derive Q with a lower cost of
O(k*(n+m)). We refer the reader to [22, Section 4.6]
for further details. In conclusion, the overall complexity
of the randomized GMNS algorithm is O(nl(m + p)/k)
using the TSQR algorithm.

4 ProroseD GMNS-BAsED PARAFAC

In this section, we derive a new implementation of
PARAFAC of three-way tensors based on GMNS. Con-
sider a three-way tensor X € R/*/*K PARAFAC of X
is expressed as

R
X:IX1AX2BX3C:ZaiObiOCi, (13)
i=1
where R is the rank of X, Z is an identity tensor, A €
RI*R B e R/I*R and C € RX*R are the factors (loading
matrices).

Motivated by the advantages of GMNS and the ALS-
based PARAFAC in Section 2.2, we are interested in
finding a parallelization scheme for PARAFAC. The
proposed algorithm consists of four steps:

 Step 1: Divide the tensor X into k sub-tensors A7,

Xz ey Xk ’

o Step 2: Estimate the principal subspace matrix of

each tensors, W; = (C; ©® A;)Q;, using GMNS;

e Step 3: Obtain the loading matrices A,Q and B,
using some desired properties of GMNS;
o Step 4: Update the loading matrix C.

The main difference between the GMNS-based and
ALS-based PARAFAC algorithms is in the way we
compute factors A;,B; and C; of each sub-tensor Aj.
Specifically, instead of applying ALS for k sub-tensors,
these factors can be directly obtained from the principal
subspace of each of the sub-tensors X;,i = 2,3,...,k.
Therefore, we only need to apply ALS for the first
sub-tensor X;. Now, we will describe the algorithm
in details.

For the sake of simplicity, assume that the given
tensor X is divided into k sub-tensors Xj, X»,..., X}
by splitting the loading matrix C as in the ALS-based
PARAFAC algorithm. The corresponding matrix repre-
sentation of the sub-tensors and their subspace matrices
are also given by

X; =(C;®A)B,
W; = (CoA)Q;
where Q; € RR*R js a full rank matrix.

First, by using any specific PARAFAC algorithm,
such as the ALS-based PARAFAC one, to compute the
factors Ay, B1, and C; of X7 from

X; = (C; ® Ay)BI,

we obtain the two factors A < Aj and B < Bj. In
addition, the principal subspace matrix W; of X; can
also be given by

Wi = (C; ©A)Q;.

Therefore, the two rotation matrices Q; and U; can be
obtained as

Q; = (C1 ® AWy, (14a)
U; = WiX,. (14b)

From now, the factors of X, i = 2,...,k, can be derived
directly from their principal subspace matrices W; of X;

by
W; = X;U%, (15a)
CioA =W (15b)

The loading matrices A; and C; are then easily re-
covered, thanks to the Khatri-Rao product. In parallel,
the loading matrix B; can be updated as

B, = X/ (W))"Qf. (16)
The next step is to rotate the loading matrices A;,

B; and C; according to (7). The factors of the overall
PARAFAC are then obtained as

A<+ A{,B <+ By,
c«[cIcl ... " 17)

The proposed GMNS-based PARAFAC algorithm is
summarized in Algorithm 5.
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Algorithm 5: Proposed GMNS-based PARAFAC

Input: Tensor X € R*/*K target rank R, k DSP units
Output: Factors A € RIXR B € RI*R and C € RK*R

1 Initilization

2 Divide X into k sub-tensors Xy, X, ..., X}

3 Apply ALS to compute Ay, B; and C; of &)

4 Extract principal subspace Wy of X; using SVD

5 Compute rotation matrix Q; = (C; ® Al)#Wl

6 Main Update factors of other sub-tensors
7 // updates can be done in parallel

8 fori=2—k do

9 Extract principal subspace W; of X; using SVD
Compute C; and A; // (15)

10 Compute B; // (16)

1 Rotate A;, C; and B; /7 (7)

12 return A, B,C /1 (A7)

Remark

In the case of tensors with K Z I x J, the GMNS-
based PARAFAC algorithm can be implemented more
efficiently. Matrix representation of the overall tensor
and its sub-tensors can be expressed, respectively, by

X=CBoA),
X;=Ci(BoA)L.

Therefore, the factors can be computed more easily.
Specifically, the principal subspace of X; can be given by
W; = CQ;.

Meanwhile, the rotation matrices are updated in a way

similar to the above, as
U; = Wi,
Q1 = CiWy.

Therefore, the sub-factors C; are obtained as
Ci=W;Q; ",

where W; = XiU’f. As a result, the loading matrix C is
updated while A and B are computed from Xj.

5 Prorosep GMNS-Basep HOSVD

In this section, we investigate a parallelization scheme
for HOSVD of three-way tensors based on GMNS.
Consider again a three-way tensor X € R!*/*K, Tucker
decomposition of X can be expressed as

X:gxlesz3C
Ry Ry R3

= Z Z Z gi,]-,kai ] b] O Cg,
i=1j=1k=1
where A € RI*R1, B € R/*R2 and C € RX*Rs are the
loading factors, G € RR1*R2*Rs jg the core of X with
Ry < I,Ry; <] and R3 < K. The decomposition can be
desribed in Figure 1.

Figure 1: Higher-order singular value decomposition.

HOSVD, also called Tuckerl, is a specific Tucker
decomposition with orthogonal factors being derived
from singular vectors of the three matrices unfolding X
according to the three modes of the tensor. In general,
Tucker decomposition is not unique (see [6, Section V]
or [7, Section IV]). Fortunately, the subspaces spanned
by the factors A, B and C are physically unique. It
means that these factors can be rotated by any full rank
matrix Q. In turn, this multiplies the core tensor with
its inverse. We are interested in to see if GMNS can
be used to find multilinear subspaces of tensors, hence
used for HOSVD.

Similarly to GMNS-based PARAFAC, we divide X
into k sub-tensors &7, A, ..., X whose corresponding
matrix representations are

X;=CGBoA).

We exploit the fact that the factors are derived from
the principal components of the three modes. Thus, to
estimate subspaces for A, B and C, we can apply the
following calculation of the covariance matrix of the
tensor:

Ry = E{xxT}
=E{CG(B®A) (B2 A)GTCT}
= E{CGG'CT}
= CRgC’
P wAwT.

It is therefore essential to demonstrate that the principal
subspace matrix carries information of these factors,
that is,

W =CQ,

where Q € RR3*Rs ig an unknown full rank matrix.

We can derive all these factors by using the orig-
inal GMNS algorithm for PSA or the modified and
randomized GMNS algorithms proposed in this paper.
Here, we only illustrate this by using the proposed
modified GMNS algorithm. Specifically, assume that we
have already obtained the factors A, B;, and C; of the
sub-tensor X, whether by the original HOSVD, or al-
ternatively, such as the original higher order orthogonal
iteration of tensors (HOOI) decomposition.

Then, by using GMNS to estimate the principal sub-
space matrices of the sub-tensors, we can obtain the
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Algorithm 6: Proposed GMNS-based HOSVD

Input: Tensor X € R*/*K target rank R, k DSP units
Output: Factors A € RIXR B ¢ R/I*R, C e RKxR

1 function

2 Divide X into k sub-tensors X7, X5, ..., X

3 Compute factors of &7;’s using HOSVD
{A1,B1,C1} = HOSVD(AX7)

Compute rotation matrix: U; = C?Xl

Update factors using modified GMNS algorithm

// updates can be done in parallel

fori=2—kdo

8 L Compute C; = Xj<3)U’f

N o g e

9 return A < A{,B <+ By and C + [ClT,CZT,...,CﬂT

decomposition. Specifically,
U; = cfx,, (18)

where the matrix U; presents the right singular vectors
of Xj. As shown in Section 4, we have to rotate the
sub-factors C; to follow the direction of C;p. Instead
of computing the rotation matrices T;, we dedicate the
work to projecting matrices X; onto the row space U
of Xj, that is,

C; = x;U%. (19)

As a result, the subspace generated by the loading
factors A; and B; remains constant. The overall loading
matrices can be updated as

A <+ A;,B+ By, (20a)
c«[cfc]...cm (20b)

The core tensor G can be also computed as
G =X x1 AT x, BT x5CT. (21)

The implementation of the proposed GMNS-based
HOSVD is summarized in Algorithm 6.

6 REsuLTs

In this section, simulated experiments are carried out
to study the performance of the proposed GMNS-
based algorithms for PSA and tensor decomposition
and compare them with the state-of-the-art algorithms.
Some application-based scenarios are also presented to
illustrate the effectiveness of the proposed algorithms.

6.1 GMNS-based PSA

We follow experiments and evaluation metrics used
in [14]. Specifically, the measurement data X = AS are
generated by a random system matrix A and a signal
matrix S. The received data are then normalized by
its Frobenius norm. The impact of noise on algorithm
performance is also investigated by adding noise N
derived from the white Gaussian noise A (0,0?), by

X N
X=rrm4+o—.
IXI Nl

The signal-to-noise ratio (SNR) is then defined as
SNR = —10log;, 0.

To evaluate the subspace estimation accuracy, we use
the subspace estimation performance (SEP) metric
L r{WH(I - W WE)W;}

1
SEP = —
L ; tr{WH (W WE)W,}

. (22)

and the eigenvector estimation performance (EEP) met-
ric, also referred to as Root Means Square Error,

1 L
EEP = L ZHUI - Uex”%/ (23)
1

where L is the number of Monte Carlo runs, W; and
U; respectively denote the estimated subspace and
eigenvector matrices at the i-th run, W,y and U, de-
note the true subspace and eigenvector matrices. Good
performance corresponds to low SEP and EEP.

We study the performance of the proposed modified
GMNS and randomized GMNS algorithms for PSA by
comparing them to the state-of-the-art algorithms based
on SVD, the randomized SVD [22], and the original
GMNS. The number of Monte Carlo run is fixed at
L = 100.

6.1.1 Effect of the number of sources, p:

To study the effect of the number of sources, p, we
fixed the number of sensors, n, the number of time
observations, m, and the number of DSP units, k, at
200, 500 and 2, respectively. It can be seen from Fig-
ure 2, when dealing with a specific p, the modified
GMNS and randomized GMNS algorithms performed
similarly to those based on the original GMNS, SVD
and the randomized SVD, in terms of SEP and EEP.
In particular, at low SNRs (< 10 dB), the SVD-based
algorithm yielded slightly better subspace estimation
accuracy than the GMNS-based ones. Meanwhile, at
high SNRs (> 10 dB), all algorithms performed sim-
ilarly.

As shown in Figure 3, no significant difference of
subspace estimation accuracy among the original, mod-
ified and randomized GMNS-based algorithms when
changing the number of sources p, excepting the case
of the modified GMNS-based one with small p at SNR
= 10 dB. However, the result is still reasonable when
compared to the conventional SVD-based algorithms.

6.1.2 Effect of the number of DSP units, k:

We fixed n = 240, m = 600, and p = 2, while varying
k. The experimental results indicated that increasing k
yielded slightly reduced SEP. More specifically, when
the system A is divided into a small number of sub-
systems (k < 10), all algorithms provided almost same
subspace estimation accuracy, as shown in Figure 4.

When k is large, the randomized GMNS algorithm
performed similarly to the SVD-based and the random-
ized SVD-based algorithms, and slightly better than the
original GMNS and the modified GMNS algorithms, as
shown in Figure 5.

6.1.3 Effect of the number of sensors, n, and time obser-
vations, m:

We fixed k = 2 and p = 2, while varying the size
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Figure 2: Effect of number of sources, p, on performance of PSA algorithms; n = 200, m = 500, k = 2.
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Figure 3: Performance of the proposed GMNS algo-
rithms for PSA versus the number of sources, p, with
n =200, m =500 and k = 2.

of the data matrix, (m,n). The results, as shown in
Figure 6, indicated that all methods yielded similar
subspace estimation accuracy. However, in terms of run
time, Figure 7 indicated that, when the data matrix is
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Figure 4: Performance of the proposed GMNS algo-
rithms for PSA versus the number of DSP units, k, with
n =240, m = 600 and p = 2.

small (n, m < 1000), all GMNS algorithms took a similar
amount time to obtain the same accuracy. When dealing
with matrices of higher dimension, the modified GMNS
algorithm was faster.
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Figure 5: Effect of number of DSP units, k, on performance of PSA algorithms; n = 240, m = 600, p = 2.

6.1.4 Effect of the relationship between the number of
sensors, sources and the number of DSP units:
As mentioned above, the original GMNS and the mod-
ified GMNS algorithms for PSA may be useful only
for data measurements which satisfy the condition p <
n/k, meanwhile the randomized GMNS algorithm was
proposed to handle the rest. The key idea is (i) to choose
the number of random vectors so that n < kp < I,
so the problem will return the original setup, or (ii)
to structure the random matrix using the subsampled
random fast Fourier transform, thanks to advantages of
the spectral domain. We fixed the size of the data matrix
at n = 150,m = 500, and fixed k = 2. The number
of random vectors was | = 2p. As shown in Figure 8,
the randomized GMNS algorithm can be useful for the
problem, as shown via the green line.

6.2 GMNS-based PARAFAC

We simulated tensors X € R*J*K derived from the
Gaussian distribution N'(0,1). The tensors were then
normalized and added by a random noise N with a

parameter ¢ to control the noise level
X N
m + Um.
To assess the estimated factors, we use the metric of
relative error, p, as given by

y:

|H, — He|
, (24)
,-221 THo|

where L is the Monte Carlo run, H; and H,, are
estimated and true factors respectively.

Our experiments were implemented in MATLAB
2015b on Intel core i7 processor and 8G RAM machine
using the tensor toolbox [29]. Four kinds of PARAFAC
algorithms were compared: simultaneous diagonal-
ization computed by QR iteration-based PARAFAC,
namely SDQZ-based PARAFAC [30], original ALS-
based PARAFAC [21], parallel ALS-based PARAFAC
developed in [18] and described in Section 2.2 and
the proposed GMNS-based PARAFAC. The number of
Monte Carlo run was fixed at L = 100.
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of GMNS-based PSA algorithms; p = 20, k = 5.

6.2.1 Effect of noise:
We study the effect of noise on the performance of
the PARAFAC algorithms at different values of SNR.
The tested tensor has size of 100 x 100 x 120 and rank
of 10. As shown in Figure 9, the proposed GMNS-
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107"k
107k
9
=
w2
10°E
107k
10’5 i i i i
0 10 20 30 40 50
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Figure 8: Performance of randomized GMNS algorithm
on data matrices with kp > n; k = 2, n = 150, m = 500.

based PARAFAC algorithm performed similarly to the
other ALS-based PARAFAC algorithms. At low SNR
(< 15dB), they were all better than the SDQZ-based
PARAFAC. At high SNR, all algorithms yielded almost
the same results in terms of relative estimation error.
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Figure 9: Effect of noise on performance of PARAFAC
algorithms; tensor size = 50 x 50 x 60, rank R = 5.

6.2.2 Effect of the number of sub-tensors, k:
Consider two tensors with size of 50 x 50 x 60 and
100 x 100 x 120. The SNRs were fixed at 20 dB and
50 dB. Assume that the tensors are divided into sub-
tensors by splitting the loading matrix C. The num-
ber of sub-tensors varied in the range [1,k/ rank(X)],

39
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Figure 10: Effect of number of sub-tensors on perfor-
mance of GMNS-based PARAFAC algorithm; tensor

rank R = 5.

while still being required to maintain the conditions
of uniqueness of PARAFAC. The experimental results
are shown in Figures 10 and 11. It can be seen that, in
general, the higher the number of sub-tensors was, the
lower the performance of the GMNS-based PARAFAC
algorithm, with or without noise. Intuitively, this is a
trade-off between complexity and accuracy over the
number of DSP units. However, the difference was little.

6.2.3 Effect of the tensor rank, R:

Consider two tensors with size of 50 x 50 x 60 and
100 x 100 x 120. The number of sub-tensors was fixed
at k = 2. The results are shown in Figure 12. Generally,
the higher the rank of the tensor was, the lower the
performance of the GMNS-based PARAFAC algorithm.
Under the effect of noise, the algorithm still yielded
a reasonable estimation accuracy for tensors of small
rank; R(X7) < 30 or R(X;) < 50. However, there was
an unprecedented rise in error if the tensor rank became
greater than a specific threshold of n/k. Therefore,
choosing k plays a vital role in decomposing a tensor
with a given rank.
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mance of GMNS-based PARAFAC algorithm; tensor
size = 50 x 50 x 60, rank R = 5.

6.3 GMNS-based HOSVD

To study the performance of the proposed GMNS-
based HOSVD, we investigate three main application-
based scenarios:

o Best low-rank tensor approximation;
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Figure 12: Effect of tensor rank, R, on performance of
GMNS-based PARAFAC algorithm.

o Tensor-based principal subspace estimation;

o Tensor-based dimensionality reduction.

6.3.1 Best low-rank tensor approximation:
A performance comparison of Tucker decomposition
with different initialization methods is provided via
simulation study. In particular, we consider three al-
gorithms to initialize loading factors: original HOSVD,
GMNS-based HOSVD and a method that factors are
chosen randomly (legend = RAND) [7]. After that, the
alternating least square (ALS) algorithm is applied to
obtain the best low-rank approximation of tensors.

Two performance metrics are used: tensor core rel-
ative change (TCRC) and subspace relative change
(SRC). They are defined as

_ g™ —g* v
N rg® T _ k=D k=D T

N uE )T

where N is the number of modes (fibers), Gx) and ng)
are the estimated tensor core and the factors at the k-th

iteration step.
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Figure 14: TCRC and SRC performance of Tucker decomposition algorithms on real tensor obtained from Coil20
database [31]; X5 of size 128 x 128 x 648 associated with tensor core G, of size 64 x 64 x 100.

We used three tensors to assess algorithm perfor-

mance: two synthetic tensors and one real tensor
the Coil20 database [31]. The two synthetic tensor

from
S, Xl

of size 50 x 50 x 50 and A> of size 400 x 400 x 400,
were randomly generated from the zero-mean and unit-
variance Gaussian distribution. They were then com-
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pressed into a tensor core G; of 5 X 5 x 5. The Coil20
database is composed of 9 subjects with 72 different im-
ages. We formed a real tensor A3 of size 128 x 128 x 648,
associated with a tensor core G, of size 64 x 64 x 100.

The convergence results are shown in Figures 13
and 14. It can be seen that, for the small synthetic
tensor, the GMNS-based HOSVD algorithm converged
fastest, while still yielding a good performance, in
terms of TCRC and SRC (= 10~1°). For the big synthetic
tensor, all algorithms yielded similar performance, but
the GMNS-based algorithm was faster in terms of
convergence as compared to the original HOSVD and
the random-based algorithms, as clearly shown in Fig-
ure 13(c)-(d). In the case of the real data, all algorithms
yielded the same performance in terms of TCRC and
SRC with fast convergence.

6.3.2 Tensor-based principal subspace estimation:
Tensor-based subspace estimation was introduced
in [32], wherein it was proved that the HOSVD-based
approach improved subspace estimation accuracy and
was better than conventional methods, like SVD, if the
steering matrix A satisfies some specific conditions.
Inspired by this work, we wanted to see how the
proposed GMNS-based HOSVD algorithm works for
principal subspace estimation. We also compared with
the original HOSVD, the modified GMNS, and SVD.

For the sake of simplicity, we assume that the mea-
surement X can be expressed by matrix and tensor
representations as

X =AS 40N,
X:AXR+1ST+U'N,

where the steering matrix A and the tensor .A can be
expressed by two sub-systems A; and A; as

A=A10A,
A:IX1A1 Xy Aj.

The multidimensional version of the true subspace
W in the matrix case can be defined as

U=Gx1U; xaUy, (27)

where G denotes the core of tensor X, U; and U, are
two (truncated) loading factors derived by a specific
algorithm for Tucker decomposition, such as the origi-
nal HOSVD, the GMNS-based HOSVD, and the HOOI
algorithms.

In this work, we follow the experiment set up in [32].
The array steering tensor .A and the signal S were
derived from the random zeros-mean and unit-variance
Gaussian distribution, similarly in Section 6.1. The ex-
perimental results are shown in Figure 15. It can be
seen that the GMNS-based HOSVD algorithm for PSA
yielded almost the same subspace estimation accuracy
in terms of SEP as the HOSVD-based, SVD-based and
GMNS-based algorithms. Thus, the proposed GMNS-
based HOSVD algorithm can be useful for subspace-
based parameter estimation.

6.3.3 Tensor based dimensionality reduction:

We investigated the use of GMNS-based HOSVD,
the truncated HOSVD (T-HOSVD), another truncated
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. : ‘ . —
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4 —¥— HOSVD
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i i i i i i i i i
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Figure 15: HOSVD for PSA.

HOSVD [33] (ST-HOSVD), and SVD for compression
of an image tensor with a fixed rank. The image tensor
was obtained from the Coil20 database.

The root mean square error (RMSR) is used as the
performance metric and is defined as
[[Are — Aex|

[[Aex]|

where Agx and A, are the true and reconstructed
images, respectively.

RMSE = (28)

The results are shown in Figure 16. Clearly, GMNS-
based HOSVD yielded the same performance as the
truncated HOSVD but slightly worse (= 0.2% in terms
of RMSE) than ST-HOSVD. The tensor-based approach
for dimensionality reduction was much worse than the
SVD-based approach on each single image.

7 CONCLUSIONS

In this paper, motivated by the advantages of the
GMNS method, we proposed several new algorithms
for principal subspace analysis and tensor decompo-
sition. We first introduced the modified and the ran-
domized GMNS-based algorithms for PSA with reason-
able subspace estimation accuracy. Based on these, we
proposed two GMNS-based algorithms for PARAFAC
and HOSVD. Numerical experiments indicated that
our proposed algorithms can be a suitable alternative
to their counterparts, as they can significantly reduce
the computational complexity while yielding reason-
able performance.
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Compressed Image - SVD

(a) SVD: n = 40, RMSE = 0.0036

Compressed Image - T-HOSVD

(d) T-HOSVD: n = 40, RMSE = 0.0129

Compressed Image - ST-HOSVD

(g) ST-HOSVD: n = 40, RMSE = 0.0127

Compressed Image - HOSVD-GMNS

Compressed Image - SVD Compressed Image - SVD

(b) SVD: n = 30, RMSE = 0.0059 (c) SVD: n = 20, RMSE = 0.01

Compressed Image - T-HOSVD Compressed Image - T-HOSVD

(e) T-HOSVD: n = 30, RMSE = 0.0166 (f) T-HOSVD: n = 20, RMSE = 0.0328

Compressed Image - ST-HOSVD Compressed Image - ST-HOSVD

(h) ST-HOSVD: n = 30, RMSE = 0.0164 (i) ST-HOSVD: n = 20, RMSE = 0.0326

Compressed Image - HOSVD-GMNS Compressed Image - HOSVD-GMNS
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0.0129 0.0166 0.0328
Figure 16: Image compression using SVD and different Tucker decomposition algorithms.
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