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Abstract– Lattice reduction aided (LRA) linear detectors have been known to achieve near optimal performance at low
complexity. However, one weakness of LRA detector is that the quantization step in LRA detector is not optimal. Based
on simulation results, we show that most of detection errors in LRA linear detectors are due to quantization errors. We
then propose two methods to correct the quantization errors. In the first method, sphere detectors are introduced to correct
quantization errors at low additional complexity. As a second approach, we propose a list quantization scheme which can
generate a list of candidate symbols from the original LRA estimated symbols. From these listed symbols, decisions are
made according to the minimum Euclidean distance between the received and estimated points. It is shown by simulations
that both methods provide significant BER performance improvements with only a small additional complexity.
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1 Introduction

Multiple-input multiple-output (MIMO) wireless
systems were shown to achieve enormous channel
capacity in rich-scattering wireless environments
[1]. As one of the practical approaches to achieve the
MIMO capacity, spatial multiplexing was demonstrated
to have spectral efficiencies of 20–40 b/s/Hz in an
indoor environment using the V-BLAST (Vertical-
Bell Labs Layered Space-Time) detector [2]. It is
known that V-BLAST is a promising detector in terms
of balancing its BER performance and associated
computational complexity. The BER performance of
V-BLAST detectors is far from that of the optimum
detector using maximum likelihood (ML) criterion.

Recently, there has been a great interest in seeking
detectors with good BER performance but low compu-
tational complexity. One effective approach is to apply
lattice reduction into the MIMO channel matrix to make
it closer to orthogonal before using linear detectors
such as zero forcing (ZF) or minimum mean square
error (MMSE) to estimate transmitted symbols. This
kind of detectors is often known as lattice reduction
aided (LRA) linear detectors [3, 4]. It is interestingly
noted from the literature that the LRA linear detectors
allow to achieve the same diversity order of the ML
detector but with some loss in average bit energy per
noise variance (Eb/N0).

We note that in the previous proposed LRA detectors,
a lattice reduction algorithm, such as the well-known
Lenstra, Lenstra and Lovász (LLL) [5], is often used
to transform the original signal constellation into a
lattice of parallel points. In fact, this transformation
makes the optimal quantization too complex, and thus
a suboptimal unconstrained element-wise quantization
is used in previous works [3, 6]. The effect of the
suboptimal quantization is a degradation in BER
performance as mentioned above.

The objective of this paper is to find methods to
save this degraded Eb/N0 in LRA linear detectors.
Using experiments by computer simulation we found
that most of detection errors resulted from LRA linear
detectors are due to quantization errors. Based on
this observation, we propose two methods to correct
the quantization errors. In the first method, sphere
detectors are introduced with the aim to correct the
quantization errors at low additional complexity. As
a second approach, we propose a list quantization
scheme which can generate a list of candidate symbols
from the original LRA estimated symbols. From these
listed symbols, decisions are made according to the
minimum Euclidean distance between the received and
estimated points. It is shown by simulation that both
methods provide significant BER performance improve-
ments at the cost of only a small additional complexity,
particularly, in high Eb/N0 region.
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Figure 1. System model of a MIMO-SDM system.

The remainder of the paper is organized as fol-
lows. In Section 2, we introduce the signal model and
conventional linear detectors (namely ZF and MMSE)
for MIMO systems. The principle of lattice reduction
and its application in linear detectors are presented in
Section 3. Explanation on the quantization error of the
LRA-linear detectors is given in Section 4. Combined
Sphere Detector (SD)-LRA detector is explained in Sec-
tion 4. List quantization scheme for LRA detection is
proposed in Section 5. Simulation results are shown
in Section 6 and, finally, the paper is summarized and
concluded in Section 7.

2 Linear MIMO Detectors

2.1 System Model

We consider a MIMO system as illustrated in Fig-
ure 1. The transmitter is equipped with N, and the
receiver M antenna elements. It is also assumed that
N ≤ M. The wireless propagation environment be-
tween the transmitter and the receiver is assumed rich
scattering and flat in frequency. This assumption allows
to model the complex channel gains hmn between the
nth transmit antenna and the mth receive antenna as
statistically independent Gaussian random variables
with zero mean and unit variance, i.e., hmn ∼ Nc(0, 1),
n = 1, 2, . . . , N, and m = 1, 2, . . . , M. Further, the noise
samples zm at the mth receive antenna are modeled as
independent complex Gaussian random variables with
zero mean and variance σ2

z , i.e., zm ∼ Nc(0, σ2
z ). The

vector signal model of the system under consideration
can be then expressed as

y = Hs + z (1)

where y = [y1, y2, . . . , yM]T is the receive signal vector,

H =


h11 h12 . . . h1N
h21 h22 . . . h2N

...
...

. . .
...

hM1 hM2 . . . hMN


= [h1, h2, ... , hN ]

the M× N MIMO channel matrix, s = [s1, s2, . . . , sN ]
T

the transmit signal vector, and z = [z1, z2, . . . , zM]T

the noise vector. For simplicity, we make the further
assumptions about the transmit power constraint, noise

and signal correlation are as follows: E{ssH} = ζ2
s IN ,

and E{szH} = 0, where 0 denotes a zero matrix of
appropriate size, respectively. In this paper, E{·} rep-
resents the expectation and (·)H the complex transpose
operation.

2.2 Linear Detectors

In the linear detectors, the receive signal y is multi-
plied with a weight matrix W to get the estimates of
the transmitted symbols

s̃ = W Hy. (2)

The estimated vector s̃ is then decided to the nearest
points in the signal constellation.

Based on the ZF and MMSE methods, the weight
matrices of the corresponding detectors are given by
[7]

WZF = H† =
(

HHH
)−1

HH, (3)

WMMSE = (HHH + ρIN)
−1HH, (4)

where H† denotes the pseudo-inverse of H, and ρ =
σ2

z /ζ2
s represents the inverse signal to noise ratio (SNR)

at the input of the receiver.
Using (2) and (3), the estimate of the transmitted

vector s using the ZF detector is given by

s̃ZF = WZFy = H†y = s + H†z. (5)

Each element of s̃ZF is then mapped to a signal constel-
lation point to make the final decision on the detected
symbols.

For the MMSE detector, we can use the ZF equivalent
representation proposed by Hassibi [8] by defining the
following extended matrices:

H̄ =

[
H√
ρIN

]
and ȳ =

[
y
0

]
. (6)

Similar to the ZF detector, the estimate of the transmit-
ted vector s using the MMSE detector can be then given
by

s̃MMSE = WMMSEy = H̄†ȳ. (7)

Due to this similarity in the expression between the
MMSE and ZF detectors, analysis for the ZF detector
will also be applied for the MMSE detector in the
following parts.

In the next section, we will briefly introduce the
application of lattice reduction to the linear detectors
in order to improve the BER performance.

3 Lattice Reduction and LRA Linear

Detectors

3.1 Principle of Lattice Reduction

The basic concept of lattice reduction [5] is to con-
sider the noiseless receive signal vector in (1),

L = Hs = s1h1 + s2h2 + ... + sNhN ∈ CM,
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Figure 2. LRA detectors block diagram.

as a (complex) lattice spanned by the generator
(channel) matrix H. The set of column vectors
{h1, h2, ..., hN} is called a basis of lattice L. A lattice
may have many different bases.

The aim of lattice basis reduction, or often simply
referred to as lattice reduction (LR), is to transform a
given basis H into a new basis H ′ whose columns are
close to mutually orthogonal. The detection will be then
carried out based on H ′, followed by a quantization
operation. The most popular algorithm for LR is the
LLL algorithm [5]. In fact, the whole LR algorithm can
be described by a linear transform H ′ = HT , where
H ′ is the LLL-reduced matrix. The transform matrix
T is an integer unimodular matrix with determinant
det{T} = ±1, which is resulted from the LLL algo-
rithm. Detailed steps of the algorithm are presented in
[7]. Further information can be found in [4–6, 9].

3.2 LRA Detectors
The motivation of applying LR to linear detectors is

to improve the decision region [3]. Using the transform
matrix T obtained from a LR algorithm as described in
Sect. 3.1, the system model (1) can be rewritten as [7]

y = Hs + z = (HT)(T−1s) + z ≡ H ′u + z, (8)

where H ′ , HT and u , T−1s are the new complex
channel matrix and transmitted signal vector, respec-
tively. Based on this new model, LRA-ZF or LRA-
MMSE detector estimates u and then uses the transform
matrix T to convert u to s̃. Since columns of H ′ are
closely orthogonal, the linear detection based on H ′

provides better BER performance [4]. A block diagram
of LRA linear detector is illustrated in Figure 2.

An important condition for LRA detectors is that
s is taken from a specified complex integer set, i.e.,
s ∈ SM ∈ ZM. And since T−1 contains only integers,
u ∈ T−1SM is also a complex integer vector. There-
fore, after soft estimates ũ are obtained by LRA linear
detectors, a simple suboptimal quantization operation
is used to round off the real and imaginary parts of
each element ũn in ũ to the nearest integer as ûn =
dR{ũn}c + ıdI{ũn}c, where ı =

√
−1. The detected

signal vector is then obtained by transforming û into
s̃ by the transform matrix T , i.e., s̃ = Tû.

It is worth noting here that when s belongs to the
Quadrature Amplitude Modulation (QAM) constella-
tion, then in order to create a complex integer set Sm ∈
Zm, proper shifting and scaling are necessary. Detailed
description of these shifting and scaling operations can
be found in [7] and references therein.

3.3 Detection Error and Quantization Error

In this section, we analyze the relation between the
detection error and quantization error occurred in a
LRA linear detector. It is reminded that, in a LRA-
detector, soft estimates of the transmitted signal vector
are given by the following transformation: s̃ = Tû.
The estimated vector s̃ is then quantized to the signal
constellation as ŝ = Q{s̃}. Due to the effects of additive
noise, channel fading as well as rounding operation,
errors can occur in this quantization step, making ŝ not
belong to the original set Sm. In other words, there exist
quantization errors due to quantization in LRA detectors.
To better understand about the quantization error, let
us consider a simple example of a 2× 2 MIMO system
with

T =

[
−ı 1− ı
1 1

]
.

If 4-QAM modulation is used then the symbol alphabet
after shifting and scaling will be S = {0, 1, ı, 1 + ı}.
Let s = [1 1 + ı]T be the transmitted vector, then
u = T−1s = [1 ı]T . Assume that the quantized vector
after detection is û = [1+ ı ı]T , then the final estimate
ŝ can be written as ŝ = Q{Tũ} = [2 1 + 2ı]T . Since
both the complex integers 2 and 2ı do not belong to
the original set S, it is said that a quantization error
occurs in the quantization step.

In order to investigate the influence of quantization
errors on the overall error performance, we have con-
ducted an experiment based on computer simulation.
The MIMO system used in experiment has 4 transmit
and 4 receive antennas. Monte-Carlo simulation was
run, and the number of iterations that have quanti-
zation errors and the number of corresponding bit
errors for every 100 detection iterations were counted.
Table I shows the average number of iterations in which
quantization errors occured and the corresponding per-
centage of bit errors compared to the total number of
bit errors for the three LRA linear detectors: LRA-ZF,
LRA-MMSE, and LRA-MMSE based on H̄ (LRA-MMSE
Ext).

It is interestingly noted from Table I that although
quantization errors do not occur very often, they ac-
count for most of the bit errors. For example, for the
LRA-ZF detector, at SNR = 12dB, there are only 5%
of detection iterations containing quantization errors
on average, but they account for 90% of the total bit
errors. Similarly, for the LRA-MMSE detector, at SNR
= 12dB, only 2% of detection iterations are affected by
quantization errors on average, but this number corre-
sponds to 78% of the total bit errors. Another important
observation can be made from this table is that for the
LRA-ZF and LRA-MMSE detector and in the medium
and high SNR region, most of detection errors occur in
few detection iterations. Only for the LRA-MMSE Ext
detector, there are almost no quantization errors. This
is because the MMSE criterion is optimized with LRA-
MMSE Ext detector. In general, we can see that as SNR
increases the quantization error rate becomes small and
decreases fast. Based on the above observations, it is
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Table I
Quantization error rate vs percentage of total errors occurred in LRA linear detectors.

LRA-ZF LRA-MMSE LRA-MMSE Ext.

SNR[dB] Quantization Percentage Quantization Percentage Quantization Percentage
Error Rate of Errors Error Rate of Errors Error Rate of Errors

6 47 88 21 66 47 14
8 28 87 12 70 3.3 21

10 13 88 5.8 73 1.56 26
12 5.1 90 2.1 78 0.54 32
14 1.5 92 0.6 84 0.1 38
16 0.36 94 0.13 87 0.018 48

desired to have a nonlinear correction scheme or an
optimal detector to recover the bit error for those sym-
bols having quantization errors. One possible approach
is to use the reduced-complexity near-ML detector as
proposed in [10]. However, the corrector in [10] is not
suitable for high-order modulations, such as QAM,
due to degraded performance and high computational
complexity.

In this paper, we propose to use a sphere detector
(SD) as a quantization error corrector to re-detect the
quantization erroneously estimated symbols of the LRA
linear detectors. Since SD gives exactly the same perfor-
mance of ML detection (with much lower complexity),
most of bit errors could be corrected. Note that the
quantization error rate is low, hence we need to use
SD in only a few iterations. Therefore the additional
complexity will be slightly small. In addition, we also
propose a list quantization scheme to improve the quan-
tization as well as the BER performance of the LRA
detectors. Details on these two schemes are presented
next in Sections 4 and 5.

4 Quantization Error Correction Using

Sphere Detector

The idea of using a sphere detector as a quantization
error corrector is somehow similar to the reduced-
complexity maximum likelihood (ML) detector pro-
posed in [10]. Here the quantization error is like a
test of detection quality to find the high probably
erroneous detected symbols. Every time the test fails,
i.e., quantization error occurs, we apply the SD detector
to get the optimal estimate and, thus, to recover the bit
errors.

Let us recall here that, for linear LRA detectors, bit
errors are most likely to occur in the estimated symbol
vector ŝ that has one or more elements laying outside
the signal constellation. Since SD gives the optimal
detection, if we apply sphere detection on this vector, it
is expected that most of bit errors would be corrected.

The main idea of sphere detection is briefly explained
as below. Unlike ML detection (MLD), SD detection
does not search all the constellation points but only
those points that lie within a hyper-sphere of radius R
around the received signal point [11]. Since the number
of points searched is limited, the complexity is reduced
as compared to ML detection. For ML detection with

sphere constraint R, we have

ŝ = arg min
s̃
{‖y− Hs‖2 < R2}. (9)

Based on QR decomposition H = QR and QHQ = I,
(9) can be rewritten as

ŝ = arg min
s̃

{
‖y′ − Rs‖2 < R2

}
(10)

= arg min
s̃

{
N

∑
i=1
‖y′i −

N

∑
j=i

rijsj‖2 < R2

}
, (11)

where y′ = QHy and rij is the element at row i and
column j of the upper triangular matrix R. The solution
of (11) can be obtained recursively starting from layer
i = N to i = 1. For each layer, constellation value si
satisfying ∥∥∥∥ zi

rii
− si

∥∥∥∥2
<

Ti

r2
ii

(12)

are selected as partial ML candidates for layer i, where

zi =

(
y′i −

N

∑
j=i+1

rijsj

)
(13)

and

Ti = Ti+1 − ‖zi − riisi‖2, with TM = R2. (14)

Those satisfied values si on each layer can be obtained
through the constraint in (12), via direct comparison
to the QAM constellation. When a new point is found
inside the hyper-sphere (at i = 1) the radius is updated
with the new minimum Euclidean distance and the
algorithm continues the search with a new sphere
constraint until there is only one point left. Figure 3
shows an example of one SD searching iteration in
different layer in a tree diagram. The dark nodes mean
that the value T i of the previous node already exceeds
R2.

Some advantages thanks to using a sphere detector
in combination with LRA linear detectors can be enu-
merated as below.

i) Initial radius optimization can be avoided: One im-
portant issue of sphere detection is to choose a suitable
initial radius because the complexity of sphere detec-
tors is very sensitive to this initial radius [12]. In LRA
linear detectors, since the estimate is already known
from the LRA detection stage, the initial distance can
be set equal to the distance from the received signal
point to the estimated point.
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ii) Keep the additional complexity small by limit num-
ber: In order to keep the additional complexity small,
we can limit the number of symbols to be corrected by
a limit number. In particular, we use SD for only those
estimated symbol ŝ whose the number of elements
lying outside the signal constellation is smaller or equal
to the limit number. This number should be chosen
less than 2N as we treat the real and imaginary parts
separately. In our simulation, we set the limit number
equal to 4, 5, and 6 for LRA-ZF, and 3, 4, and 5 for the
LRA-MMSE detector. Figure 4 shows the quantization
error rates corresponding to different values of the limit
number. It is obvious that the quantization error rate is
proportional to the number of times that we need to
use the sphere detector. This also means that the rate
is proportional to the additional complexity. It is clear
from the figure that the additional complexity due to
sphere detection can be controlled if we use the limit
number. For example, if we apply 3 and 5 as the limit
numbers for SD-LRA-ZF and for SD-LRA-MMSE, the
frequency of using SD is only about 5% for SNR = 8dB.

5 List Quantization LRA Detectors

5.1 Principle of the List Quantization Method

It is known from the previous section that the esti-
mate of the transmit vector is given by

s̃ = Tû. (15)

Thus an error in elements of û will also cause an error to
s̃ due to nonzero elements of the corresponding column
of T . It is interestingly noted that when the error oc-
curs the element-wise differences between the optimum
quantization and rounding operation are mainly +1,
−1, ı or −ı.

Based on that, the idea of the proposed list quanti-
zation scheme is explained in brief as follows. Suppose
that error occurs in only one component ûi of u. Then,
the transmitted signal element is mainly expected to
be ûi = ûi + sign(R{ũi} − dR{ũi}c) or ûi = ûi +
ı sign(I{ũi} − dI{ũi}c). These candidate elements are
the nearest elements of component ûi in the real and
imaginary axes. If there are N transmit antenna ele-
ments, we will have 2N + 1 candidates of û, including
the original estimated û. Based on (15), we will have
a list of 2N + 1 candidate symbols s̃. By removing
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Figure 4. Quantization rate vs limiting number.

the candidate symbols whose elements lying outside
the constellation, we obtain a list of highly reliable
candidate symbols. Finally, the symbol nearest to the
received point is chosen as the solution of the following
equation

ŝ = arg min
s̃
‖y− Hs̃‖. (16)

Since LRA detection with the LLL-reduced matrix
usually gives a good estimate, we may assume that
there is only one erroneous element in ũ. Under this as-
sumption, we can generalize a list-quantization scheme
for the LRA detection as follows:

Step 1: Create 2N candidate symbols from the
estimate of LRA detection. For i from 1 to N, add 2
candidates to the list, changing element ûi:

ûi = ûi + sign(R{ũi} − dR{ũi}c)

and
ûi = ûi + ı sign(I{ũi} − dI{ũi}c).

Step 2: Remove those candidates lying outside the
signal constellation to achieve the list of candidates. If
the list is empty, quit and return the estimate of LRA
detection as the final result.

Step 3: Calculate the Euclidean distance from the
received point to the LRA-based estimate point, update
the distance for candidates in the list.

Step 4: Decide the best candidate which has the
shortest distance.

5.2 Complexity Analysis

In order to keep the additional complexity small, we
take a further look into the main step of the scheme,
i.e., the Euclidian distance calculation. In most cases,
the candidate symbols from the list are different from
the first LRA estimate symbols by only one or two
elements. Therefore, to calculate the new distance, we
only need to calculate the different part of the term
(y − Hŝ) inside the ‖.‖. For example, if ŝ1 and ŝ are



102 REV Journal on Electronics and Communications, Vol. 1, No. 2, April – June, 2011

different in the i-th element, the distance from ŝ1 can
be calculated as:

D1 = ‖yi − {h1 ŝ1(1) + ... + hN ŝ1(N) + hi ŝ1(i)}‖ (17)
= ‖{yi − h1 ŝ(1)− ...− hN ŝ(N)} − hi ŝ1(i)‖ (18)

where ŝ1(i) represents the ith element of ŝ1. We can see
that the term inside the bracket of the second equation
is already known when calculating the distance for ŝ.
The only calculation needed is the multiplication and
addition operations when calculating hi ŝ1(i) and the
norm. Moreover, we can represent the distance in the
real domain using new variables

H̄ =

[
<{H} −={H}
={H} <{H}

]
(19)

and the real-valued vectors

ȳ =

[
<{y}
={y}

]
, s̄ =

[
<{s}
={s}

]
. (20)

The real matrix H̄′ has the size m× n with m = 2M and
n = 2N. The real vectors ȳ and s̄ have size of 2N × 1.
Then the distance can be expressed in the real domain
as follows

D1 =‖{ȳi − h̄′
1 ¯̂s(1)− ...− h̄′

2N ¯̂s(2N)} − h̄′
i ¯̂s1(i)‖.

It is clear that when comparing with hi ŝ1(i), the number
of required multiplication and addition operations in
h̄′

i ¯̂s1(i) is reduced by half. For calculating the distance
for signal point ŝ, we need (2N + 1)2M multiplications
operations. However, to update the distance D1 for the
point ŝ1, we need only 4M multiplication operations.
This means that if the expected number of different
elements in one candidate symbol is n̄dif then in order
to update the distance we need 4n̄difM multiplication
operations. If the expected number of candidate sym-
bols in the list is N̄list, we need 4N̄listn̄difM multiplica-
tions, where n̄dif is the number of different elements in
average. Because step 2 makes the numbers N̄list and
n̄dif become quite small, the complexity is negligible.
For example, with 4 × 4 MIMO, at SNR= 10dB, the
number value is around 2 for LRA-ZF detection and 3
or 4 for LRA-MMSE detection (see Figure 10).

6 Simulation Results

In order to evaluate performance of the proposed
schemes, we have carried out simulations for a 4× 4
MIMO system. The channel was assumed to be the flat
Rayleigh fading with its complex gain generated using
complex Gaussian random variables with zero mean
and unit variance.

6.1 Results for SD-LRA

BERs of the LRA-ZF/MMSE and SD-LRA-ZF/MMSE
detectors are shown in Figures 5 and 6 for different
limiting numbers in a 4× 4 MIMO system. We use 4
and 5 for ZF, and 5 and 6 for MMSE, in this simulation.
In these figures, we compare BERs obtained using
conventional LRA and combined SD-LRA based on
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ZF and MMSE. It can be seen from the figures that
using the quantization error correction scheme, the BER
performance of the LRA-ZF and LRA-MMSE detectors
are improved steadily. The LRA-MMSE based on H̄ ′

does not benefit from using SD because there are almost
no quantization errors occured as we have already
discussed from the previous section. It is expected that
the additional complexity for SD-LRA-ZF and SD-LRA-
MMSE goes to nearly zero in the high SNR region.

6.2 Results for List Quantization LRA Detectors
BERs of the LRA-ZF/MMSE detectors with and with-

out list quantization are compared in Figure 7 for a
4× 4 MIMO system. It can be seen from the figure that,
when the list quantization scheme is used, the BER per-
formance of the LRA-ZF/MMSE detector is improved
significantly. At BER = 10−3, the list quantization LRA-
ZF detector can gain nearly 2.5 dB over the conventional
LRA-ZF. The performance gain of LRA-MMSE based on
H̄ is about 1.5 dB. It is clear that the LRA-MMSE based
on H̄ with list quantization can achieve near-ML BER
performance. We compare the list-quantization method
for two cases in Figure 8. First, a list of candidates
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Figure 7. BER performance of LRA-ZF/MMSE detection with and
without list-quantization method, MIMO 4× 4, QAM modulation.
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Figure 8. BER performance with and without list-quantization
method, MIMO 4 × 4, 4QAM modulation, list of candidates is the
combination of 1 or 2 elements.

is generated by changing only one element of the
estimate. Second, the list of candidates is generated
by changing one and two elements of the estimate.
The improvement is almost the same in both cases.
Therefore, it can be concluded that the list quantization
scheme will work efficiently enough by changing only
one element. That also supports the fact that in most
cases the error appears in one element in the estimate
û. From Figure 9, the impact of list quantization scheme
is even more clear with 16QAM modulation. The LRA-
ZF detector with list quantization even outperforms
the conventional LRA-MMSE. Similarly, in both cases
of changing 1 or 2 elements, we get almost the same
performance.

Finally, Figure 10 shows the averaged number of
candidate symbols in the list and the number of dif-
ferent elements. Based on the complexity analysis from
the previous section and the value in the figure, the
number of multiplication and addition operations is
just several multiples of number of transmit antenna
elements. In other words, it is comparable with the
complexity of calculation of the Euclidian distance for
one signal point. We can see that the average values
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Figure 9. BER performance of LRA-ZF/MMSE detection with and
without list-quantization method, MIMO 4× 4, 16QAM modulation,
list of candidates is the combination of 1 or 2 elements.
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Figure 10. The average size of the list and average number of
different elements, MIMO 4× 4, QAM modulation.

of the ndif, Nlist are small, especially in the high SNR
region. Therefore, if the number of antenna elements
is not so large, the additional complexity is small and
negligible. With the above results, it is reasonable to
conclude that the performance is significantly improved
for both LRA-ZF and LRA-MMSE detectors with very
low additional complexity.

7 Conclusion

In this paper we propose two methods to improve the
quantization step in LRA linear detectors. Firstly, we
have investigated the relation between detection error
and the quantization error of the LRA-ZF and LRA-
MMSE detectors. We have shown that there is a strong
relation between error in quantization and detection
error. Based on this observation, in order to reduce the
number of bit errors, we apply SD for high probably
erroneous estimate to achieve its optimal solution. The
SD-LRA detectors show the improvement over the LRA
linear detectors. By using a complexity limit number,
we can keep the complexity reasonable small, especially
at the high SNR.
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Secondly, we also proposed the list-quantization
method for LRA-linear detection. We have shown that
list-quantization can limit the error in quantization step
and, thus, reduce the detection error. Simulation results
showed that a significant improvement can be achieved
for both LRA-ZF and LRA-MMSE detectors. Especially,
the LRA-MMSE based on H̄ with list quantization can
get near-ML BER performance. The proposed quantiza-
tion method will be more efficient with a higher constel-
lation size. The simulation result shows that the method
is efficient enough to generate the list of candidates by
changing only one element of the estimate. We also
calculate the complexity needed for list-quantization
scheme. We showed that the additional complexity is
just several multiples of number of transmit antenna
elements. Thus, additional complexity will be negligi-
ble, especially in high SNR range.
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