
REV Journal on Electronics and Communications, Vol. 5, No. 3–4, July–December, 2015 85

Regular Article

Exploiting Context-Aware Event Data for Fault Analysis
Cuong Huy Nguyen, Ha Manh Tran, Quy Tran Vu, Synh Viet Uyen Ha

School of Computer Science and Engineering, International University, Ho Chi Minh City, Vietnam

Correspondence: Tran Manh Ha, tmha@hcmiu.edu.vn
Communication: received 22 December 2015, revised 10 July 2016, accepted 26 July 2016
Online publication: 10 October 2016, Digital Object Identifier: 10.21553/rev-jec.139
The associate editor coordinating the review of this article and recommending it for publication was Prof. Nguyen Linh-Trung.

Abstract– Fault analysis in communication networks and distributed systems is a difficult process that heavily depends
on system administrator’s experience and supporting tools. This process usually requires analytic techniques and several
types of event data including log events, debug messages, trace obtained from these systems to investigate the root cause of
faults. This paper introduces an approach of exploiting context-aware data and classification technique for improving this
process. This approach uses both event data and context-aware data including CPU load, memory, processes, temperature,
status to train a decision tree, and then applies the tree to assess suspected events. We have implemented and experimented
the approach on the OpenStack cloud computing system with the Hadoop computing service and MELA event collection
system. The experimental results reveal that the accuracy score of the approach reaches 85% on average. The paper also
includes detailed analysis for the results.

Keywords– Context-Aware Data, Decision Tree, Fault Analysis, Fault Detection, Cloud Computing.

1 Introduction

The rapid development of network and storage tech-
nology results in the formation of large and complex
communication networks and distributed systems that
provision computing and storage service solutions for
enterprises and individuals, such as data centers, cloud
computing systems, content delivery networks, soft-
ware defined networks, etc. These systems share the
common characteristic of associating a large number
of network devices and servers with the diversity of
configuration and service. The study of Armbrust et
al. [1] has emphasized 10 obstacles for building and
managing large and complex cloud computing systems.
Several obstacles belong to fault management including
such as fault detection and resolution in large-scale
distributed systems, services monitoring, performance
monitoring.

Detecting faults occurring on large and complex sys-
tems heavily depends on supporting tools and systems
administrators. Supporting tools for event monitoring
and correlation filters and reports a large number of
events to system administrators who then perform
investigation steps to detect faults and produce fault
reports. Due to the increasing size of event datasets that
can easily reach gigabytes per day, the former process
faces a problem of efficiency, while the later process is
a human driven process that consumes much time and
effort. There is a demand of developing an approach
that can exploit events obtained from these systems and
detect suspected faults for system administrators.

Among several studies of event analysis, the study
of Tran et al. [2] has applied the classification and

regression decision trees (CART) [3] for evaluating the
severity level of events automatically, thus enabling
system administrators to decide whether further steps
are needed for detecting faults. The approach focuses
on constructing a CART decision tree based on the
features of existing events and then using the tree
to determine the severity level of occurring events.
However, this study uses software bug datasets and bug
features obtained from bug tracking systems (BTSs) to
build decision trees. The bug dataset is less related to
log events due to the lack of event features that can
cause the inaccuracy of event classification. We have
proposed an approach of exploiting context-aware data
associated with event log data for fault detection. The
context-aware data also considered as the metric data
specifies the state of a system, such as processor state,
memory state, storage state, process state, etc. This
approach also enriches runtime monitoring data by cap-
turing events at multiple levels when fault conditions
are fulfilled. The approach then uses this dataset as
input to construct a decision tree for event classification.
The supplement of context-aware data and multi-level
event data can improve the accuracy of classifying the
severity level of occurring events. The contribution is
thus threefold:

• Proposing an approach of using context-aware data
for fault detection on cloud computing systems;

• Applying classification technique to improving the
accuracy of event classification;

• Providing the performance evaluation of the ap-
proach on the OpenStack cloud computing plat-
form with the Hadoop computing service and
MELA event collection system [4].

1859-378X–2015-3405 c© 2015 REV

86 REV Journal on Electronics and Communications, Vol. 5, No. 3–4, July–December, 2015

The rest of the paper is structured as follows. Sec-
tion 2 includes an overview of context-aware data, and
presents some existing approaches of context-aware
data analysis for fault detection. Section 3 introduces a
fault analysis system that can be applied to detect faults
on cloud computing systems. This section describes the
detail of system architecture and components. Section 4
proposes an approach of exploiting log event data
and context-aware data for fault analysis. This section
describes a method to enrich monitoring data from the
existing tools and exploit event features. It also includes
a prototyping implementation of the approach. Several
experiments in Section 5 report the performance of the
approach on various datasets obtained from the real
system before the paper is concluded in Section 6.

2 Background

Many research studies have focused on context-aware
computing in the literature. Schilit and Theimer [5]
have first introduced the context-aware term to refer to
context as location, identity of nearby people and ob-
jects, and changes to those objects. This definition of the
context is difficult to apply to an application scenario.
The study [6] defines context as any information that
can be used to characterize the situation of an entity.
An entity is a person, place, or object that is consid-
ered relevant to the interaction between a user and an
application. This definition makes it easier for an appli-
cation developer to enumerate the context for a given
application scenario. The study also defines a system
as context-aware if it uses context to provide relevant
information and services to the user, where relevancy
depends on the user’s task. Context awareness has been
applied to many area in the social awareness, in health
care, in entertainment and in computer application.
Hong et al. [7] has summarized research activities in
context-aware systems and provided suggestions for
system implementations. The study of these authors [8]
has proposed an agent based approach for predicting
user preferences and providing personalized services.
This approach has exploited the relationships between
user’s profile and services on context-aware computing.

Several research studies have applied context-aware
computing to detecting faults on large communication
networks and distributed systems. Benerecetti et al. [9]
has presented four steps of processing context infor-
mation in distributed systems: capture, inference, dis-
tribution and consumption. These steps can be applied
to analyze actual applications. The study [10] proposes
a nine-state model of adaptive behaviour to enable
fault detection in applications running on mobile de-
vices. This model detects faults caused by erroneous
adaptation logic, and asynchronous update of context
information, which leads to inconsistencies between the
external physical context and internal representation
within an application. The study [11] proposes a dy-
namic adaptation model that offers increased expres-
sive power to compose complex adaptation rules, and
guarantees soundness in fault detection. In addition,

the model includes an incremental rule evaluation tech-
nique to cater for context-aware applications, such that
it can efficiently handle environmental changes in fault
detection.

The study [4] introduces an elasticity analytic tech-
nique for cloud services. It also defines the concepts
of elasticity space and elasticity pathway, and applies
these concepts in evaluating the elasticity of cloud
services. First, the elasticity space is used for capturing
the elastic behaviour of cloud services. Second, the
elasticity pathway characterizes the service’s evolution
through the elasticity space, and can be used for pre-
dicting the service’s behaviour. This study presents a
mechanism for constructing multi-level service mon-
itoring snapshots, over which it applies techniques
for determining the elasticity space and pathway. The
MELA tool as the result of this study is an open source
tool for monitoring and analysing the elasticity of cloud
services. It contains a core MELA service, and data
collector nodes. A data collector node is a customis-
able component that gathers, from existing monitoring
solutions, e.g., Ganglia, event data associated with a
dependency model level or monitored element, e.g.,
response time or throughput for the event processing
service topology, and sends it to the MELA service for
processing and analysis. An important MELA feature is
the linking of all levels, defining the service structure,
applying the metric composition rules to monitored
elements at each level in order to provide composite
monitoring snapshots from data collected from the data
collector nodes for analysing elasticity space.

3 Fault Detection System

Network monitoring systems usually generate a large
number of log events that can be difficult to be pro-
cessed manually, thus causing the difficulty of detecting
faults. Using supporting tools to filter trivial events,
system administrators also spend much time and effort
investigating the correctness and severity of suspected
events that can result in fault reports. A fault detection
system aims at assisting system administrators in cor-
relating events efficiently using filtering techniques and
evaluating the severity level of suspected events using
decision trees. This system can be applied for detecting
faults on cloud computing systems.

3.1 System Architecture

The system architecture shown in Figure 1 con-
tains a P2P network characterized by self-organization
and scalability in architecture and efficiency in con-
tent distribution. This network of peers also facilitates
the search and sharing of data because queries can
be processed by groups of peers on large domain-
specific databases, thus avoiding high computing cost
on centralized servers. Each cloud system contains a
fault manager working as a peer for monitoring. Fault
managers connect together through the Gnutella pro-
tocol [12] to form a fault detection system. A fault

C. H. Nguyen et al.: Exploiting Context-Aware Event Data for Fault Analysis 87

Figure 1. The architecture of the fault detection system [2].

manager needs sufficient storage, bandwidth and pro-
cessing power to perform several complicated opera-
tions, such as search and share fault resources, receive
update on fault datasets, monitor and evaluate sus-
pected events. Our previous study [2] has proposed
the fault detection system in communication networks
and distributed systems. While the previous study uses
software bug reports to evaluate suspected events, this
study aims at exploiting both context-aware data and
event to evaluate suspected events.

The fault manager contains several components
shown in Figure 2: fault monitor, fault checker, fault
updater, fault database and peer handler. The fault
monitor uses monitoring tools such as Nagios [13],
Cacti [14], Ntop [15], Ganglia [16] to obtain a huge num-
ber of log events from cloud systems. Log events are
related to several functional areas of services, networks,
servers, clusters. This component also cooperates with
the MELA system to obtain context-aware event data.
It contains an efficient event correlation mechanism to
filter correlated events. The fault checker uses a clas-
sification method to assess the severity of the filtered
events sent by the fault monitor. This method obtains
fault datasets from the local fault database and other
fault managers through the P2P network to construct a
decision tree. This component reports a list of suspected
events to system administrators for additional actions.
The peer handler is responsible for communicating
among peers. This component searches and shares
fault reports among peers by exchanging query and
queryhit messages. The fault updater contains fault
report crawlers that connect to multiple fault resources
such as bug tracking systems, archives, forums, vendor
knowledge bases to update the fault database.

3.2 Event Correlation and Inspection
We have applied the ASF-BDT method for event

correlation [17] and the CART decision tree for event
inspection [2]. The correlation method contains mul-
tiple filtering processes: starting with log event data,
applying with simple and complex filtering methods,
finally returning event correlated data. The log event
data usually contains a large number of related and
duplicated events. The method thus eliminates du-
plicated and related events efficiently with low time

Figure 2. The component communication of the fault manager.

consumption. The inspection method contains a binary
recursive partitioning process to build a decision tree.
This process starts with the root node where data are
split into two children nodes and each of the children
node is in turn split into grandchildren nodes. The
process runs recursively until no further splits are
possible due to lack of data and the tree reaches a
maximal size. This tree is then used for evaluating the
severity level of suspected events.

4 Context-Aware Data Analysis

As the fault detection system is described above, we
propose a data analysis framework for cloud systems.
This proposal monitors and collects event data from
cloud services running on the Hadoop cluster and
the OpenStack platform. Structuring and analysing the
monitoring data are then performed on the MELA
server before event correlation and classification. Fig-
ure 3 plots the detailed architecture of the Open-
Stack cloud system monitored and analysed by the
MELA system. The cloud system is built based on
RedHat OpenStack platform. It includes 8 nodes that
connect together through the local area network. The
controller node provides multiple services including
identity service (keystone), computing service (nova),
web interaction server (horizon), image service (glance)
and data processing service (sahara). The network node
provides centralized networking control (neutron) for
all the computing nodes and virtual machines. It runs
various neutron agents that control layer-3 networking
functionality in the cluster. The storage nodes provide
storage service (swift) that can store, retrieve, and delete
objects stored on local devices. These objects are stored
using a path derived from the object’s name and time-
stamp. The computing nodes refer to an OpenStack
server that runs a KVM hypervisor. It is responsible
for running virtual machine instances.

Sahara is the OpenStack project that provides a scal-
able data processing service and associated manage-
ment technologies for provisioning Hadoop clusters.
We deploy the Hadoop cluster by specifying several
parameters like Hadoop version with vanilla plug-in
version 2.4.1, cluster topology with 1 master node and 3

88 REV Journal on Electronics and Communications, Vol. 5, No. 3–4, July–December, 2015

Controller Node Network Node

Storage Nodes Computes Nodes

Keystone
Nova

Horizon
Glance
Sahara

Swift
Storage

Neutron
Server

Nova Compute
Neutron Client

Hadoop Cluster

Master Node Worker Nodes

Ganglia ServerMela Server

deploy Hadoop cluster

collect data

structure and analysis data

Figure 3. Context-aware data analysis framework for cloud systems.

worker nodes. These nodes are deployed as instants
running on 4 compute nodes. After filling all the pa-
rameters, Sahara automatically operates on the cluster.
MELA is a tool for structuring and enriching event log
data collected from existing monitoring solutions. We
need monitoring services to collect the data from all the
nodes in the Hadoop cluster as the source of MELA. In
this study, we also use Ganglia servers to collect metric
data of the Hadoop cluster. The metric data or context-
aware data includes 6 metrics: CPU usage, disk usage,
load average, memory usage, network throughput and
running processes that specify the state of the cluster
nodes.

4.1 Data Collection
MELA data contains monitoring snapshots that are

the result of applying cross-layer metric composition
rules to monitoring data collected from Ganglia servers
and log events data for specific elements. As shown
in Figure 3, Ganglia servers monitor and collect 6-
metric data from all the nodes in the Hadoop cluster
including 1 master node and 3 worker nodes, while log
events are collected by the MELA server and structured
into cloud service model. Some composition rules are
applied to this model to create monitored snapshots,
such as calculate average CPU usage or summarize
running processes of all the worker nodes.

MELA data is exported from the MELA server in
XML format file with a complex structure. It also con-
tains several trivial fields such as freshness, hashCode.
We use XMLStarlet [18], a set of command line XML
utilities, to browse, query, transform, validate, search
and edit the tree structure of XML documents, and
then extract the 6-metric data from the raw data. A

MELA log report contains 6 features corresponding to 6
metrics. Since it only contains metrics, it misses the
severity feature. We define the severity feature based
on the average CPU usage with error, warn and info
level, e.g., an error occurs if the average CPU usage is
between 85% and 100% and a warn occurs if the average
CPU usage is between 70% and 84%.

We have used a MELA dataset with 100.000 log
reports for experiments, the dataset is collected with
an interval of 5 seconds to capture changes on the
system, but it also produces many duplications on idle
time. It is essential to reduce duplicated reports in the
MELA dataset before constructing a decision tree. We
have used the uniq build-in Linux utility to remove
duplicated reports for convenience and efficiency. It
only takes a few minutes to reduce the dataset to 27.000
log reports.

4.2 Cloud Service Model

In the complex cloud system, cloud services, e.g.,
network service or storage service, can run on multiple
distributed virtual machines (VMs). Depending on the
service requirement of storage space and performance
improvement during run-time, the cloud controller can
re-scale the service by adding or removing VMs to fulfil
the requirement. The existing monitoring tools, such
as Ganglia, focus on monitoring data for an individual
virtual machine that can be modified during service
execution, it is thus inefficient to support scalability for
the controller nodes. Moreover, the users of the cloud
services can be interested in various monitoring data
at multiple levels, such as average CPU usage or total
network bandwidth on specific services.

C. H. Nguyen et al.: Exploiting Context-Aware Event Data for Fault Analysis 89

Cloud Service

Service Topology

Virtual Machine

Service
Unit

Service Topology

Virtual Machine Virtual Machine

Virtual Machine Virtual Machine

Service
Unit

Service
Unit

Service
Unit

Service
Unit

Consist of

Consist ofConsist of

Figure 4. Cloud service model.

We need to collect, store and integrate monitoring
data into a model in which service unit is the core
monitored entity, not only virtual machine. A cloud
service model is defined to structure monitoring data
and analyse cloud services from the cloud service level
to the virtual infrastructure level. This model contains 4
levels as shown in Figure 4: cloud service, service
topology, service unit and virtual machine. A cloud ser-
vice contains service topologies; each service topology
includes service units deployed on virtual machines. A
service unit is the core monitored element of a cloud
service that runs on virtual machines, either standalone
or along with other service units. A service topology
logically groups related service units.

Listing 1 presents an example of cloud service in
XML format. Each monitored element contains id and
level properties. The level property receives values of
SERVICE, SERVICE_TOPOLOGY, SERVICE_UNIT and
VM. If the element level is VM, the id is the IP address
of the VM.

Listing 1. An Example of Cloud Service in XML Format
<MonitoredElement id=" WorkerTopology "

l e v e l ="SERVICE_TOPOLOGY">
<MonitoredElement id=" MasterNode "

l e v e l ="SERVICE_UNIT">
<MonitoredElement id=" 1 0 . 0 . 2 . 1 7 6 "

l e v e l ="VM"/>
</MonitoredElement>
<MonitoredElement id=" WorkerNode "

l e v e l ="SERVICE_UNIT">
<MonitoredElement id=" 1 0 . 0 . 2 . 1 7 7 "

l e v e l ="VM"/>
<MonitoredElement id=" 1 0 . 0 . 2 . 1 7 8 "

l e v e l ="VM"/>
<MonitoredElement id=" 1 0 . 0 . 2 . 1 7 9 "

l e v e l ="VM"/>
</MonitoredElement>

</MonitoredElement>
</MonitoredElement>

4.3 Cross-Layered Metric Composition Rule
Monitoring data is captured from each monitored el-

ement to create monitoring snapshots at specific points
of time. Monitoring snapshot only captures metrics
such as responseTime, CPUUsage, throughput from
individual VMs. It does not provide the performance
state of whole cloud service or the fulfilled fault re-
quirement. Cross-layered metric composition technique
creates new multiple level metrics by associating met-
rics from VM level to upper service level. Listing 2
presents an example of metric composition rule in XML
format.

Listing 2. An Example of Metric Composition Rule in XML Format
<Resul t ingMetr ic type="RESOURCE"

measurementUnit="%" name=" cpuUsage
"/>

<Operation value=" 100 " type="ADD">
<Operation value="−1" type="MUL">

<Operation MonitoredElementLevel
="VM" type="AVG">
<ReferenceMetr ic type="

RESOURCE" measurementUnit
="%" name=" cpu_idle "/>

</Operation>
</Operation>

</Operation>
</CompositionRule>

A composition rule includes a target monitored
element that applies the rule, a resulting metric

90 REV Journal on Electronics and Communications, Vol. 5, No. 3–4, July–December, 2015

Table I
Metric Composition Operations

6 REV Journal on Electronics and Communications: Article scheduled for publication in Vol. 5, No. 3–4, July–December, 2015

Table I
Metric Composition Operations

Operation Description
ADD Add a metric value to other metric value
DEL Subtract a metric value from other metric value
MUL Multiple a metric value with other metric value
DIV Divide a metric value from other metric value
AVG Compute the average value of many metric values
SUM Sum many metric values
MAX Compute the maximum value from many metric values
MIN Compute the minimum value from many metric values
SET Assign a value to a metric value
KEEP Return a metric value or the result of another operation

ric defines the resulting data of the rule including type,
measurement unit and name. Finally, the list of opera-
tions is applied at the specified MonitoredElementLevel.
Note that the result of the lower operation is the input
of the higher operation in the composition rule. Table I
shows operations can be used in the composition rule.

4.4 Monitoring Data Structure and Enrichment
User requirement for monitoring services can be dif-

ferent from monitoring snapshot that captures metrics,
e.g., a monitoring snapshot includes throughput over
VM, while requirement targets performance over the
whole service. Using the above metric composition
rule, metrics collected from the VM level are associ-
ated with the upper service levels, and therefore new
metrics are created. First, the level of the new metric
is specified by TargetMonitoredElementLevel that is a
value of VM, VIRTUAL_CLUSTER, SERVICE_UNIT,
SERVICE_TOPOLOGY, or SERVICE according to the
cloud service model. The id of the target monitored
element is specified by TargetMonitoredElementID. Data
of the new metric must be specified using Resulting-
Metric including name, measurement unit, and type
(such as performance or resource). Then, a cascading
list of operations is defined; each operation contains a
type defined in Table I, and ReferenceMetric indicating
the metric over which the operation is applied. If an
operation applies to metrics from a specific monitored
element, the id is specified with SourceMonitoredElemen-
tID.

5 Evaluation

We have configured the OpenStack platform [19] to
provide an infrastructure as a service for experiments.
The platform contains 10 nodes equipped with Intel
Core i5 2.8 GHz processor, 4 GB RAM and Redhat
Linux operating system. The cloud controller node pro-
vides several OpenStack services including computing,
dashboard, object storage, image and data processing.
The network node provides centralized networking
control for all the computing nodes running a KVM
hypervisor [20]. The Hadoop [21] cluster instantiated
across multiple computing nodes accepts several com-
puting tasks and generates log datasets. Ganglia [16]
obtains monitoring data from Hadoop nodes while

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

N
um

be
r

of
 E

ve
nt

 (
X

10
00

0)

Day

Events

Figure 5. Data collection for a period of 12 days.

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

T
im

e
(m

ili
 s

ec
on

d)

Number of Records (x1000)

Execution time

Figure 6. Time consumption for constructing decision trees over
various datasets.

MELA arranges the data on cloud service model and
also composes monitored snapshots by composition
rules.

We have configured Ganglia to collect 6 types of
Ganglia metrics for evaluation: CPU usage, disk usage,
load average, memory usage, network throughput and
running processes. These metrics are collected from all
the worker nodes and then associated with log events
to present monitored snapshots by specific composition
rules, such as measuring average CPU and memory
usage, or checking running processes on worker nodes.
Since the dataset only contains metrics without the
severity feature, we have pre-defined the severity fea-
ture based on the average CPU usage of the whole
system with error, warn and info levels. We have created
several failure scenarios while executing computing
tasks to obtain log data. Some typical scenarios in-
clude submitting several jobs in parallel to increase the
workload of the cluster or manually interrupting few
worker nodes to cause the failure of the job assignment.
Figure 5 reports the dataset collected by a period of
12 days. The data records stably increase everyday and
reach 100.000 records on the last day. We use this log
dataset for evaluating the performance of CART tree.

The first experiment measures time consumption for
constructing decision trees over various datasets. Fig-
ure 6 shows that time consumption linearly increases

that is the output of the rule, and several opera-
tions. First, CompositionRule defines the level (SER-
VICE, SERVICE_TOPOLOGY, SERVICE_UNIT, VIR-
TUAL_CLUSTER, and VM) in TargetMonitoredEle-
mentLevel that the rule is applied. Second, ResultingMet-
ric defines the resulting data of the rule including type,
measurement unit and name. Finally, the list of opera-
tions is applied at the specified MonitoredElementLevel.
Note that the result of the lower operation is the input
of the higher operation in the composition rule. Table I
shows operations can be used in the composition rule.

4.4 Monitoring Data Structure and Enrichment
User requirement for monitoring services can be dif-

ferent from monitoring snapshot that captures metrics,
e.g., a monitoring snapshot includes throughput over
VM, while requirement targets performance over the
whole service. Using the above metric composition
rule, metrics collected from the VM level are associ-
ated with the upper service levels, and therefore new
metrics are created. First, the level of the new metric
is specified by TargetMonitoredElementLevel that is a
value of VM, VIRTUAL_CLUSTER, SERVICE_UNIT,
SERVICE_TOPOLOGY, or SERVICE according to the
cloud service model. The id of the target monitored
element is specified by TargetMonitoredElementID. Data
of the new metric must be specified using Resulting-
Metric including name, measurement unit, and type
(such as performance or resource). Then, a cascading
list of operations is defined; each operation contains a
type defined in Table I, and ReferenceMetric indicating
the metric over which the operation is applied. If an
operation applies to metrics from a specific monitored
element, the id is specified with SourceMonitoredElemen-
tID.

5 Evaluation

We have configured the OpenStack platform [19] to
provide an infrastructure as a service for experiments.
The platform contains 10 nodes equipped with Intel
Core i5 2.8 GHz processor, 4 GB RAM and Redhat
Linux operating system. The cloud controller node pro-
vides several OpenStack services including computing,
dashboard, object storage, image and data processing.
The network node provides centralized networking

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

N
um

be
r

of
 E

ve
nt

 (
X

10
00

0)

Day

Events

Figure 5. Data collection for a period of 12 days.

control for all the computing nodes running a KVM
hypervisor [20]. The Hadoop [21] cluster instantiated
across multiple computing nodes accepts several com-
puting tasks and generates log datasets. Ganglia [16]
obtains monitoring data from Hadoop nodes while
MELA arranges the data on cloud service model and
also composes monitored snapshots by composition
rules.

We have configured Ganglia to collect 6 types of
Ganglia metrics for evaluation: CPU usage, disk usage,
load average, memory usage, network throughput and
running processes. These metrics are collected from all
the worker nodes and then associated with log events
to present monitored snapshots by specific composition
rules, such as measuring average CPU and memory
usage, or checking running processes on worker nodes.
Since the dataset only contains metrics without the
severity feature, we have pre-defined the severity fea-
ture based on the average CPU usage of the whole
system with error, warn and info levels. We have created
several failure scenarios while executing computing
tasks to obtain log data. Some typical scenarios in-
clude submitting several jobs in parallel to increase the
workload of the cluster or manually interrupting few
worker nodes to cause the failure of the job assignment.
Figure 5 reports the dataset collected by a period of
12 days. The data records stably increase everyday and
reach 100.000 records on the last day. We use this log
dataset for evaluating the performance of CART tree.

The first experiment measures time consumption for
constructing decision trees over various datasets. Fig-
ure 6 shows that time consumption linearly increases
as the size of the dataset increases. It takes approxi-
mately 280 ms to build a decision tree for the dataset
of 100.000 records. Note that the log dataset usually
contains millions of log records, causing a large tree
with high time consumption. Reducing processing time
is necessary. In addition, this dataset possibly contains
duplicated records that need to be eliminated to im-
prove performance. By filtering out duplicated records,
the dataset contains 27.000 records that takes 60 ms to
build a decision tree approximately.

The second experiment evaluates the accuracy of the
decision tree. The dataset is divided into two training

C. H. Nguyen et al.: Exploiting Context-Aware Event Data for Fault Analysis 91

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

T
im

e
(m

ili
 s

ec
on

d)

Number of Records (x1000)

Execution time

Figure 6. Time consumption for constructing decision trees over
various datasets.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 5 10 15 20 25 30

A
cc

ur
ac

y
S

co
re

Number of Records (x1000)

Accuracy

Figure 7. The accuracy score of the decision tree.

and testing datasets. The training dataset is used to
build the decision tree, and the testing dataset is used to
assess the accuracy of classification. We have used the
decision tree to classify the severity level of a record
and make a list of the classified severity levels for
the testing dataset (MELA records). This list is then
compared with the list of the correct severity levels of
the testing dataset. Accuracy score is calculated based
on the number of matching severity levels in the two
lists.

Figure 7 reports the accuracy score of the decision
tree. Accuracy score starts with 0.86 at 5.000 records,
slowly increases when the size of the dataset increases,
and reaches 0.93 at 27.000 records. An observation
reveals that providing more log records collected from
the real system can make the decision tree larger and
more accurate. The previous study [2] has also built
the decision tree based on log events and obtained the
maximum accuracy score of 0.71. Our method consid-
ers both log events and context-aware log records for
improving accuracy.

The third experiment evaluates the quality of deci-
sion tree using precision and recall. Precision presents
the exactness of a classifier, while recall presents the
completeness of a classifier. A decision tree with high
recall but low precision returns many results of a
specific class, but most of the results are incorrect when

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

P
re

ci
si

on
 a

nd
 R

ec
al

l S
co

re

Number of Records (x1000)

Precision
Recall

Figure 8. The precision and recall score of the decision tree.

compared with testing dataset. Otherwise, with high
precision but low recall, the decision tree returns few
results, but most of the results are correct. A decision
tree with high precision and high recall returns many
results classified correctly.

Figure 8 shows the precision and recall score of the
decision tree. The precision and recall scores are con-
siderably high for the dataset. While the precision score
fluctuates slightly, the recall score remains stably as the
size of the dataset increases. The average precision and
recall scores are 0.9 and 0.85, respectively. However, it
is essential to evaluate the approach on large datasets.

6 Conclusion

We have proposed an approach of using context-aware
data and classification technique for evaluating the
severity level of the suspected log events. This approach
aims at assisting system administrators in detecting
faults from a large number of log events generated
by large and complex communication networks and
distributed systems.

We have implemented and configured the approach
on the OpenStack cloud computing platform with the
Hadoop computing service and MELA system. The
approach applies monitoring data to the cloud ser-
vice model, then uses cross-layer composition rules to
extract and enrich monitoring snapshots at multiple
levels when fault conditions are fulfilled. This data is
considered as input to construct the CART decision
tree for evaluation. The system administrators then take
additional actions on a certain set of the suspected
events that may result in serious failures. We have
evaluated the performance of the proposed approach
and CART decision tree on both log event data and
context-aware data collected from the cloud system.
The experimental results show that this approach has
achieved the high accuracy score of 85% compared to
the previous approach [2] with the accuracy score of
71% on average.

Future work focuses on extending the approach to
large datasets with various context-aware data.

92 REV Journal on Electronics and Communications, Vol. 5, No. 3–4, July–December, 2015

Acknowledgements

This research activity is funded by Vietnam National
University, Ho Chi Minh City (VNU-HCM) under the
type-B project of “Augmenting fault detection services
on large and complex network systems using context-
aware data analysis” in 2017.

References

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia, “A view of cloud computing,” Commu-
nications of the ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010.

[2] H. M. Tran, S. Van Nguyen, S. T. Le, and Q. T. Vu, “Fault
Data Analytics Using Decision Tree For Fault Detection,”
in Proceedings of the 2nd International Conference on Future
Data and Security Engineering (FDSE 2015). Springer-
Verlag, 2015.

[3] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,
Classification And Regression Trees. Monterey, CA, USA:
Chapman & Hall/CRC, New York, 1984.

[4] D. Moldovan, G. Copil, H. L. Truong, and S. Dustdar,
“MELA: Monitoring and Analyzing Elasticity of Cloud
Services,” in Proceedings of the 5th International Conference
on Cloud Computing. IEEE Press, 2013, pp. 80–87.

[5] B. Schilit and M. Theimer, “Disseminating Active Map
Information to Mobile Hosts,” IEEE Network, vol. 8, no. 5,
pp. 22–32, 1994.

[6] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith,
and P. Steggles, “Towards a Better Understanding of
Context and Context-Awareness,” in Proceedings of the
1st International Symposium on Handheld and Ubiquitous
Computing (HUC’99). London, UK: Springer-Verlag,
1999, pp. 304–307.

[7] J. Hong, E. Suh, and S. Kim, “Context-aware systems: A
literature review and classification,” Expert Systems with
Applications, vol. 36, no. 4, pp. 8509–8522, May 2009.

[8] J. Hong, E. Suh, J. Kim, and S. Kim, “Context-aware sys-
tem for proactive personalized service based on context
history,” Expert Systems with Applications, vol. 36, no. 4,
pp. 7448–7457, May 2009.

[9] M. Benerecetti, P. Bouquet, and M. Bonifacio, “Dis-
tributed context-aware systems,” Human-Computer Inter-
action, vol. 16, no. 2, pp. 213–228, Dec. 2001.

[10] M. Sama, D. Rosenblum, Z. Wang, and S. Elbaum,
“Model-based Fault Detection in Context-aware Adap-
tive Applications,” in Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of Software
Engineering. New York, USA: ACM, 2008, pp. 261–271.

[11] C. Xu, S. Cheung, X. Ma, C. Cao, and J. Lu, “Detecting
Faults in Context-Aware Adaptation,” International Jour-
nal of Software and Informatics, vol. 7, no. 1, pp. 85–111,
2013.

[12] “Gnutella Protocol Specification version 0.4,” http://rfc-
gnutella.source-forge.net/developer/stable/index.html,
2001, last access in Nov. 2015.

[13] “Nagios Network Surveillance Tool,” http://www. na-
gios.org/, 1999, last access in Nov. 2015.

[14] “Cacti - The complete network graphing solution,”
http://www.cacti.net/, 2004, last access in Nov. 2015.

[15] “High performance network monitoring solution,”
http://www.ntop.org/, 1998, last access in Nov. 2015.

[16] “Ganglia Monitoring System,” http://ganglia.info/,
2000, last access in Nov. 2015.

[17] H. M. Tran, A. V. T. Tran, S. T. Le, and S. V. Nguyen,
“Improving Adaptive Semantic Filtering with Bounded
Dynamic Threshold for Log Data Analytics,” Journal of
Science and Technology, Vietnamese Academy of Science and
Technology, 2014.

[18] “XMLStarlet Command Line XML Toolkit,” http:// xml-
star.sourceforge.net/, 2016, last access in Mar. 2016.

[19] “OpenStack Cloud Software,” http://www.openstack.
org/, 2010, last access in Nov. 2015.

[20] “Kernel based virtual machine,” http://www.linux-
kvm.org, last access in Nov. 2015.

[21] “Apache Hadoop Project,” http://hadoop.apache.org/,
2005, last access in Nov. 2015.

Cuong Huy Nguyen is an IT engineer and
nework administrator of Renesas Design Viet-
nam Company. He received his bachelor de-
gree of information technology in 2004 and his
master degree of information technology in
2016 from the International University - Viet-
nam National University. His research inter-
ests include distributed computing, big data
analytics and network management.

Ha Manh Tran is a lecturer of the School of
Computer Science and Engineering at Interna-
tional University - Vietnam National Univer-
sity. He received his master degree of com-
puter science in 2004 from the University of
Birmingham, United Kingdom and his doc-
toral degree of computer science in 2009 from
Jacobs University Bremen, Germany. His re-
search interests include distributed comput-
ing, big data analytics, information retrieval
and network management.

Quy Tran Vu is a research assistant of School
of Computer Science and Engineering at Inter-
national University - Vietnam National Uni-
versity. He received his bachelor degree of
computer science in 2016 from the Interna-
tional University - Vietnam National Uni-
versity. His research interests include ma-
chine learning, distributed system and net-
work management.

Synh Viet Uyen Ha is a lecturer of the
School of Computer Science and Engineering
at International University - Vietnam National
University. He received his master degree of
computer science in 1999 from University of
Natural Science, Vietnam and his doctoral de-
gree of computer science in 2010 from School
of Information and Communication Engineer-
ing, Sungkyunkwan University, Korea. His
research interests include machine learning,
computer vision, big data processing.

