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Abstract– This paper proposes an improved lattice-reduction aided (LRA) MMSE detection scheme, based on the Gram-
Schmidt (GS) procedure. The proposed scheme reduces the column vectors of the MIMO channel matrix, by using the LLL
algorithm followed by the GS procedure in order to transform the channel matrix into a new one which has mutually
purely orthogonal column vectors. Compared to the conventional LRA MMSE detector, the proposed detector achieves a
very good BER performance, almost equivalent to those using the ML detector in the 4× 4 MIMO system at the cost of a
slightly larger computational complexity.
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1 Introduction

Recently, lattice-reduction (LR) aided (LRA) detection
has been receiving more attention since it might
achieve a high channel capacity in multiple-input
multiple-output (MIMO) systems. The LR transforms
the column vectors of the MIMO channel matrix to
become close to mutually orthogonal, followed by the
estimation of the transmitted signals [1–8].

The most popular LR algorithm is the well-known
LLL algorithm introduced by Lenstra, Lenstra, and
Lovász [9]. Using this algorithm, the LRA detector
gives a good signal estimation and, hence, a good bit-
error-rate (BER) performance, relatively close to that
using the maximum likelihood (ML) detector [1–6].
However, the BER performance is not as good as that
using the ML detector, since the column vectors of the
reduced channel matrix are not mutually orthogonal.

In this paper, we propose an improved LRA
minimum mean square error (MMSE) detection
method. This is done by combing the LLL algorithm
and the Gram-Schmidt (GS) orthogonalization
procedure, aiming at achieving a BER performance
almost equivalent to that using the ML detection at the
cost of a slightly larger computational complexity. The
feature of the LLL algorithm is to create the column
vectors of the basis channel matrix nearly (but not
purely) orthogonal. In addition, it yields the transform
matrix with integer entries. This property facilitates to
obtain a good estimate of the transmitted signal.

The motivation to bring in the Gram-Schmidt proce-

dure is, from our intuition, that if we apply the Gram-
Schmidt procedure to the LLL-reduced channel matrix,
the column vectors of the reduced channel matrix
should become more closely orthogonal and, hence,
better estimate might be obtained. A disadvantage of
this method is that the entries of the transform matrix
are non-integer so that it would be very complicated
in obtaining a good estimate of the signal. In this
paper, we propose a novel method which overcomes
this disadvantage.

It is well known that the LLL algorithm reduces
the p-th column vector of the channel matrix by the
q-th (q < p) column vectors to create the reduced
channel matrix and the transform matrix. We call this
reduction the forward LR (F-LR). In addition, we reduce
the p-th column vector by the q-th (q > p) column
vectors to create another reduced channel matrix and
another transform matrix. We call this reduction the
backward LR (B-LR) [5]. Furthermore, the proposed
detector reduces the LLL-reduced column vectors using
the GS procedure. Then the GS-reduced column vec-
tors become mutually orthogonal and almost of equal
length. As a result, the proposed detector improves the
BER performance, which is almost equivalent to that
using ML detection.

The remainder of this paper is organized as follows.
Section 2 presents the system model and the conven-
tional LRA detection. Section 3 presents the basic con-
cept of the GS procedure combined with the LLL lattice-
reduction. In Section 4, we propose a GS procedure-
based LRA MMSE detection. Section 5 gives the com-
puter simulation results and discussions. Finally, we
summarize and conclude the paper in Section 6.

1859-378X–2011-0204 c© 2011 REV



T. Fujino: Gram-Schmidt Combined LLL Lattice-Reduction Aided Detection in MIMO Systems 107

Figure 1. MIMO system model.

2 System Model and Conventional LRA
Detection

2.1 System Model

Consider a MIMO system with M transmit and N
receive antennas, N ≥ M, as shown in Figure 1. In the
system, the signals are transmitted over a rich scattering
flat fading channel. We assume that the receiver has
a perfect knowledge of the channel state information
(CSI). Let H = [h1, . . . , hM] be the channel matrix of
which the entry hn,m is the complex channel gain be-
tween the m-th transmit and the n-th receive antennas.
The channel gains are assumed to be mutually uncorre-
lated complex Gaussian variables with zero mean and
unity variance. Let zn be mutually uncorrelated addi-
tive white Gaussian noises at the n-th receivers. Each zn
is assumed to be a complex Gaussian variable with zero
mean and variance of N0, where N0 is the one-sided
noise power spectral density. Let s = [s1, . . . , sM]T ,
y = [y1, . . . , yN ]

T , and z = [z1, . . . , zN ]
T be the transmit

signal, the receive signal, and the additive noise vectors,
respectively. Then we have

y = Hs + z = h1s1 + h2s2 + . . . + hMsM + z (1)

2.2 LLL Algorithm

The most popular LRA detection employs the LLL
algorithm which is shown in Algorithm 1.

In this algorithm, using MMSE, the optimum value
of δ in terms of achieving low BER performance is
dependent on the MIMO size, the modulation order,
and the signal-to-noise ratio (SNR), Eb/N0. We will
determine the value of δ in Section 5. The operator dxc
denotes the rounding of x in the real and the imaginary
parts, separately. The algorithm transforms the channel
matrix H to a reduced channel matrix H’ of which the
column vectors are nearly pair-wise orthogonal, and a
transform matrix T which is a unimodular matrix of
determinant ±1. Using H’ and T, Equation (1) writes

y = Hs + z = (HT)
(

T−1s
)
+ z ≡ H’v + z, (2)

where H’ = HT and v = T−1s. Note that although steps
(8)–(11) in Algorithm 1 are the GS procedure, they are
used only for defining the swapping condition of the

Algorithm 1 The LLL Algorithm

1) Input H, T := IM = [t1, . . . , tM], set δ, ĥ1 = h1
2) for p := 2 to M do
3) for q := p− 1 down to 1 do
4) µp,q = ĥH

q hp/‖ĥq‖2

5) hp := hp − dµp,qchq, tp := tp − dµp,qctq
6) end for
7) Let ĥp = hp
8) for q := p− 1 down to 1 do
9) µq,p = ĥH

q ĥp/‖ĥq‖2

10) ĥp := ĥp − µp,qĥq
11) end for
12) if δ‖ĥp−1‖2 ≤ ‖ĥp + µp,p−1ĥp−1‖2 then
13) let p := p + 1
14) else
15) swap the (p− 1)-th and the p-th columns.

Let p := max {p− 1, 2}, and ĥ1 = h2 if p = 2
16) end if
17) end for

columns of H in steps (12)–(14). That is, the steps (8)–
(11) are applied regardless of the proposed GS-based
LRA detection.

For the MMSE estimation, following Hassibi [10], de-
fine the extended receive signal vector, ȳ, the extended
channel matrix, H̄, and the extended additive noise
vector, z̄, respectively, as follows:

ȳ =

[
y

0M

]
, H̄ =

[
H√
ρIM

]
, z̄ =

[
z

−√ρs

]
, (3)

where 1/ρ = Es/N0 with Es = E
[
‖s‖2

]
/M, IM is

the M×M identity matrix, and 0M is the M× 1 zero
vector. Then, in step (1) of Algorithm 1, replace H
with H̄. Next, the LLL-reduced channel matrix H̄’ and
the transform matrix T are obtained from the column
vectors h̄p of H̄. Hence, Equation (2) extends to

ȳ = H̄s + z̄ = (H̄T)
(

T−1s
)
+ z̄ ≡ H̄’v + z̄, (4)

where H̄ = H̄’T and v = T−1s. Note that T and v in (4)
are different from those in (2), respectively.

2.3 Estimation of Transmitted Signal
For MIMO detection, MMSE estimation is commonly

used. In [10], Hassibi proposed an MMSE detector
which is similar to the zero-forcing (ZF) detector with
introduction of ȳ and H̄ in (3). Then, the MMSE esti-
mation can be expressed by

s̃ = H̄†ȳ = (HHH + ρIM)−1HHy, (5)

where H̄† denotes the pseudo-inverse of H̄. Then, s̃
is transformed to ṽ = T−1s̃ in the v-domain. In the
case that the entries of s are of the commonly used
quadrature amplitude modulation (QAM) mapping,
proper shifting and scaling of s̃ are necessary before
determining ṽ. Detailed explanations on the shifting
and scaling operations are given in [7]. Denote these
operations in a combined form as s̃ := S [s̃]. After
that, the entries of ṽ are rounded as v̂ = dṽc. Next,
v̂ is transformed to ŝ = Tv̂ in the s-domain. Then,
ŝ is shifted back and scaled back in the above case.
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Algorithm 2 Gram-Schmidt Orthgonalization
1) Input H’ = [h’1, . . . , h’M] T̂ := IM = [t1, . . . , tM],

set ĥp = h’p, t̂p = tp : p ∈ [1, M]
2) for p := 2 to M do
3) for q := p− 1 downto 1 do
4) µp,q = ĥH

q ĥp/‖ĥq‖2

5) ĥp := ĥp − µp,qĥq, t̂p := t̂p − µp,q t̂q
6) end for
7) end for

This is denoted by ŝ := S−1 [ŝ]. At this stage, entries
ŝm, m ∈ [1, M], of ŝ are chosen to the nearest symbol
constellation point if they are lying outside the symbol
constellation. This operation is denoted by ŝ := C [ŝ].

3 Basic Concept of Gram-Schmidt

Procedure Based MMSE Detection

In this section, the basic concept of the proposed GS
procedure based LRA MMSE detection is briefly ex-
plained. The LLL algorithm transforms the extended
channel matrix H̄ to the reduced channel matrix H̄’, of
which the column vectors are nearly (but not purely) or-
thogonal to one another. The algorithm also makes the
reduced column vectors almost of equal length. If the
reduced column vectors were purely orthogonal to one
another, no interference between the transmitted signals
should occur. Hence, the BER performance should be
equivalent to that using the ML detection. Unfortu-
nately, the LLL algorithm does not make the column
vectors of the reduced channel matrix H̄’ mutually
orthogonal. Henceforth, we will make them mutually
orthogonal using the GS procedure, as described in
Algorithm 2. This algorithm weakly reduces the column
vectors of the LLL-reduced channel matrix H̄’, forming
the GS-reduced channel matrix Ĥ and the transform
matrix T̂. The column vectors of Ĥ are mutually or-
thogonal. It should be noted that this algorithm is
computationally simple since it weakly reduces the
column vectors of H’.

For MMSE, the column vectors of H̄’ are weakly
reduced using this GS algorithm to create the GS-
reduced channel matrix ˆ̄H and the transform matrix
T̂. Then, (4) can be extended as

ȳ = H̄s + z̄ = (H̄T)
(

T−1s
)
+ z̄ ≡ H̄’v + z̄

=
(
H̄’T̂

) (
T̂−1v

)
+ z̄ ≡ ˆ̄Hu + z̄, (6)

where ˆ̄H = H̄’T̂ = H̄TT̂, s = Tv = TT̂u, v = T̂u,
and det

{
TT̂
}
= ±1. Note that T̂ is an upper triangular

matrix with unity diagonal entries and non-integer off-
diagonal entries.

A soft estimate of u is expressed as ũ =
(
TT̂
)−1 s̃.

Since the entries of u (=
(
TT̂
)−1 s) are not integers,

the entries of ũ cannot be decided by quantization like
the LRA detection. The most critical problem for the
proposed detection is how to decide ũ in order to obtain
an estimate û in the u-domain. This problem will be
uniquely solved using a novel method in Section 4.

Once ũ is decided to be û, the estimate of the trans-
mitted signal will then be obtained as ŝ = TT̂û, then
let ŝ := C

[
S−1 [ŝ]

]
.

4 Proposed LRA MMSE Detection Based

on Gram-Schmidt Procedure

In this section, the detailed procedure of the proposed
GS-based LRA MMSE detection is explained.

4.1 Forward and Backward LR Using LLL Algorithm

First we forward-reduce the column vectors of H̄ =[
h̄1, . . . , h̄M

]
using Algorithm 1. Input

H = [h1, . . . , hM] := H̄,
T := IM = [t1, . . . , tM]

into Algorithm 1. Then we obtain the LLL-reduced
channel matrix and the transform matrix, respectively,
as below:

H̄’(j=1) ≡
[
h̄’(j=1)

1 , . . . , h̄’(j=1)
M

]
:= [h1, . . . , hM] ,

T(j=1) ≡
[
t(j=1)
1 , . . . , t(j=1)

M

]
:= [t1, . . . , tM] .

Next we backward-reduce the column vectors of H̄
using Algorithm 1. Input

H = [h1, . . . , hM] :=
[
h̄M, . . . , h̄1

]
,

T = [t1, . . . , tM] := [tM, . . . , t1] ,

into Algorithm 1. Then we obtain the LLL-reduced
channel matrix and the transform matrix

H̄’(j=2) ≡
[
h̄’(j=2)

1 , . . . , h̄’(j=2)
M

]
:= [hM, . . . , h1] ,

T(j=2) ≡
[
t(j=2)
1 , . . . , t(j=2)

M

]
:= [tM, . . . , t1] .

Here the superscripts (j = 1) and (j = 2) denote the
F-LR and the B-LR of the extended channel matrix H̄,
respectively.

4.2 Gram-Schmidt Orthogonalization

We next create eight GS-reduced channel matrices
ˆ̄H and their corresponding transform matrices T̂ by

inputting H̄’(j), j ∈ {1, 2}, into Algorithm 2.
Case 1 (k = 1): Forward GS-reduction of H̄’(j): We

input

H’ = [h’1, . . . , h’M] :=
[
h̄’(j)

1 , . . . , h̄’(j)
M

]
= H̄’(j),

T̂ = [t1, . . . , tM] := IM.

Then, we obtain the GS-reduced channel matrix and the
transform matrix, respectively, as

ˆ̄H(j,k=1) ≡
[

ˆ̄h(j,k=1)
1 , . . . , ˆ̄h(j,k=1)

M

]
:=
[
ĥ1, . . . , ĥM

]
,

T̂(j,k=1) ≡
[
t̂(j,k=1)
1 , . . . , t̂(j,k=1)

M

]
:= [t̂1, . . . , t̂M] .
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Case 2 (k = 2): Backward GS-reduction of H̄’(j): Input

H’ = [h’1, . . . , h’M] :=
[
h̄’(j)

M , . . . , h̄’(j)
1

]
,

T̂ = [t1, . . . , tM] := [tM, . . . , t1] .

Then, obtain

ˆ̄H(j,k=2) ≡
[

ˆ̄h(j,k=2)
1 , . . . , ˆ̄h(j,k=2)

M

]
:=
[
ĥM, . . . , ĥ1

]
,

T̂(j,k=2) ≡
[
t̂(j,k=2)
1 , . . . , t̂(j,k=2)

M

]
:= [t̂M, . . . , t̂1] .

Case 3 (k = 3): Forward GS-reduction of the column-
order rearranged H̄’(j): Input

H’ =[h’1, . . . , h’M]

:=
[
h̄’(j)

M/2+1, . . . , h̄’(j)
M , h̄’(j)

1 , . . . , h̄’(j)
M/2

]
,

T̂ = [t1, . . . , tM] := [tM/2+1, . . . , tM, t1, . . . , tM/2] .

Then, obtain

ˆ̄H(j,k=3) ≡
[

ˆ̄h(j,k=3)
1 , . . . , ˆ̄h(j,k=3)

M

]
:=
[
ĥM/2+1, . . . , ĥM, ĥ1, . . . , ĥM/2

]
,

T̂(j,k=3) ≡
[
t̂(j,k=3)
1 , . . . , t̂(j,k=3)

M

]
:= [t̂M/2+1, . . . , t̂M, t̂1, . . . , t̂M/2] .

Case 4 (k = 4): Backward GS-reduction of the column-
order rearranged H̄’(j): Input

H’ = [h’1, . . . , h’M]

:=
[
h̄’(j)

M/2, . . . , h̄’(j)
1 , h̄’(j)

M , . . . , h̄’(j)
M/2+1

]
,

T̂ = [t1, . . . , tM]

:= [tM/2, . . . , t1, tM, . . . , tM/2+1] .

Then, obtain

ˆ̄H(j,k=4) ≡
[

ˆ̄h(j,k=4)
1 , . . . , ˆ̄h(j,k=4)

M

]
:=
[
ĥM/2, . . . , ĥ1, ĥM, . . . , ĥM/2+1

]
,

T̂(j,k=4) ≡
[
t̂(j,k=4)
1 , . . . , t̂(j,k=4)

M

]
:= [t̂M/2, . . . , t̂1, t̂M, . . . , t̂M/2+1] .

In Cases 1 and 2, the superscripts (k = 1) and (k = 2)
denote the forward and the backward GS-reductions
of H̄’(j), respectively, and, in Cases 3 and 4, (k = 3)
and (k = 4) denote the forward and the backward
GS-reductions of the column-order rearranged H̄’(j),
respectively. Again, remark that Algorithm 2 is com-
putationally simple since it weakly reduces the column
vectors of H’.

Finally, the extended receive signal vector ȳ is ob-
tained by

ȳ = H̄s + z̄ =
(

H̄T(j)
) (

T(j)−1s
)
+ z̄ ≡ H̄’(j)v(j) + z̄

=
(

H̄’(j)T̂(j,k)
) (

T̂(j,k)−1v(j)
)
+ z̄

≡
(

H̄
˜
T̂(j,k)

) (
˜
T̂(j,k)−1s

)
+ z̄ ≡ ˆ̄H(j,k)u(j,k) + z̄ (7)

(a) (b)

Figure 2. Decision flow of the soft estimate ũm : ∆um = −um. (a)–
Shifting of um and ũm; (b)– Quantization of ũ′m and shifting back of
ũ′m.

where j ∈ {1, 2}, k ∈ [1, 4],
˜
T̂(j,k) = T(j)T̂(j,k), ˆ̄H(j,k) =

H̄’T̂(j,k) = H̄
˜
T̂(j,k), and

s = T(j)v(j) =
˜
T̂(j,k)u(j,k) (8)

v(j) = T̂(j,k)u(j,k) (9)

Note that the entries of
˜
T̂(j,k), of T̂(j,k) and of u(j,k) are

non-integers, and that det
{

˜
T̂(j,k)

}
= ±1, det

{
T(j)

}
=

±1 and det
{

T̂(j,k)
}
= ±1.

4.3 Estimation of Signal Vector u

Although the receiver has no knowledge of the trans-
mitted signal s, we at first assume that it should have
knowledge of s. Under this assumption, the transmitted
signal s is first shifted and scaled as s := S [s]. Then it
is transformed to u(j,k) as

u(j,k) =
[
u(j,k)

1 , . . . , u(j,k)
M

]T
=

˜
T̂(j,k)−1s (10)

where j ∈ {1, 2} and k ∈ [1, 4]. Then we measure the
distance between u(j,k) and the origin 0M by

∆u(j,k) = 0M − u(j,k) = −u(j,k) = −
˜
T̂(j,k)−1s (11)

The m-th entry of ∆u(j,k) is expressed as ∆u(j,k)
m =

−u(j,k)
m . After s̃ in (5) is shifted and scaled as s̃ := S [s̃],

the soft estimate of u(j,k) is derived from s̃ as

ũ(j,k) =
[
ũ(j,k)

1 , . . . , ũ(j,k)
M

]T
=

˜
T̂(j,k)−1s̃ (12)

Now we have obtained the correct point u(j,k)
m in (10)

and the soft estimate ũ(j,k)
m in (12). Since u(j,k)

m is not an
integer, ũ(j,k)

m cannot be decided by quantization like the
conventional LRA detector. In order to decide ũ(j,k)

m , we
shift both u(j,k)

m and ũ(j,k)
m by ∆u(j,k)

m (= −u(j,k)
m ) such that

u(j,k)
m should be shifted to the origin. Then the shifted

u(j,k)
m and ũ(j,k)

m are expressed, respectively, as

u′(j,k)
m = u(j,k)

m + ∆u(j,k)
m = u(j,k)

m − u(j,k)
m = 0 (13)

ũ′(j,k)
m = ũ(j,k)

m + ∆u(j,k)
m = ũ(j,k)

m − u(j,k)
m (14)

Figure 2(a) illustrates the shifting of u(j,k)
m and ũ(j,k)

m by
∆u(j,k)

m (= −u(j,k)
m ). In the figure, the superscript (j, k) is

omitted.
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Since u′(j,k)
m is an integer (zero), ũ′(j,k)

m can be rounded
as

û′(j,k)
m =

⌈
ũ′(j,k)

m

⌋
=
⌈

ũ(j,k)
m − u(j,k)

m

⌋
(15)

After that, shift back û′(j,k)
m by −∆u(j,k)

m (= u(j,k)
m ) to

create the estimate û(j,k)
m as

û(j,k)
m = û′(j,k)

m − ∆u(j,k)
m =

⌈
ũ(j,k)

m − u(j,k)
m

⌋
+ u(j,k)

m (16)

Figure 2(b) illustrates an example of rounding of ũ′(j,k)
m

to create û′(j,k)
m . It also illustrates the shifting back

of û′(j,k)
m by −∆u(j,k)

m (= u(j,k)
m ) to create the decided

estimate û(j,k)
m .

Using (10), Equation (16) is expressed in vector form
as

û(j,k) =û′(j,k) − ∆û(j,k) =⌈
ũ(j,k) −

˜
T̂(j,k)−1s

⌋
+

˜
T̂(j,k)−1s (17)

Here, it should be mentioned that pre-multiplication
of û(j,k) in (17) by T̂(j,k) transforms û(j,k) to v̂(j,k) :=
T̂(j,k)û(j,k) in the v-domain of which the entries should
be integers. Hence, using (17), we express v̂(j,k) as

v̂(j,k) =dT̂(j,k)û(j,k)c =⌈
T̂(j,k)

{⌈
ũ(j,k) −

˜
T̂(j,k)−1s

⌋
+

˜
T̂(j,k)−1s

}⌋
(18)

Pre-multiplying v̂(j,k) in (18) by T̂(j,k)−1, the estimate
v̂(j,k) in (18) is transformed back to û(j,k) in the u-
domain as

û(j,k) = T̂(j,k)−1v̂(j,k) =

T̂(j,k)−1
⌈

T̂(j,k)
{⌈

ũ(j,k) −
˜
T̂(j,k)−1s

⌋
+

˜
T̂(j,k)−1s

}⌋
(19)

Since the receiver practically has no knowledge of the
transmitted signal s, we here pre-estimate s in (19)
using the conventional LRA MMSE detection. First,
derive the soft estimate s̃ in (5). Then let s̃ := S [s̃].
Next, transform s̃ to ṽ(j) = T(j)−1s̃. Then, round the
entries of ṽ(j) as v̂(j) = dṽ(j)c. Finally, transform v̂(j) to
obtain

ŝ′(j) = T(j)v̂(j) (20)

Substitute ŝ′(j) into s in (19) to revise û(j,k). Then,
substitute û(j,k) into u(j,k) in (8) to get the estimate ŝ(j,k).

Note that the cross-correlation of T(j=1) and T(j=2) is
weak as shown in [5]. Hence it is unlikely that both ŝ′(j),
j ∈ {1, 2}, in (20) are in error at the same time. Similarly,
the cross-correlation of

˜
T̂(j,k) and

˜
T̂(j′ ,k′) is weak, where

j′ 6= j and/or k′ 6= k. Hence it is unlikely that all ŝ(j,k) (=

˜
T̂(j,k)û(j,k)), j ∈ {1, 2} and k ∈ [1, 4], are in error at the
same time. As a result, a good BER performance should
be expected by selecting the most reliable estimate ŝ(j,k).

4.4 List of û and Estimation of s
We here derive the estimate of the transmitted signal

s using the proposed GS-based LRA MMSE detection.
Replacing s in (19) by ŝ′(j) in (20), we express the
revised û(j,k) as û(p=0,j,k), which is first listed. Since

ũ(j,k) ≈ u(j,k) in the high Eb/N0 region, we further
create û(p,j,k), p ∈ [1, M], by replacing the p-th entry
of û(0,j,k) by ũ(j,k)

p in (12), and add them to the list. By
adding û(p,j,k), p ∈ [1, M], to the list, a more reliable es-
timate of s is expected. Calculating ŝ(p,j,k) =

˜
T̂(j,k)û(p,j,k),

p ∈ [0, M], then letting ŝ(p,j,k) := S−1[ŝ(p,j,k)] and
ŝ(p,j,k) := C[ŝ(p,j,k)], select the most reliable signal
among all ŝ(p,j,k), where p ∈ [0, M], j ∈ {1, 2} and
k ∈ [1, 4]. The above procedure is summarized in Algo-
rithm 3, where the notations S [·] and S−1 [·] for ŝ(p,j,k),
ŝ[i,j,k], ŝ′(j) and ŝ′{i} are omitted. In this algorithm, we
obtain the estimate ŝ at step (49). We here call ŝ the
GS-estimate. We also call this detection procedure the
Gram-Schmidt combined forward and backward LRA (GS-
F&B-LRA) MMSE list detection. In order to achieve a
more reliable GS-estimate of ŝ, we replace ŝ′(i) at step
(9) by the updated estimate ŝ(p=M,j,k) at step (21) for
each j and k iteratively, where i is the iteration number
and I is the number of iterations.

5 Simulation Results and Discussions

Computer simulations were carried out for QPSK and
16QAM in the 4 × 4 MIMO system to estimate the
transmitted signals using the proposed GS-F&B-LRA
MMSE list detection without forward error correction.
Each channel is assumed to be non-frequency selective
slow-varying fading channel. The receiver is assumed
to have perfect knowledge of the CSI. In the simula-
tions, channel gains are generated using independent
and identically distributed (i.i.d.) Gaussian random
variables with zero mean and variance of 1/2 for each
dimension. Additive noise at each receive antenna is
generated using i.i.d. Gaussian random variables with
zero mean and variance of N0/2 for each dimension.

Before calculating the BERs for the proposed de-
tection, we first determine the suitable values of δ in
Algorithm 1 and the suitable number of iterations I in
Algorithm 3. After that, we analyze the BER perfor-
mances and the computational complexity.

5.1 Suitable Values for Factor δ and Number of
Iterations I

We here determine the suitable values of δ and the
suitable number of I for both the conventional and the
proposed detections in the 4× 4 MIMO system. We look
for suitable value of δ that should achieve BER of 10−4

to 10−5 at the lowest Eb/N0.
Figures 3(a) shows the characteristics of BERs versus

δ with various values of I, for QPSK and 16QAM
at Eb/N0 = 16dB over the 4 × 4 MIMO channel.
Figure 3(b) show the characteristics of the number of
swapping times versus δ for 16QAM at Eb/N0 = 21dB.

Figures 4(a) and 4(b), respectively, show the BER
characteristics versus the number of iterations I for the
proposed detection, for QPSK at Eb/N0 = 16dB and
16QAM and at Eb/N0 = 21dB over the 4 × 4 MIMO
channel, respectively.
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Algorithm 3 The Proposed Detection Algorithm

1) Input y, H, ρ, T(j), T(j)−1, T̂(j,k), T̂(j,k)−1,
˜
T̂(j,k),

˜
T̂(j,k)−1

2) s̃ =
(
HHH + ρIM

)−1 HHy
3) for j := 1 to 2 do
4) ŝ’(j) = T(j)dT(j)−1s̃c
5) for k := 1 to 4 do
6) ũ(j,k) ≡ [ũ(j,k)

1 , . . . , ũ(j,k)
M ]T =

˜
T̂(j,k)−1s̃

7) Let ŝ’{i=0} := ŝ’(j)

8) for i := 0 to I (number of iterations) do
9) û(p=0,j,k) ≡ [ũ(j,k)

1 , . . . , ũ(j,k)
M ]T

= T̂(j,k)−1dT̂(j,k){dũ(j,k) −
˜
T̂(j,k)−1ŝ’{i}c

+
˜
T̂(j,k)−1ŝ’{i}}c

10) ŝ(p=0,j,k) =
˜
T̂(j,k)û(0,j,k), and let ŝ(0,j,k) := C[ŝ(0,j,k)]

11) for p := 1 to M do
12) û(p,j,k) = [. . . , û(j,k)

q , . . . , ũ(j,k)
p , . . .]T ,

q ∈ [1, M] ∩ (p 6= q)
13) ŝ(p,j,k) =

˜
T̂(j,k)û(p,j,k), and let ŝ(p,j,k) := C[ŝ(p,j,k)]

14) if ŝ(p,j,k) = ŝ(p−1,j,k) then
15) go to (19)
16) else
17) ŝ(p,j,k) = arg min

p′∈{p−1,p}
[‖y−Hŝ(p′ ,j,k)‖]

18) end if
19) end for
20) Let ŝ[i,j,k] := ŝ(p=M,j,k)

21) Let ŝ’{i} := ŝ(p=M,j,k)

22) if i = 0 then
23) go to (30)
24) end if
25) if ŝ’{i} = ŝ’{i

′} for any one of i′, i′ ∈ [0, i− 1] then
26) let ŝ[I,j,k] := ŝ[i,j,k], and go to (31)
27) else
28) let ŝ[I,j,k] = arg min

i′∈{i−1,i}
[‖y−Hŝ[i

′ ,j,k]‖]

29) end if
30) end for
31) if k = 1 then
32) go to (39)
33) end if
34) if ŝ[i=I,j,k] := ŝ[i=I,j,k−1] then
35) go to (39)
36) else
37) ŝ[i=I,j,k] = arg min

k′∈{k−1,k}
[‖y−Hŝ[i=I,j,k′ ]‖]

38) end if
39) end for
40) if j = 1 then
41) go to (48)
42) end if
43) if ŝ[i=I,j,k=4] := ŝ[i=I,j−1,k=4] then
44) go to (48)
45) else
46) ŝ[i=I,j,k=4] = arg min

j′∈{j−1,j}
[‖y−Hŝ[i=I,j′ ,k=4]‖]

47) end if
48) end for
49) Let ŝ = ŝ[i=I,j=2,k=4]. (GS-estimate)

Table I summarizes the suitable values of δ and I for
the two modulation types.

5.2 BER Performances
Figures 5(a) and 5(b) show the BER characteristics

versus Eb/N0, respectively, for QPSK and 16QAM in
the 4× 4 MIMO system, with the same δ as shown in
Table I. In each figure, BER curves with legends (1) and
(2) are derived using the conventional and the proposed

(a)

(b)

Figure 3. Characteristics of BERs and the number of swapping times
versus δ, in 4× 4 MIMO. (a)– QPSK at Eb/N0 = 16dB, (b)– 16QAM
at Eb/N0 = 21dB. Curves (1) and (2) are BERs for the conventional
and the proposed detections, respectively. Curves (3) are the number
of swapping times.

(a)

(b)

Figure 4. BER characteristics versus the number of iterations I for
the proposed detection, in 4× 4 MIMO; (a)– QPSK at Eb/N0 = 16dB
with δ = 0, (b)– 16QAM at Eb/N0 = 21dB with δ = 0.5.

detections, respectively. BER curve (2) for QPSK is
equivalent to the BER curves for the ML detection,
same with BER curves for 16QAM. Hence we can obtain
almost the same BER performance as that for the ML
detection. As a consequence, the proposed detection
dramatically improves the BER performance, which is
almost equivalent to that using the ML detector.
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Table I
Suitable Values for δ and I

QPSK 16QAM
Conventional detection δ = 0.75 δ = 0.75
Proposed detection: δ = 0 δ = 0.5
j ∈ {1, 2}, k ∈ [1, 4] I = 0 I = 0

(a)

(b)

Figure 5. BER characteristics versus Eb/N0, in 4 × 4 MIMO. (a)–
QPSK, (b)– 16QAM. BER curves (1) and (2) are derived using the
conventional and the proposed detections, respectively. It should be
noticed that in (a) there are two curves in legend (2): one is for I = 0
and the other is for I = 1. As can be seen, both curves are equivalent.
And that in (b) there are two curves in legend (2): the left most curve
dotted with circle is for I = 1, and the right most curve dotted with
“×” is for I = 0. As can be seen, both curves are almost equivalent.

5.3 Computational Complexity

We count up the number of multiplications of two
complex values in Algorithms 1, 2, and 3, and the
number of those multiplications of Equations (5), (12)
and (20), and their related calculations, since those mul-
tiplications dominantly contribute to the computational
complexity.

In Algorithm 1, the number of calculations of ĥH
q hp

in step (4) and of ĥH
q ĥp in step (9) at p with q ∈ [1, p− 1]

is a total of 2(p− 1). Hence, with weak reduction, the
total number of those calculations over p ∈ [2, M] is
∑M

p=2 2(p− 1) = M (M− 1). Since both ĥp and hp have
2M entries each, we have 2M2(M− 1) multiplications
for the above calculations. The number of divisions in
both steps (4) and (9) is M(M − 1). For the squared

norms ‖ĥq‖2 in steps (4) and (9) at p with q ∈ [1, p− 1],
we need to calculate only ‖ĥp−1‖2 at p, since the other
‖ĥq‖2 for q ∈ [1, p − 2] have already been calculated
before p in the for-loop of p. Hence, with weak re-
duction, we have a total of 2M · M (M− 1) multipli-
cations for ‖ĥp−1‖2 over p ∈ [2, M]. The number of
calculations in both steps (5) and (10) at p is a total
of 3(p − 1). With weak reduction, we have a total of
2M ∑M

p=2 3(p − 1) = 3M2(M − 1) multiplications over
p ∈ [2, M].

If a column-swapping occurs at p, then p goes back
to (p− 1). The number of calculations of both ĥH

q hp in
step (4) and ĥH

q ĥp in step (9) at p and the number of
divisions of them by ‖ĥq‖2 at p are 2(p− 1) each, and
those at (p− 1) are 2(p− 2) each. Hence we have 2M ·
{2(p− 1)+ 2(p− 2)} = 4M(2p− 3) multiplications and
{2(p− 1) + 2(p− 2)} = 2(2p− 3) divisions due to the
column-swapping at p. The number of multiplications
in both steps (5) and (10) at both p and (p− 1) is a total
of 2M · {3(p− 1) + 3(p− 2)} = 6M(2p− 3). Similarly,
the number of multiplications for ‖ĥp−1‖2 at p and
for ‖ĥp−2‖2 at (p − 1) in both steps (4) and (9) is a
total of 2M · 2 = 4M. Let a be the average column-
swapping times. Assuming that the column-swapping
occurs uniformly with respect to p, the total number of
calculations in Algorithm 1 is

AI(M, a) =(M− 1)(2M2 + M + 2M + 3M2)

+
a

M− 1

M

∑
p=2
{(4M + 2 + 6M)(2p− 3) + 4M}

+4M(M− 1 + 2a)

=M(M− 1)(5M + 7) + 2a(5M2 + 2M− 1)

on average. Here the term 4M(M − 1 + 2a) is the
number of multiplications for the squared norm of the
right hand side of the inequality at step (12). Note that
the left hand side ‖ĥp−1‖2 in step (12) has already
been calculated in step (4). Also note that according
to computer simulation, the probability of the occur-
rence of the column-swapping at each p, p ∈ [2, 4], in
Algorithm 1 for the 4× 4 MIMO system is almost the
same: the probabilities at p = 2, 3 and 4 are 31%, 40%
and 29%, respectively. Therefore, the actual number of
multiplications in Algorithm 1 should be almost equal
to AI(M, a).

In Algorithm 2, the column vectors of H′ are weakly
reduced. Hence, the total number of multiplications for
ĥH

q ĥp and that for ‖ĥq‖2 in step (4) over p ∈ [2, M] are
M2(M− 1) and 2M(M− 1), respectively. The number
of divisions in step (4) is M(M− 1)/2. The total number
of multiplications in step (5) is 2M2(M− 1). As a result,
the total number of multiplications in Algorithm 2 is

AII(M) = (M− 1)(M2 + 2M +
1
2

M + 2M2).

To derive the inverse of an M × M matrix, we used
the LU decomposition, which requires 4M3/3 mul-
tiplications [11]. Hence, the calculation of (HHH +
ρIM)−1HHy (= s̃) in (5) requires the number of multi-
plications of S(M) = 1

2 M2(M + 1) + 4
3 M3 + 2M2. Both
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ŝ′(j) = T(j)v̂(j) in (20) and ṽ(j) = T(j)−1s̃ require the
total number of multiplications of T(M) = 2M2 + 4

3 M3

for each j. Both
˜
T̂(j,k) = T(j)T̂(j,k) and ũ(j,k) =

˜
T̂(j,k)−1s̃

in (12) require the total number of multiplications of
U (M) = 1

2 M2 (M + 1) +
(

4
3 M3 + M2

)
for each j and

k.
In the proposed detection algorithm of Algorithm 3,

the equations in steps (14), (34) and (43) hold in high
probabilities of more than 80%, 95% and 99% at a
BER ≈ 10−5, respectively. The equation in step (20)
holds in high probabilities of more than 97% and 98%
for i = 1 and i ≥ 2, respectively. Hence the steps
(17), (28), (37) and (46) are seldom needed to calculate.
This fact implies that they negligibly contribute to the
computational complexity.

Since
˜
T̂(j,k)−1 has already been derived,

˜
T̂(j,k)−1ŝ′(j)

in step (9) requires M2(I + 1) multiplications for each
j and k, and i ∈ [0, I]. Since both T̂(j,k) and T̂(j,k)−1

are upper triangular matrices, the pre-multiplication by
them in step (9) requires a total of M(M + 1)(I + 1)
multiplications for each j and k, and i ∈ [0, I]. Similarly,

˜
T̂(j,k)û(0,j,k) in step (10) and

˜
T̂(j,k)û(p,j,k), p ∈ [1, M], in

step (13) require M2(I + 1) and M ·M2(I + 1) = M3(I +
1) multiplications, respectively, for each j and k, and
i ∈ [0, I]. As a result, for each j and k, and i ∈ [0, I], the
number of multiplications in Algorithm 3 is summed
up as

AIII(M, I) ={2M2 + M3 + M(M + 1)}(I + 1)

=M(M2 + 3M + 1)(I + 1).

It should be noted that all the calculations in steps
(9), (10) and (13) are not done since the process skips
out of the for-loop of i at i < I in step (25). This
process decreases the iteration times. Hence the actual
number of multiplications in Algorithm 3 is smaller
than AIII(M, I).

We first count up the number of multiplications for
QPSK in the 4× 4 MIMO system, where M = 4. As we
set δ = 0.75 for the conventional detection in Table I, the
average swapping times are a = 3.7 from Figure 3. The
total number of multiplications for the conventional
detection is in general expressed as Nconv.(M, a) ≡
AI(M, a) + S(M) + T(M). Substituting M = 4, a = 3.7
into the above, we have Nconv.(M = 4, a = 3.7) = 1242.

For the proposed detection, we set δ = 0 and I = 0
for QPSK in Table I. From Figure 3, the average swap-
ping times are a = 0. As we chose j ∈ {1, 2}, the LLL
algorithm is used twice. Hence the total number of
multiplications in Algorithm 1 is 2AI(M = 4, a = 0).
We further reduce the columns of H̄′(j,k) for each j and
k using Algorithm 2. Since j ∈ {1, 2} and k ∈ [1, 4],
the total number of multiplications in Algorithm 2 is
8AII (M = 4). The total number of multiplications in
Algorithm 3 is 8AIII(M = 4, I = 0), where the skipping-
out process at step (25) in the for-loop of i is not taken
into account. The number of multiplications for (5),
(12), (25), T(j)T̂(j,k) and T(j)−1s̃ is a total of S(M) +
2T(M) + 8U(M). The total number of multiplications
for the proposed detection is in general expressed
as Nprop.(M, a, I|k ∈ [1, 4]) = 2AI(M, a) + 8AII(M) +

8AIII (M, I) + S (M) + 2T (M) + 8U (M). Substituting
M = 4, a = 3.7 and I = 0 into the above, we have
Nprop. (M = 4, a = 0, I = 0|k ∈ [1, 4]) = 4490. Hence we
have Nprop. (4, 0, 0|k ∈ [1, 4]) /Nconv. (4, 3.7) = 3.6.

Next let us count up the number of multiplications
for 16QAM. As we set δ = 0.75 for the conventional
detection, the average swapping times are a = 3.7 from
Fig. 3. Hence the total number of multiplications is
Nconv. (M = 4, a = 3.7) = 1242.

For the proposed detection, we set δ = 0.5, and
I = 0 and I = 1. Since the curve (2) with I = 0
almost agrees with that with I = 1, we chose the
curve (2) with I = 0. The average swapping times are
a = 1.6. In the same manner in the QPSK case, we got
the total number of multiplications for the proposed
detection as Nprop. (M = 4, a = 1.6, I = 0|k ∈ [1, 4]) =
5047 for j ∈ {1, 2} and k ∈ [1, 4]. Hence we have
Nprop. (4, 1.6, 0|k ∈ [1, 4]) /Nconv. (4, 3.7) = 4.0.

As a result, we can obtain very good BER perfor-
mances which are almost equivalent to those with
the ML detection, if we allow around 3.6 through 4.0
times larger computational complexity, compared to the
conventional LRA MMSE detection in the 4× 4 MIMO
system.

6 Conclusions

In this paper, we proposed a Gram-Schmidt based LRA
MMSE list detector. First we forward- and backward-
reduced the column vectors of the extended channel
matrix using the LLL algorithm to create two reduced
channel matrices. Those LLL-reduced column vectors
are forward- and backward-reduced using the GS pro-
cedure to create the GS-reduced channel matrices, us-
ing which we obtained better reliable estimate of the
transmitted signal.

The proposed detector dramatically improved the
BER performances for QPSK and 16QAM in the 4× 4
MIMO system. It achieved very good BER perfor-
mances at the cost of a bit larger computational com-
plexity. The BER curves are almost equivalent to those
for the ML detector. This is because the GS procedure
creates the column vectors of the reduced channel
matrix to be mutually orthogonal. As a consequence,
the proposed detector is worthy for applying to the
4× 4 MIMO system.
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