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Abstract– In Multiple Input Multiple Output (MIMO) systems, the complexities of detectors depend on the size of the
channel matrix. In Massive MIMO systems, detection complexity becomes remarkably higher because the dimensions
of the channel matrix get much larger. In order to recover the signals in the up-link of a Massive MIMO system at
reduced complexities, we first adopt the Group Detection (GD) approach to divide the system into two sub-systems. After
that, we apply the Minimum Mean Square Error (MMSE) and MMSE-Bell Laboratories Layered Space-Time (MMSE-
BLAST) detectors to each sub-system, resulting in the so-called Group-Detection-based MMSE (MMSE-GD) and Group-
Detection-based MMSE-BLAST (MMSE-BLAST-GD) detectors, respectively. To further enhance the Bit Error Rate (BER)
performance of Massive MIMO systems under the high-load conditions, we propose two additional detectors, called Iterative-
Group-Detection-based MMSE (MMSE-IGD) and Iterative-Group-Detection-based MMSE-BLAST (MMSE-BLAST-IGD) by
respectively applying the conventional MMSE and MMSE-BLAST on the sub-systems in an iterative manner. It is shown
by computer simulation and analytical results that the proposed detectors enable the system to achieve not only higher BER
performance but also low detection complexities as compared to the conventional linear detectors. Moreover, the MMSE-IGD
and MMSE-BLAST-IGD can significantly improve BER performance of Massive MIMO systems.
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1 Introduction

In recent years, Massive Multiple Input Multiple Out-
put (Massive MIMO) systems have attracted interest
of many researchers because these systems can pro-
vide highly reliable communications and huge spec-
tral/energy efficiencies [1]. In such systems, a Base
Station (BS) is equipped with several hundreds of
antennas to serve several tens of users (or more) in
the same time-frequency resources. Basically, Massive
MIMO systems are divided into two categories: Time
Division Duplex (TDD) and Frequency Division Duplex
(FDD). However, TDD is preferable to FDD because in
a TDD system, only the number of users is limited by
coherent time, whereas both the number of antennas
placed at the BS and the number of users are limited
in a FDD one [1].

In Massive MIMO systems, the dimensions of trans-
mit/receive signal vectors are normally very large due
to large numbers of antennas and users. Hence, the
optimal Maximum Likelihood (ML) detector becomes
prohibitively complex and is not practical. Various con-
ventional detectors, such as Sphere Detector (SD) or
Vertical Bell Laboratory Layer Space Time (VBLAST)
detectors, could also hardly be applied due to excep-
tionally high complexities. It was shown in [2] that

SD detector can be deployed if the number of jointly
detected symbols is smaller than or equal to 32. Al-
though the enhanced version of BLAST detector in [3]
has much lower complexity as compared to that of its
conventional counterpart, its computational cost is still
remarkably high in Massive MIMO scenarios. Fortu-
nately, when dimensions of the channel matrix are large
enough, its columns or rows are more orthogonal in
pairs. Therefore, even using linear detector such as Zero
Forcing (ZF) or Minimum Mean Square Error (MMSE),
the BER performance is near optimal [1]. This implies
that linear detectors are good candidates for signal
recovery in Massive MIMO systems. However, in such
scenarios that the number of antennas is up to several
hundreds (even if a thousand), the complexities of
linear detectors become significant. In these situations,
new detectors having lower detection complexities than
those of conventional linear detectors are of necessity.

It is well-known that BER performance of a Massive
MIMO system depends on the so-called load factor, β,
which is defined as the ratio of the total number of
transmit antennas from all users to the number of re-
ceive antenna at BS. If β reaches 1, BER performance de-
grades significantly. One approach of improving system
performance is to utilize the traditional neighborhood
search algorithms such as the Likelihood Ascent Search
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(LAS) [4], Reactive Tabu Search (RTS) [5] and multiple
output selection LAS [6]. Random search (RS) and Ran-
domized Markov chain Monte Carlo (R-MCMC) [7] or
approximate message passing [8] algorithms were also
proposed to achieve the goal. However, the complexities
of the aforementioned detectors are still remarkably
high in Massive MIMO systems.

One possible method of reducing detection com-
plexity is to use Grouped Detection (GD), in which
the size of the channel matrix is reduced before the
conventional linear detectors are adopted to recover
transmitted symbols. In [9], Adaptive Group Detection
algorithm was firstly proposed for CDMA systems.
In [10], Li et al. proposed a channel based AGD algo-
rithm for MIMO systems. To the authors’ knowledge,
the idea of GD method has not been considered in
Massive MIMO scenario.

In this paper, we first modify the GD approach so
that it can be adopted in Massive MIMO systems.
Then we propose four new low-complexity, yet efficient,
detectors that are called MMSE-GD, MMSE-BLAST-
GD, MMSE-IGD and MMSE-BLAST-IGD. The proposed
detectors are actually the combinations of the conven-
tional linear detectors with the GD. Specifically, the
MMSE-GD and MMSE-BLAST-GD are built by respec-
tively applying MMSE and MMSE-BLAST detectors
to two sub-systems generated by the GD approach.
The MMSE-IGD and MMSE-BLAST-IGD detectors are
constructed by applying the corresponding MMSE and
MMSE-BLAST detectors to the sub-systems in an it-
erative manner. Simulation results demonstrate that
MMSE-GD and MMSE-BLAST-GD respectively have
slightly lower BER performances than those of the
conventional MMSE and MMSE-BLAST detectors. In
contrast, performances of the MMSE-IGD and MMSE-
BLAST-IGD are much higher than those of the MMSE
and MMSE-BLAST, particularly when the SNR is suf-
ficiently large. In addition, the analytical results show
that compared to the MMSE detector, the MMSE-GD of-
fers remarkably lower detection complexity, in terms of
floating point operations (flops), while MMSE-IGD has
slightly higher complexity. Interestingly, the complexi-
ties of both MMSE-BLAST-GD and MMSE-BLAST-IGD
are much lower than that of original MMSE-BLAST one.
Hence, these proposed detectors are efficient means of
signal recovery in Massive MIMO systems.

The rest of the paper is organized as follows. The
system model is shown in Section 2. In Section 3,
we present the Group Detection approach for Mas-
sive MIMO systems and the MMSE-GD, MMSE-IGD,
MMSE-BLAST-GD and MMSE-BLAST-IGD detectors.
The complexity analysis and performance comparison
are presented in Section 4. Finally, Section 5 concludes
the paper.

2 System Model

In this section, we consider an up-link scenario of a
single cell TDD Massive MIMO system as depicted
in Figure 1. In the system, a BS is equipped with Nr

Figure 1. Up-link Massive MIMO system model.

antennas to simultaneously serve K users with the same
frequency resource. The number of antennas at BS and
the total number of antennas deployed at user side
must satisfy the condition that N ≤ Nr to avoid the
problem of underdetermined system, where N = KNT
and NT is the number of antennas of each user. It is
assumed that each user adopts a spatial multiplexing
(SMX) transmission scheme to provide high data rate.
Then, the received signal at BS is the superposition
of the signals transmitted from all K users through
wireless medium and is given by:

y =

√
γ

NEs

K

∑
k=1

Hkxk + n =

√
γ

NEs
Hx + n, (1)

where Es is the symbol energy; γ is the average
SNR at each receive antenna; y ∈ CNr×1, H ∈ CNr×N ,
x ∈ CN×1 and n ∈ CNr×1 are the received signal vector,
the channel matrix, the transmitted signal vector from
K users, and the noise vector, respectively; C is the set
of complex numbers; xk ∈ CNT×1 and Hk ∈ CNr×NT ,
k = 1, . . . , K, are the transmitted signal vector from the
kth user and the channel matrix between the kth user
and the BS. Note that x =

[
xT

1 xT
2 · · · xT

K
]T and

H =
[

H1 H2 · · · HK
]
. The entries of the channel

matrix H and the noise vector n are assumed to be i.i.d.1

random variables with zero mean and unit variance.
It is further assumed that the transmit powers from
all users are equal and that transmit power from each
user is divided equally among transmit antennas. This
means that the covariance matrix of transmitted signal
vector x is given by E

{
xxH} = EsIN , where E {•}

denotes expectation operation.
It is worth noting that the system model with equal

power allocation among all users in (1) has been widely
adopted in the context of massive MIMO, e.g, [11–15].
The most important point is that it does not alter the
generality and the results of our proposed ideas. As
shown below, for the same system model, our proposed
detectors are capable of enhancing system performance
at reduced complexities as compared to their classical
counterparts. A more general system model taking into
account large-scale fading effect of each user will be of
our future research topic.

1independent and identically distributed
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For simplicity, define H̄ =
√

γ
NEs

H, Equation (1) can
be rewritten as

y = H̄x + n. (2)

3 Signal Detection at Base Station

3.1 Group Detection Algorithm

In this sub-section, we first modify the GD algorithm
so that it can be used to enhance the reliability of signal
recovery at the BS, while keeping detection complexity
at reasonable levels. The details of the GD algorithm
are presented as follows:

Firstly, we rewrite Equation (2) as

y =
[

H̄1 H̄2
] [ s1

s2

]
+ n = H̄1s1 + H̄2s2 + n, (3)

where, H̄1 ∈ CNr×L and H̄2 ∈ CNr×(N−L) are re-
spectively composed of the first L and the remain-
ing (N − L) columns of H̄. Similarly, s1 ∈ CL×1 and
s2 ∈ C(N−L)×1 are two sub-vectors that are created by
taking the first L rows and the remaining rows of x,
respectively. Generally, L can take any integer value
such that 1 < L < N. However, in this paper we
group the channel matrices in such a way that a channel
matrix corresponding to a specific user must be in one
group. That is, L = lNT , where l is an integer number
satisfying 1 < l < K.

Let us define W1 =
(
H̄H

1 H̄1
)−1 H̄H

1 as the pseudo-
inverse matrix of H̄1, where (•)H denotes Hermitian
transpose operation. Then multiplying both sides of
Equation (3) by W1, we obtain:

W1y = s1 + W1H̄2s2 + W1n, (4)

or equivalently,

s1 = W1y−W1H̄2s2 −W1n. (5)

Substituting (5) into (3), and after some small manip-
ulations, we get:

y2 = H̃2s2 + n2, (6)

where y2 ∈ CNr×1, H̃2 ∈ CNr×(N−L), n2 ∈ CNr×1

which are determined by y2 = (I− H̄1W1) y, H̃2 =
(I− H̄1W1) H̄2, n2 = (I− H̄1W1) n, and I is an Nr ×
Nr identity matrix. It is noteworthy that the matrix
(I− H̄1W1) is singular. Hence, it is not invertible. Be-
sides, it is straightforward to show that E {n2} = 0
and E

{
n2nH

2
}
= σ2 (I− H̄1W1)

H . This means that the
second-order statistical characteristic of the noise vector
n2 in (6) has been altered. Now, we can apply any
conventional detector on sub-system (6) to obtain the
estimate, ŝ2, of the signal vector s2. Once we obtain ŝ2,
we assume it is the correct estimate of s2 and use it
to cancel the interference effect of s2 on s1. That is, we
generate the system equation to estimate s1 as follows:

y1 = y− H̄2ŝ2 = H̄1s1 + n. (7)

Again, we can apply any conventional detector on
Equation (7) to obtain the estimate, ŝ1, of s1. For

simplicity, in this paper we use the same conventional
detector to recover both ŝ1 and ŝ2.

Finally, the transmitted signal vector from K users, x,
is estimated by arranging ŝ1 and ŝ2 as x̂ =

[
ŝT

1 ŝT
2
]T .

3.2 Proposed MMSE-GD and MMSE-IGD Detectors
3.2.1 MMSE-GD: At the BS, the MMSE detector can

be used to recover the transmitted vector x directly as

x̂ = Q (Wmy) , (8)

where Q(•) is the quantization function, which esti-
mates the transmitted signal symbols by slicing the
weighted signals, Wmy, to the nearest values in the
quantization set Θ = {±1,±3,±5, · · · }, depending on
the size of the adopted QAM constellation; Wm ∈
CN×Nr is MMSE weight matrix and Wm = (H̄HH̄ +
1
Es

IN)
−1H̄H . As mentioned earlier, the complexity of

MMSE detector will have remarkably high complexity
if it is adopted directly in Massive MIMO systems.

The proposed MMSE-GD detector recovers the trans-
mitted signal vector by applying the conventional
MMSE detector to two sub-system in (6) and (7) to
obtain the estimates of s1 and s2 as follows:

ŝ1 = Q(Wm,1y1), (9)

ŝ2 = Q(Wm,2y2), (10)

where Wm,1 ∈ CL×Nr and Wm,2 ∈ C(N−L)×Nr are weight
matrices given by:

Wm,1 =

(
H̄H

1 H̄1 +
1
Es

IL

)−1
H̄H

1 , (11)

Wm,2 = H̃H
2

(
H̃2H̃H

2 +
1
Es

(I− H̄1W1)
H
)−1

. (12)

Unfortunately, the term
(

H̃2H̃H
2 + 1

Es
(I− H̄1W1)

H
)

is almost singular and hence it is not invertible. In order
to utilize the MMSE procedure, we approximate the
weigh matrix Wm,2 as

Wm,2 = H̃H
2

(
H̃2H̃H

2 +
1
Es

[
(I− H̄1W1)

H + A
])−1

,

(13)

where A ∈ CNr×Nr denotes the additional matrix satis-
fying

[
(I− H̄1W1)

H + A
]
= I, then we obtain Wm,2 as

follows

Wm,2 =

(
H̃H

2 H̃2 +
1
Es

I(N−L)

)−1
H̃H

2 . (14)

It is worth noting that when the conventional MMSE
detector is applied to the Massive MIMO system in (2),
the achievable diversity order of the system is equal
to Nr − N + 1 [10]. By using our proposed MMSE-
GD detector, it is expected that the systems in (6)
and (7) respectively achieve diversity orders of Nr −
N + L + 1 and Nr − L + 1. Therefore, in order for the
Massive MIMO system in (2) to achieve the highest
performance, the two sub-systems must attain the same
diversity order. This is, L should be chosen such that
Nr − N + L + 1 = Nr − L + 1, or equivalent L = N

2 . In
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that case, the achievable diversity order of the system
is expected to be Nr − N

2 + 1. Undoubtedly, the MMSE-
GD detector enables the system to have larger diversity,
and hence higher BER performance, than the its con-
ventional counterpart does. However, BER performance
will be degraded because of approximating operation
as in (14). Therefore, we expect that the achievable BER
performance of the MMSE-GD is still nearly the same
as that of the original MMSE one.

3.2.2 MMSE-IGD: The biggest advantage of the
MMSE-GD is its lower complexity than that of the
conventional MMSE detector. However, it suffers from
the following disadvantages: 1) the noise enhancement
effect due to the computation of W1; and 2) the approx-
imation of the weight matrix in (14). As a consequence,
it still results in high BERs. In order to improve the sys-
tem performance, the MMSE-IGD detector is proposed
in this sub-section. The idea behind the MMSE-IGD
is that the transmitted signal vectors s1 and s2 in (3)
should be decoded in two iterations using the MMSE-
GD. After each iteration, the recovered signal vectors
ŝ1 and ŝ2 will be used to compute the corresponding
Euclidean distance. The pair of (ŝ1, ŝ2) associated with
the minimum distance will be selected as the desired
signal vector.

Specifically, at the first iteration, the signals are recov-
ered using the MMSE-GD. After this iteration, we get
x̂ =

[
ŝT

1 ŝT
2
]T and compute the Euclidean distance

d1 as follows:
d1 = ‖y− H̄x̂‖2 . (15)

At the second iteration, s1 is estimated first, followed
by s2. In order to do so, we define W2 =

(
H̄H

2 H̄2
)−1 H̄H

2 .
By following similar steps as in the MMSE-GD, we
obtain:

ỹ1 = H̃1s1 + ñ1, (16)

where ỹ1 ∈ CNr×1, H̃1 ∈ CNr×L), ñ1 ∈ CNr×1

which are determined by ỹ1 = (I− H̄2W2) y, H̃1 =
(I− H̄2W2) H̄1 and ñ1 = (I− H̄2W2) n. Next, we apply
the conventional MMSE detector to (16) to recover ŝ1.
After that, we use ŝ1 to cancel out the interference of s1
and extract ŝ2. Then, we get x̂ =

[
ŝT

1 ŝT
2
]T and use

it to compute the corresponding Euclidean distance d2
as d2 = ‖y− H̄x̂‖2. Finally, the transmitted vector, x, is
recovered by choosing the vector x̂ associated with the
smallest Euclidean distance among the two distances
d1 and d2. The MMSE-IGD detector is summarized in
Algorithm 1.

3.3 Proposed MMSE-BLAST-GD and
MMSE-BLAST-IGD Detectors

In this sub-section we propose to use the MMSE-
BLAST detector in the same way as to use the MMSE-
GD and MMSE-IGD detectors. The resulting detectors
are called MMSE-BLAST-GD and MMSE-BLAST-IGD,
which are described in details below.

We firstly compute the MMSE error covariance ma-
trices Pi, i = 1, 2, which are used to order the rows of

Algorithm 1 MMSE-IGD Detector
Input: y, H̄, L
Output: x̂
1. Set H̄1 = H̄ (:, 1 : L) , H̄2 = H̄ (:, L + 1 : N).

First Iteration:
2. Obtain the estimate of x as x̂1 =

[
ŝT

1 ŝT
2
]T by

using MMSE-GD detector normally.
3. Compute d1 = ‖y− H̄x̂1‖2

Second Iteration:
4. Compute W2 =

(
H̄H

2 H̄2
)−1 H̄H

2 , ỹ1 = (I− H̄2W2) y,
H̃1 = (I− H̄2W2) H̄1,

Wm,1 =
(

H̃H
1 H̃1 +

1
Es

I(N−L)

)−1
H̃H

1 and

Wm,2 =
(

H̄H
2 H̄2 +

1
ES

IL

)−1
H̄H

2 .
5. Obtain the estimate of s1 using ŝ1 = Q (Wm,1ỹ1).
6. Cancel the effect of s1 from y to get ỹ2 = y− H̄1ŝ1.
7. Obtain the estimate of s2 using ŝ2 = Q (Wm,2ỹ2).
8. Generate the estimate of x as x̂2 =

[
ŝT

1 ŝT
2
]T and

compute d2 = ‖y− H̄x̂2‖2

Making Decision:
9. Find î = arg mini=1,2 di
10. Get the estimate of x as x̂ = x̂î

the MMSE filter matrices as follows:

P1 =

(
H̄H

1 H̄1 +
1
Es

IL

)−1
, (17)

P2 =

(
H̃H

2 H̃2 +
1
Es

IN−L

)−1
. (18)

As already discussed in [3], the “strongest” signal
among the entries of si, i = 1, 2, must be the one with
the smallest error covariance, i.e., the one for which
Pi(k, k) (the kth diagonal element of Pi) is smallest.
Therefore, the diagonal entries of Pi are ordered from
the biggest to smallest values, i.e., the biggest value
is placed in the first diagonal entry of Pi and so on.
Let p1 ∈ NL×1 and p2 ∈ N(N−L)×1, where N is the
set of positive integer numbers, be the permutation
vectors that define the orders of the diagonal entries
of P1 and P2, respectively. In addition, let G1 ∈ CL×Nr

and G2 ∈ C(N−L)×Nr be the ordered MMSE matrices
corresponding to two sub-systems in (7) and (6). Then,
we can write:

G1 = W1 (p1, :) , (19)
G2 = W2 (p2, :) , (20)

where W1 ∈ CL×Nr and W2 ∈ C(N−L)×Nr are non-
ordered MMSE weight matrices for the sub-systems
in (7) and (6), respectively.

By using Gi, i = 1, 2, the kth entry of the recovered
signal vectors, ŝi, i = 1, 2, is obtained as follows:

ŝk,i = Q (gk,iyi) , (21)

where gk,i is the kth row of Gi.
Under the assumption that ŝk,i is recovered correctly,

then it is used to cancel its interference on the remain-
ing transmitted symbols as

yi = yi − hk ŝk,i, (22)
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Algorithm 2 MMSE-BLAST-GD Detector
1. Set H̄1 = H̄ (:, 1 : L) , H̄2 = H̄ (:, L + 1 : N).
2. Compute W1 =

(
H̄H

1 H̄1
)−1 H̄H

1 , y2 = (I− H̄1W1) y,
H̃2 = (I− H̄1W1) H̄2.
3. Compute ordered MMSE filter Matrix G2 as in
Equation (20) and set k = 1.
4. Obtain the estimate of the kth entry of s2 as ŝk,2 =
Q(gk,2y2)
5. Cancel the effect of sk,2 on the remaining entries of
s2 as y2 = y2 − H̃2 (:, k) ŝk,2
6. Set k = k + 1. If k ≤ (N − L), then go to Step 4.
7. Rearrange the entries of ŝ2 in the same order as they
are transmitted.
8. Cancel affect of s2 on s1: y1 = y− H̄2ŝ2.
9. Compute ordered MMSE filter Matrix G1 as in
Equation (19) and set k = 1.
10. Obtain the estimate of the kth entry of s1 as ŝk,1 =
Q(gk,1y1).
11. Cancel the effect of sk,1 on the remaining entries of
s1 as y1 = y1 − H̄1 (:, k) ŝk,1.
12. Set k = k + 1. If k ≤ L, then go to Step 10.
13. Rearrange the entries of ŝ1in the same order as they
are transmitted.
14. Generate the estimate of x as x̂ =

[
ŝT

1 ŝT
2
]T .

where hk is the kth column of H̃2 or H̄1, depending on
whether ŝk,2 or ŝk,1 is detected. This process is repeated
until all entries of ŝ1 and ŝ2 are recovered. Finally, all
entries of ŝ1 and ŝ2 need to be rearranged as the same
order as they are transmitted. The MMSE-BLAST-GD
detector is summarized in Algorithm 2.

The MMSE-BLAST-IGD detector is constructed in
the same way as the MMSE-IGD except for the fact
that the MMSE-BLAST-GD detector is utilized instead
of the MMSE one. The MMSE-BLAST-IGD detector is
summarized in Algorithm 3.

4 Complexity and Performance

Comparisons

4.1 Complexity Comparison

In this sub-section, we evaluate the computa-
tional complexities of MMSE-GD, MMSE-IGD, MMSE-
BLAST-GD and MMSE-BLAST-IGD detectors and com-
pare them to those of the conventional MMSE and
MMSE-BLAST detectors. We use the number of floating
point operations (flops) to assess the complexity of
these detectors. It is assumed that each real operation,
e.g., either an addition, a subtraction, a multiplication,
a square root, or a division, is considered a float point
operation (flop). A complex addition is counted as
two real operations while a complex multiplication is
composed of four real multiplications and two real
additions [16].

Based on the aforementioned assumptions, the
complexities of the proposed detectors (i.e MMSE,
BLAST, MMSE-GD, MMSE-IGD, MMSE-BLAST-GD
and MMSE-BLAST-IGD) are calculated and summa-

Algorithm 3 MMSE-BLAST-IGD Detector
1. Set H̄1 = H̄ (:, 1 : L) , H̄2 = H̄ (:, L + 1 : N).

First iteration
2. Obtain the estimate of x as x̂1 =

[
ŝT

1 ŝT
2
]T by

using MMSE-BLAST-GD detector normally.
3. Compute d1 = ‖y− H̄x̂1‖2

Second iteration
4. Compute W2 =

(
H̄H

2 H̄2
)−1 H̄H

2 , ỹ1 = (I− H̄2W2) y,
H̃1 = (I− H̄2W2) H̄1.
5. Compute ordered MMSE filter Matrix G1 corre-
sponding to H̃1 as in Equation (20) and set k = 1.
6. Obtain the estimate of the kth entry of s1 as ŝk,1 =
Q(gk,1ỹ1)
7. Cancel the effect of sk,1 on the remaining entries of
s1 as ỹ1 = ỹ1 − H̃1 (:, k) ŝk,1
8. Set k = k + 1. If k ≤ L, then go to Step 6.
9. Rearrange the entries of ŝ1 in the same order as they
are transmitted.
10. Cancel affect of s1 on s2: y2 = y− H̄1ŝ1.
11. Compute ordered MMSE filter Matrix G2 corre-
sponding to H̄2 as in Equation (20) and set k = 1.
12. Obtain the estimate of the kth entry of s2 as ŝk,2 =
Q(gk,2y2).
13. Cancel the effect of sk,2 on the remaining entries of
s2 as y2 = y2 − H̄2 (:, k) ŝk,2.
14. Set k = k + 1. If k ≤ (N − L), then go to Step 12.
15. Rearrange the entries of ŝ1in the same order as they
are transmitted.
16. Generate the estimate of x as x̂2 =

[
ŝT

1 ŝT
2
]T and

compute d2 = ‖y− H̄x̂2‖2.
Making decision

17. Find î = arg mini=1,2 di
18. Get the estimate of x as x̂ = x̂î

rized as in Table I. It can be seen from Table I that
the complexities of the BLAST and MMSE detectors
depends only on the number of receive antennas Nr
and the total number of transmit antennas N = KNT .
Whereas, the complexities of the proposed detectors are
depending on both the number of antennas and the
value of L.

Figure 2 compares the complexities of different detec-
tors in two antenna configurations: 1) Nr = 170, N =
160; and 2) Nr = 70, N = 60. In each configuration,
we consider the complexities of MMSE-GD, MMSE-
IGD, MMSE-BLAST-GD and MMSE-BLAST-IGD detec-
tors as a function of the variable l. As we can see
from Figure 2, the MMSE-GD, MMSE-BLAST-GD de-
tectors respectively have lower complexities than the
conventional MMSE and MMSE-BLAST ones at almost
values of l. We can also observe that the complexity
of MMSE-BLAST-IGD detector is higher than those
of all MMSE, MMSE-GD and MMSE-IGD detectors.
However, it is lower than the complexity of the MMSE-
BLAST one when

⌈
1
4 K
⌉

< l <
⌈ 3

4 K
⌉
. Interestingly,

all of the MMSE-GD, MMSE-IGD, MMSE-BLAST-GD
and MMSE-BLAST-IGD detectors achieve the lowest
detection complexities when l = dK/2e. Therefore, l =
dK/2e is the optimum value for the MMSE-GD, MMSE-
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Table I
Complexity Comparison

Detector Number of flops

MMSE 16(KNT)
3 + 32(KNT)

2 Nr − 4(KNT)
2 − 4KNT Nr + 8(KNT)N2

r +4(KNT)

MMSE-BLAST 15
4 (KNT)

4 + 2 (KNT)
3 Nr + (KNT)

2 N2
r + KNT (16Nr − 2)

MMSE-GD
16(KNT)

3 + 32(KNT)
2 Nr− 48(KNT)

2L + 16(KNT)Nr2 + 8Nr2 + 48(KNT)L2

+48NrL2 − 64(KNT)NrL + 16L2 + 4(KNT)Nr−8NrL− 2Nr + 4

MMSE-BLAST-GD
15
4 L4 + 2L3 Nr + L2 Nr2 + 16L3 + 32L2 Nr − 4L2 − 12LNr + 8N2

r − 2Nr + 16(KNT)N2
r

−4(KNT)Nr +
15
4 (KNT − L)4 + 2(KNT − L)3 Nr + (KNT − L)2 N2

r + 40KNT Nr − 4KNT + 4

MMSE-IGD
32(KNT)

3 + 64(KNT)
2 Nr− 96(KNT)

2L− 4(KNT)
2 + 32(KNT)Nr2 + 18Nr2 + 96NrL2 + 4

+96(KNT)L2 − 128(KNT)NrL + 24(KNT)Nr + 8(KNT)L− 2(KNT)− 2Nr− 4NrL + 20L2 + 2L

MMSE-BLAST-IGD

16(KNT)
3 + 32(KNT)

2 Nr − 48(KNT)
2L− 4(KNT)

2 − 64(KNT)Nr L + 48(KNT)L2 + 8(KNT)L

+32(KNT)N2
r − 4Nr +

30
4 L4 + 4L3 Nr + 2L2 Nr

2 + 48L2 Nr + 8L2 + 6N2
r + 30

4 (KNT − L)4

+4(KNT − L)3 Nr + 2(KNT − L)2 N2
r + 80KNT Nr − 8KNT + 2
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Figure 2. Complexity comparison in two configurations of antennas
are Nr = 170, N = 160 and Nr = 70, N = 60 when l is changed.

IGD, MMSE-BLAST-GD and MMSE-BLAST-IGD detec-
tors regarding detection complexity.

Figure 3 represents the complexities as function of
Nr under the assumptions that Nr = N, NT = 4 for
all users and l is fixed at dK/2e. It is clearly seen
from Figure 3 that the complexity of the MMSE-GD
is significantly lower than that of the MMSE while
both the MMSE-BLAST-GD and MMSE-BLAST-IGD
have lower complexities than the MMSE-BLAST one.
On the other hand, the complexity of the MMSE-IGD
is slightly higher than that of the MMSE. One can
expect an increase of approximately 14.3% in complex-
ity for sufficiently large antenna configurations. Note,
however, that the higher complexity of the MMSE-IGD
is compensated for by the higher BER performance
as illustrated in the next sub-section. It is also seen
that, there are significant gaps between MMSE-BLAST-
GD/MMSE-BLAST-IGD and MMSE-GD/MMSE-IGD.
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Figure 3. Detection complexities versus Nr when NT = 4; Nr = N
and l is fixed at dK/2e.

These gaps change when the number of antennas
changes. The more antennas are equipped at BS and all
users, the lager gaps are observed. This implies that the
MMSE-BLAST-GD and MMSE-BLAST-IGD are suitable
for systems with small or medium antennas. Whereas,
MMSE-GD and MMSE-IGD detectors can be used for
systems equipped with large and very large number of
antennas.

4.2 BER Performance Comparison

In this section, the proposed detectors are compared
to each others and to their conventional MMSE, MMSE-
BLAST counterparts with respect to BER performance.
In the simulations, the channel is assumed to be quasi-
static and flat Rayleigh fading. That is, the entries of
the channel matrix are independent and identically
distributed (i.i.d.) Gaussian random variables with zero
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Figure 4. BER curves of the MMSE, MMSE-GD, MMSE-IGD detectors
with Nr = 70, N = 60, 4-QAM; MMSE-GD, MMSE-IGD detectors
have l = 2, 8, 12.

mean and unit variance. In addition, the channel re-
mains constant during a block of 50 symbol periods
and changes independently from one block to another.

Figure 4, Figure 5, and Figure 6 represent the BER
curves of MMSE-GD, MMSE-IGD, MMSE-BLAST-GD
and MMSE-BLAST-IGD detectors versus those of con-
ventional MMSE and MMSE-BLAST ones under the
assumptions that Nr = 70, K = 15, NT = 4 (or
equivalently N = 60), and 4-QAM modulation with
the average energy Es = 2. In addition, l equals to 2,
8 and 12 in Figure 4 and Figure 5, whereas l equals
to 8 in Figure 6. It is clearly seen from Figure 4 and
Figure 5 that the MMSE-GD and MMSE-BLAST-GD
have higher BERs than the corresponding MMSE and
MMSE-BLAST detectors for all l. The BER curves of the
MMSE-GD are very close to each other for different
values of l. In other words, BER performance of the
MMSE-GD is almost independent of l. A weak point of
the MMSE-BLAST-GD detector is that its performance
gets worse as l increases. In contrast, the MMSE-IGD
and MMSE-BLAST-IGD detectors remarkably outper-
form the MMSE and MMSE-BLAST ones when the
SNR is sufficiently large. Specifically, at BER=10−4,
the performance gap between the MMSE-IGD and the
MMSE is about 2 dB with respect to the SNR. The
analytical results in Figure 2 and simulation results in
Figure 4 and Figure 5 implies that: 1) there is a trade-off
between performance and detection complexity when
the proposed detectors are used; and 2) l should be set
at the vicinity of dK/2e in order to achieve high BER
performance at low detection complexity.

As mentioned earlier, a parameter that can strongly
affect the BER performance of Massive MIMO systems
is the load factor β. Figure 7 shows the BER curves
versus β as the ZF, MMSE, BLAST, MMSE-GD, MMSE-
IGD, MMSE-BLAST-GD and MMSE-BLAST-IGD de-
tectors are applied to a Massive MIMO system with
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Figure 5. BER curves of the MMSE-BLAST, MMSE-BLAST-GD and
MMSE-BLAST-IGD detectors with Nr = 70, NT = 4, 4-QAM; MMSE-
BLAST-GD, MMSE-BLAST-IGD detectors have l = 2, 8, 12.
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Figure 6. BER curves of the ZF, MMSE, MMSE-BLAST, MMSE-GD,
MMSE-IGD, MMSE-BLAST-GD, MMSE-BLAST-IGD detectors with
Nr = 70, N = 60, 4-QAM; MMSE-GD, MMSE-IGD, MMSE-BLAST-
GD, MMSE-BLAST-IGD detectors have l = d K

2 e.

Nr = 100. All users use 4QAM modulation. The
number of receive antenna is kept unchanged while
the number of users is varied such that β is within
the range of [0.52, 1]. The parameter l is set equal to⌈

K
2

⌉
for all of the proposed detectors. As can be seen

from Figure 7, when β < 0.92 the BER curve of MMSE-
GD very close to MMSE one. This implies that BER
performance of MMSE-GD is almost the same that of
MMSE. The MMSE-GD even outperforms the MMSE
when β < 0.6. It is also observed that the MMSE-IGD
achieves a remarkable performance gap as compared



72 REV Journal on Electronics and Communications, Vol. 7, No. 3–4, July–December, 2017

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
10

−5

10
−4

10
−3

10
−2

10
−1

β

B
E

R

 

 

ZF
MMSE
MMSE−BLAST
MMSE−GD
MMSE−IGD
MMSE−BLAST−GD
MMSE−BLAST−IGD

Figure 7. BER curves as functions of the load factor β at SNR =
13 dB for the ZF, MMSE, MMSE-BLAST, MMSE-GD, MMSE-IGD,
MMSE-BLAST-GD, MMSE-BLAST-IGD detectors with Nr = 100, 4-
QAM; MMSE-GD, MMSE-IGD, MMSE-BLAST-GD, MMSE-BLAST-
IGD detectors have l = d K

2 e = 8.

to MMSE one. At BER=10−4, the MMSE-IGD enables
the BS to serve approximately 103%, 115%, 117% and
121% of the loads that the MMSE-BLAST-GD, MMSE-
GD, MMSE and ZF detectors can handle, respectively.
The Figure 7 also illustrates that the MMSE-BLAST-IGD
gives the best performance for the whole range of β. If
the BS uses the MMSE-BLAST-IGD, at BER=10−4 its can
server approximately 109% and 119% of the loads that
the MMSE-BLAST and MMSE-IGD detectors can do.

5 Conclusion

In this paper, we proposed four efficient detectors based
on group detection approach for Massive MIMO sys-
tems, called MMSE-GD, MMSE-IGD, MMSE-BLAST-
GD and MMSE-BLAST-IGD. Simulation results show
that the MMSE-IGD and MMSE-BLAST-IGD detectors
respectively outperforms the conventional MMSE and
MMSE-BLAST ones with respect to both BER perfor-
mance and computational complexity as the SNR is
sufficiency high. The MMSE-GD and MMSE-BLAST-
GD slightly underperform the conventional MMSE
and MMSE-BLAST detectors, correspondingly. Never-
theless, they offer significantly lower complexities as
compared to original ones. When the BS is serving
small to medium loads, using the MMSE-GD, MMSE-
IGD, MMSE-BLAST-GD, MMSE-BLAST-IGD is more
advantageous than using the MMSE. Among the pro-
posed detectors, the MMSE-BLAST-GD and MMSE-
BLAST-IGD are suitable for a small (or medium) an-
tenna system, while the MMSE-GD and MMSE-IGD
detectors can be used for the large (or very large)
antenna one. Therefore, the proposed detectors are
good candidate for signal recovery in the up-link of
Massive MIMO systems.
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