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Abstract– This paper proposes a novel image enhancement approach using advanced texture maps together with isotropic or
directional fuzzy filters. Texture maps of original images or compressed images are estimated and then are used to control
the filter’s strength. The aim is to reduce blocking and ringing artifacts while preserving the sharpness of compressed
images. The spread parameter of fuzzy filters plays an important role to control deblocking and deringing process. Thus,
the spread parameter is optimized to obtain the highest image quality. The proposed algorithm also simultaneously combines
deblocking and deringing schemes to reduce the algorithm’s complexity. Simulation results show that the proposed fuzzy
filtering scheme achieves the best visual quality, SSIM, and PSNR values among existing methods.
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1 Introduction

Rapid image and video transmission growth in mobile
data and internet traffic has led to an inevitable requi-
rement of compressing images and videos to reduce
storage space and channel bandwidth. The ITU-T Vi-
deo Coding Experts Group (VCEG) and the ISO/IEC
Moving Picture Experts Group (MPEG) standardization
organizations introduce many block-based compression
standards such as JPEG, MPEG, H.26x, etc. to meet
this requirement. However, block-based compression
suffers from undesirable blocking, ringing, mosquito
and flickering artifacts [1], especially at low bit rates.
When blocks are compressed independently, correla-
tion of pixels at the block boundaries along vertical
and horizontal directions may be broken. This causes
blocking artifacts. Beside that, ringing artifacts occur
due to coarse quantization and truncation of high-
frequency Discrete Cosine Transform (DCT) coefficients
and mostly happen along strong edges.

Coding artifacts cause uncomfortableness to viewers’
human visual system (HVS). Hence, blocking and rin-
ging artifact removal in compressed images becomes
a very essential task. It can be considered as a qua-
lity enhancement process. In general, image quality
enhancement techniques can be implemented either at
encoding side or decoding side. At the encoding side,
each method requires the scheme of its own such as
DCT/SQ coding method [2], the Lapped Orthogonal
Transform (LOT) [3], etc. One disadvantage of these
methods is that they are not compatible to the exis-
ting video or image compression standards. Therefore,
postprocessing techniques at the decoding side have

received much more attention due to its compatibility
with existing compression standards.

Most of previous postprocessing methods mainly
base on filtering, both in the pixel domain and the
tranform domain. The authors in [4] use low pass filters
to reduce the blocking artifacts. However, because the
high frequency components are eliminated during filte-
ring, processed images are blurred. In an alternative ap-
proach, Chen [5] proposes a postfilter in the transform
domain. In this method, image blocks are classified
by the HVS masking effect. The adaptive filter is then
applied to the transform coefficients of classified blocks
having low or high activities. Different window sizes
are implemented to adapt to different blocking activi-
ties. In particular, for low activity areas where blocking
artifacts appear more remarkable, a large window is
utilized to efficiently smooth out blocking artifacts. In
the other hand, image details are more visible in high
activity areas so these are processed with a smaller
window to keep the details. Furthermore, the authors
in [6] expand the work in [5] by proposing an HVS-
based measurement of blocking artifacts. The blocky
edges are classified according to their measured local
visibility of blocking effect. Based on block edge types,
an adaptive filter is then used to improve the transform
coefficients. In another research, the authors in [7]
alleviate blocking artifacts by increasing the inter-block
correlations of three lowest frequency DCT coefficients
in each coded block.

For image quality evaluation, objects such as edges,
texture, text, etc. significantly affect the HVS response.
Construction of these object maps thus play an essential
role in order to control the filter’s strength. The authors
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in [8], [9], [10] and [11] use edge maps to adapt the
fuzzy filter artifact reduction. In these methods, the
variance and standard deviation value ([12], [13]) are
used to construct the edge map. But these operators
are rather sensitive to noise. Furthermore, the authors
in [1] use the Sobel operator to classify pixels into edge
pixels and non-edge pixels. Artifact filtering using this
classification may still blur the image due to the lack
of texture information. This paper focuses on using the
enhanced texture maps to maintain the image details
during the deblocking and deringing.

Constructing texture maps is a challenging issue
since it is very difficult to define texture based on mat-
hematical terms. The Beltrami method in [14], [15] is
used to locate texture for image segmentation. Recently
a texture map is estimated using the enhanced Beltrami
method in [16] to improve the noise resistance of the
estimation. For the first time, the authors in [17] utilize
the texture map to remove blocking artifacts only. Simu-
lation results from that approach have proven that the
texture map usage is capable of preserving the texture
of compressed images in artifact reduction. However,
this method has not been considered to suppress rin-
ging artifacts.

In this paper, a novel method is proposed to enhance
image quality of compressed images by reducing both
blocking and ringing artifacts. Isotropic or directional
fuzzy filters are implemented to remove coding arti-
facts. At first, object maps of blocking artifacts, ringing
artifacts, and texture are constructed and then are used
to control the filter’s strength by adapting the spead
parameter of fuzzy filters. Furthermore, an optimiza-
tion is proposed for this spread parameter to obtain the
highest PSNR, SSIM, and visual quality. The proposed
approach also considers combining the deblocking and
deringing schemes. This is to reduce two separate
blocking and ringing rounds into one joint round. The
remainings of this paper are organized as follows.
Section 2 reviews fuzzy filter background. Section 3
introduces blocking and ringing map estimation. Tex-
ture map estimation and enhancement are presented
in Section 4. The proposed enhancement method by
using object maps is mentioned in Section 5. Parameter
optimization is discussed in Section 6. Simulation and
conclusion are presented in Section 7, and Section 8,
respectively.

2 Fuzzy Filters

2.1 Isotropic Fuzzy Filters

Fuzzy filters are used to remove artifacts while pre-
serving the image details. An isotropic fuzzy filter in [1]
is applied to the input image I to formulate the output
image I′ as
I′(x, y)

=

∑
m,n∈Ω

h (I (x, y) , I (x + m, y + n))× I (x + m, y + n)

∑
m,n∈Ω

h (I (x, y) , I (x + m, y + n))
,

(1)

where Ω are the neighbours of the pixel of in-
terest I(x, y); h(I(x, y), I(x + m, y + n)) is the re-
sponse function of the fuzzy filter. The filter response
h(I(x, y), I(x +m, y+ n)) must follow the constraints as
in (2), (3), and (4)

lim
|I(x,y)−I(x+m,y+n)|→0

h(I(x, y), I(x + m, y + n)) = 1, (2)

lim
|I(x,y)−I(x+m,y+n)|→+∞

h(I(x, y), I(x + m, y + n)) = 0,

(3)
and

i f |I(x, y)− I(x + m1, y + n1)| (4)
≥ |I(x, y)− I(x + m2, y + n2)|,

h(I(x, y), I(x + m1, y + n1))

≤ h(I(x, y), I(x + m2, y + n2).

Gaussian function is one of the functions that fulfills
the requirements in (2), (3), and (4)

h(I(x, y), I(x + m, y + n))

= exp(
(I(x + m, y + n)− I(x, y))2

2σ2 ), (5)

where the spread parameter σ controls the contribution
of the Gaussian function. The larger σ value is, the
higher corelation between the fuzzy filter ouput and
neighbours of input is. Conversely, the smaller σ value
is, the more isolated from its neighbours the input
I(x, y) is. Therefore, σ value is used to adapt the filter’s
strength at different activity levels such as smooth or
detail areas.

2.2 Directional Fuzzy Filters

Ringing artifacts occur strongest at pixels which
are very close to strong edges and become weaker
at further-from-edge pixels. Based on this directional
characteristic, the authors in [1] propose a directional
fuzzy filter to effectively remove ringing artifacts. The
general cosine based form of the spread parameter is
defined as [1]

σ(θc) = σm(α + β cos2(θc) (6)

where α and β are constant factors. The σ(θc) value
depends on the spread parameter amplitude σm and
the angle θc. This angle is defined as θc = θ − θ0,
where θ and θ0 are the angles defined as in Figure 1.
Obviously, σ(θc) has maximum value if θ = θ0. It
means that the strongest filtering strength is applied
to the direction perpendicular to the edge. Assume
Gx and Gy are the horizontal and vertical derivative,
respectively, image edges are detected by comparing
the gradient magnitude G =

√
G2

x + G2
y to a predefined

threshold. Its correspoding direction is determined by
θ0 = a tan(Gy

Gx
).
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Figure 1. Angles θ and θ0 of the directional fuzzy filter [1].
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Figure 2. Vertical boundary gap calculation.

3 Blocking Map and Ringing Map

To deblock artifacts, the authors in [16] propose method
to detect pixels suffering from blocking artifacts and
only deblock these pixels. In block-based compression,
blocking artifacts occur at the boundary of blocks along
vertical and horizontal directions. Hence, the gray dif-
ference at the block boundary is used to detect blocking
aritifact pixels. Figure 2 shows a vertical boundary
gap calculation where Xi and Yi are the pixel in the
same row but different image blocks. The vertical gap
differences are calculated as follows: C0 = |X0 − Y7|,
Li = |Y7−i − Y6−i| and Rj = |Xj+1 − Xj|, (i, j = 0, ..., 3).
If max(L0, L1, L2, L3) < C0 or max(R0, R1, R2, R3) < C0
then X0 and Y7 are the gap pixels. If gap pixels does
not belong to strong edges then a 2D-fuzzy filter is
applied to them. At the same time, neighbours of these
blocking pixels in a 3×3 window are also considered
during the deblocking process. Figure 3(c) shows an
example of a blocking map of the compressed JPEG
image in Figure 3(a) in which black color pixels are
blocking pixels.

The ringing artifacts usually occur close to strong
edges. Therefore, neighbours of strong edge pixels may
be suffered from ringing artifacts. The strong edge
map [10] is chosen to construct the ringing map. Fi-
gure 3(d) shows a ringing map with search window =
8, where green color pixels are ringing pixels and red
color pixels are strong edge pixels. The search window
in this case determines the distance from strong edge
pixels to their neighbours which are specified as rin-
ging pixels.

4 Texture Maps

Texture maps are constructed by classifying pixels ba-
sed on texture features. Normally, the texture map
accuracy depends on the classification feature choice.
Pixels in the texture map are generally classified as
strong edges, weak edges, strong texture, weak texture
and flat areas. Usually, the texture map is estimated
based on operators such as standard deviation, So-

(a) (b)

(c) (d)

Figure 3. An example of the blocking map and ringing map. (a)
Compressed Mobile image; (b) Strong edge map; (c) Blocking map;
(d) Ringing map.

bel, etc. The original RGB image is first converted to
YUV components. The texture feature is estimated only
from Y component to simplify the computation load.
However for postprocessing enhancement, the original
images are not available at the decoder. Hence, texture
estimation must base on the compressed images. With
the fact that details such as texture are lost during com-
pression, texture estimation based on the compressed
images is thus a more difficult task. Most of the pre-
vious texture estimation methods focus on estimation
on original images in high quality ([1, 9, 10]). In this
paper, the compressed images are used while original
images are also used for accuracy comparison. Texture
feature based on pixel by pixel is sensitive to noise, so
the texture map using this scheme cannot obtain high
accuracy. The estimation utilizing patch areas ([18, 19])
is proposed to be more robust to noise. But texture
maps based on patches are not highly accurate since the
classification error is high. In [10], the texture feature
F(x, y) based on window derivative is introduced to
obtain the texture map with high accuracy as in (7).
Let W(x, y) be a window of (2R + 1)× (2R + 1) pixels.
The texture feature is defined in [15] as follows

F(x, y) = exp
(
−

det(gxy)

δ2

)
, (7)

where δ is a scaling parameter, the value of gxy ([10, 14,
15]) is defined as

gxy =

(
1 + (∂xW(x, y))2 ∂xW(x, y).∂yW(x, y)

∂xW(x, y).∂yW(x, y) 1 +
(
∂yW(x, y)

)2

)
,

where the window derivatives ([10]) are defined as

∂xW (x, y) =

√√√√√ R
∑

m=−R

R
∑

n=−R
[W (m + 1, n)−W (m, n)]2

(2R + 1)× (2R + 1)
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(a) (b)

(c) (d)

(e) (f)

Figure 4. An example of the texture map. (a) Original Mobile image;
(b) Compressed Mobile image; (c) The texture map of Figure 4(a);
(d) The texture map of Figure 4(b); (e) The enhanced texture map of
Figure 4(c); (f) The enhanced texture map of Figure 4(d).

and

∂yW (x, y) =

√√√√√ R
∑

m=−R

R
∑

n=−R
[W (m, n + 1)−W (m, n)]2

(2R + 1)× (2R + 1)
.

Texture map based on window derivative is estimated
as
Pel − type =

=


Strong− edge F(x, y) < 10−4

Weak− edge 10−4 ≤ F(x, y) < 8.10−3

Strong− texture 8.10−3 ≤ F(x, y) < 0.5
Weak− texture 0.5 ≤ F(x, y) < 0.95

Flat otherwise

(8)

Figure 4 shows an example of the texture map based
on the enhanced Beltrami method with δ = 15 based
on both original and compressed images, where quality
factor of compressed image is 12.5. Colors of the texture
map are defined as follows: Red: strong edge; Green:
weak edge; Blue: strong texture; Yellow: weak texture;
Others: flat. As can be seen in Figure 4(c) and Fi-
gure 4(d), there are many isolated texture pixels which
do not correctly represent the texture area because they
are generally located in groups. So isolated pixels in
the texture map should be removed since textures are

geometric structures while noise is not ([10]). As can be
seen in Figure 4(e) and Figure 4(f), the enhanced texture
maps are more accurate and cleaner than the texture
maps in Figure 4(c) and Figure 4(d), respectively for
the original and compressed image.

5 Proposed Deblocking and Deringing
Using Texture Map

Figure 5 shows the flow chart of the proposed de-
blocking and deringing method. This method imple-
ments a directional fuzzy filter to reduce ringing ar-
tifacts for ringing pixels. The other pixels, an isotropic
fuzzy filter is applied to remove the artifacts. The input
of the flow chart is a compressed image, which suffers
from blocking and ringing artifacts. Object maps inclu-
ding blocking map, ringing map and texture map are
first estimated and later are used to control the filtering
process. Texture map is constructed as described in
Section 4 based on compressed images. Next, ringing
map is constructed by using the strong edge map as
described in Section 3, which can be extracted from the
texture map. Blocking map as mentioned in Section 3 is
also estimated. At each pixel, based on blocking map,
the blocking artifact pixels and their neighbours in a
3×3 window are firstly processed by the 2D-fuzzy filter.

Spread parameter group {σ11, σ12, σ13, σ14, σ15} is
selected to adapt the filter’s strength based on the
advanced texture map. If the pixel is a blocking pixel,
it is filtered with a strong 2D isotropic filter with
highest σ11 value to removed the strong blocking. Then,
its 3×3 neighbour pixels are considered. Depending
on the texture types (which are weak edges, strong
texture, weak texture, and flat), corresponding isotropic
2D-fuzzy filter with different σ value is selected to
adapt the filtering strength. The σ value is ranged from
highest value σ11 for blocking areas to lowest value σ15
for flat areas, corresponding to strongest filtering level
to weakest filtering level.

Next, ringing map is considered to remove ringing
artifact. After filtering blocking artifact pixels and their
neighbour pixels in 3×3 window, the process is moved
to deringing step. Spread parameter group {σ21, σ22,
σ23, σ24, σ24} controls filter’s strength to reduce ringing
artifacts. Similar to deblocking step, if the pixel is
classified as a ringing pixel, it is filtered by a directional
fuzzy filter with highest value σ in the deringing group
σ. This ensures the ringing artifacts are removed using
the strongest filtering. If the pixel is not a ringing pixel,
then it is filtered adaptively based on its type based
on the texture map (weak edge, strong texture, weak
texture, flat areas). Different than deblocking step, the
deringing step only considers the texture type of the
pixel of interest, not the types of neighboring pixels.
The spread parameter values for deringing are selected
similar as for deblocking. Highest value for σ21 and
lowest value for σ26 are selected adaptively for the
filter in removing the most ringing artifact while still
keeping the most details. The deblocking and deringing
steps are combined to achieve the highest exploit of the
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Figure 5. The flow chart of the proposed deblocking and deringing method.

texture map and obtain one round processing for both
deblocking and deringing steps. The selection of the
spread parameter for the fuzzy filters is later discussed
in Section 6.

6 Parameter Optimization

The spread parameter is selected so that PSNRs, SSIMs,
and visual quality are highest. The spread parameter
groups of {σ11, σ12, σ13, σ14, σ15} and {σ21, σ22, σ23,
σ24, σ25} control filter’s strength in the deblocking and
deringing processes, respectively. In general, spread
parameter ranges are selected based on experimental

Figure 5. The flow chart of the proposed deblocking and deringing method.

texture map and obtain one round processing for both
deblocking and deringing steps. The selection of the
spread parameter for the fuzzy filters is later discussed
in Section 6.

6 Parameter Optimization

The spread parameter is selected so that PSNRs, SSIMs,
and visual quality are highest. The spread parameter

groups of {σ11, σ12, σ13, σ14, σ15} and {σ21, σ22, σ23,
σ24, σ25} control filter’s strength in the deblocking and
deringing processes, respectively. In general, spread
parameter ranges are selected based on experimental
studies and are shown in Table I. The larger ranges
and finer interval between group selection may result
in a better solution but, simulation running time signi-
ficantly increases. The spread parameters are selected
to be integer values for simplification purpose although
they can be real values. The spread parameter group is
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Table I
Sigma Parameter Ranges.

σ11, σ21 σ12, σ22 σ13, σ23 σ14, σ24 σ15, σ25

[15, 17] [10, 12] [10, 12] [10, 12] [8, 10]

[18, 20] [13, 15] [13, 15] [13, 15] [11, 13]

[21, 23] [16, 18] [16, 18] [16, 18] [14, 16]

[24, 26] [19, 21] [19, 21] [19, 21] [17, 19]

(a) (b)

Figure 6. Deblocking simulation results of the 5th Mobile frame for different σ selection.

(a) (b)

Figure 7. Deblocking simulation results of many images for different σ selection.

the order combination of the spread parameter values
at per row of the Table I. Each row of this table contains
3×3×3×3×3 = 243 groups of spread parameters. For
total 4 rows, the total number of groups is 972. In Table
I, the index i of the spread parameter group selection
for the first row is from 1 to 243, for the second row is
from 244 to 486, for the third row is from 487 to 729,
for the fourth row is from 730 to 972.

Based on the proposed deblocking and deringing
filtering scheme, each of the spread parameter group
is simulated to get a pair of PSNR and SSIM [20].

Assume PSNR and SSIM values between the jth

enhanced and original images using the enhanced
and original images using the ith spread parame-
ter group are PSNRi,j and SSIMi,j, respectively. The
PSNRi,j and SSIMi,j values are calculated when run-
ning the proposed algorithm on a large image data-
base with all selection of spread parameter groups.
Deblocking results on PSNR and SSIM are shown
in Figure 6 for compressed Mobile image and Fi-
gure 7 for a larger set of compressed images. From
these results, PSNRs and SSIMs do not obtain maxi-
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(a) (b)

(c) (d)

Figure 8. Deringing and deblocking results of Mobile image with different σ26 parameters.

mum values at the same selection of spread parameter
group. Therefore, it is a compromise to select a best
spread parameter group so that PSNRs, SSIMs and vi-
sual quality are highest. Let PSNRmax,j=maxi(PSNRi,j),
SSIMmax,j=maxi(SSIMi,j) and σopt,j be the optimal
spread parameter group for the jth image. For each
jth input image, σPSNR,j and σSSIM,j are spread pa-
rameter groups that PSNRmax,j=PSNR(σPSNR,j) and
SSIMmax,j=SSIM(σSSIM,j). σopt,j value for that jth image
is calculated as follows

σopt,j =
σPSNR,j + σSSIM,j

2
(9)

It is assumed that J value is the numbers of input
images in the database, which are used to find the
optimal spread parameter group. For J input images,
σopt value is calculated as follows

σopt =
σopt,1 + σopt,2 + · · ·+ σopt,J

J
(10)

Based on the deblocking simulation results of Mobile,
City, Foreman, Football, Silent and News, the index of
the optimal spread parameter group is 118. So, spread

parameter values that optimally control deblocking
process are σ11 = 16, σ12 = 11, σ13 = 11, σ14 = 10,
σ15 = 8.

For the directional fuzzy filter, to adapt to different
areas having different activity levels, the amplitude of
the spread parameter is defined as

σm (x, y) = σ21

(
(1− γ)

(
Fmax − F (x, y)

Fmax − Fmin

)
+ γ

)
, (11)

where Fmin and Fmax are minimum and maximum
values of all F(x, y) values defined as in (7), γ is a
scaling factor in [0, 1] and σ21 is the maximum spread
parameter value. The parameters in [1] are chosen as
α=0.5, β=3.5 and γ=0.5. The σ26 parameter controls the
spread parameter of the isotropic fuzzy filter, which
removing artifacts on strong edges. Figure 8 shows the
deringing and deblocking simulation results of the Mo-
bile image with different σ26 values. The green curves
are PSNR and SSIM plots without filtering artifacts on
strong edges. The red, black, magenta and blue curves
are PSNRs and SSIMs plots in case of filtering artifacts
on strong edges with σ26 = 6, σ26 = 8, σ26 = 9 and
σ26 = 12, respectively. Based on these results, filtering
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artifacts on strong edges with σ26 = 8 is chosen to get
the best PSNRs and SSIMs.

The next step is to determine the optimal spread
parameter parameter group for the deringing filters
{σ21, σ22, σ23, σ24, σ25}. The ranges of σ values are the
same as in deblocking process and shown in Table I.
The procedure to find the optimal spread parameter
group for deringing process is also similar to the
procedure of deblocking process. Deringing results are
simulated for Mobile, Akiyo, Lena, Football, and City.
The index of the optimal spread parameter group is
118. The spread parameter values of the 118th group
for deringing are σ21 = 16, σ22 = 11, σ23 = 11, σ24 = 10,
σ25 = 8.

7 Simulation Results

Different methods of the postprocessing quality enhan-
cement are compared in terms of PSNR, SSIM, and vi-
sual quality. The simulation programs are implemented
by on a computer with CPU of 2.4 GHz and RAM of
4 GB.

A large number of testing frames are taken from
News, Silent, Foreman, Mobile, Mother, Paris, Akiyo,
Tempete, Waterfall, Lena, Ice, Crew, Football, and City
sequences. These images are compressed by JPEG stan-
dard, where quality factor is 12.5. Table II and Ta-
ble III show comparision in PSNR values and SSIM
values between the proposed deblocking method to
Chen [5], Liu [6], and 1D-fuzzy filter [1]. The texture
map is constructed from the original images (Propo-
sed 1) or the compressed images (Proposed 2). The
average PSNR improvement for Chen’s method, Liu’s
method, 1D-fuzzy filter’s method, the Proposed 1, and
the Proposed 2 on the compressed images are 0.3330
dB, 0.4182 dB, 0.4806 dB, 0.7633 dB, and 0.7538 dB,
respectively. The average SSIM improvement for Chen’s
method, Liu’s method, 1D-fuzzy filter’s method, the
Propose 1, and the Proposed 2 are -0.0005, 0.0099,
0.0120, 0.0166, and 0.0161, respectively. Compared to
the existing methods of Chen’s method, Liu’s method,
1D-fuzzy filter’s method, the PSNR average impro-
vement of using the Proposed 1 is +0.4303 dB, +0.3451
dB, +0.2827 dB, and using the Proposed 2 is +0.4209
dB, +0.3357 dB, +0.2732 dB, respectively. Similarly, the
SSIM average improvement of using the Proposed 1
is +0.0171, +0.0067, +0.0046, and using the Proposed
2 is +0.0167, +0.0063, +0.0041, respectively. PSNRs and
SSIMs of the Proposed 2 is slightly lower than those
of the Proposed 1. The texture map in the Proposed
1 is constructed from the original image, and is more
accurately than texture map in the Proposed 2 which is
constructed from the compressed image. The proposed
deblocking method gives better results on PSNR and
SSIM values than the compared methods.

To evaluate the visual quality, deblocking results with
different methods on the 5th frame of the Foreman
sequence are shown on Figure 9 for a zoomed area.
Blocking artifact reduction of proposed deblocking met-
hod is significant better than that of Chen’s method,

(a) (b) (c)

(d) (e) (f)

Figure 9. Comparison of deblocking results on Foreman frame.
(a) Original; (b) Compressed; (c) Chen’s method; (d) Liu’s method;
(e) 1D - fuzzy filter’s method; (f) Proposed deblocking method.

Liu’s method, and 1D-fuzzy filter’s method. To further
improve the image, the combined deblocking and de-
ringing method is simulated. Table IV and Table V show
the comparision of PSNR values and SSIM values bet-
ween the proposed deblocking and deringing method
to Chen’s method, Liu’s method, and directional fuzzy
filter’s method. The average PSNR improvement over
JPEG compression of Chen’s method, Liu’s method,
and directional fuzzy filter’s method, the Proposed 1,
and the Proposed 2 are 0.3330 dB, 0.4182 dB, 0.6654
dB, 0.8594 dB, and 0.8327 dB, respectively. The average
SSIM improvement of Chen’s method, Liu’s method,
directional fuzzy filter’s method, the Propose 1, and
the Proposed 2 are -0.0005, 0.0099, 0.0122, 0.0237, and
0.0230, respectively. Compared to the previous methods
in Table V, the average PSNR improvement of using
the Proposed 1 is +0.5264 dB, +0.4412 dB +0.1940 dB,
and using the Proposed 2 is +0.4909 dB, +0.4057 dB,
+0.1585 dB, respectively. Similarly, the average SSIM
improvement of using the Proposed 1 over Chen’s
method, Liu’s method, and directional fuzzy filter’s
method is +0.0242, +0.0138, +0.0115, and using the
Proposed 2 over other methods is +0.0235, +0.0131,
+0.0108, respectively. PSNR and SSIM values of the
proposed deblocking and deringing methods are higher
than those of the compared methods.

Figure 10 and Figure 11 show more comparison
results for City and Mobile frame.

As can be seen from these figures, the directional
fuzzy filter (Figure 10(b) and Figure 11(b)) is able to
reduce ringing artifact very effectively. However, this
method cannot keep some small details of the image.
The proposed deblocking and deringing method signi-
ficantly preserves much more details of the compressed
images than those of the existing methods. It confirms
that the proposed deblocking and deringing scheme
gives best results on both objective assessment and
subjective assessment among the compared methods.
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Table II
PSNR Comparison in dB of the Proposed Deblocking Method

(When Using Texure Map from Original and Compressed Image to Other Methods).

Image JPEG Chen [5] Liu [6] 1D-fuzzy filter[1] Proposed 1 Proposed 2

News 27.3155 27.3159 27.5162 27.7057 28.0964 28.0617

Silent 27.8178 28.4832 28.4414 28.3874 28.6024 28.6019

Foreman 28.6129 29.1498 29.1232 29.2323 29.5582 29.5972

Mobile 21.6516 21.5652 21.6859 21.9215 22.0759 22.0324

Mother 30.9931 31.6901 31.6651 31.8034 32.0812 32.0749

Paris 23.8095 23.8791 23.9597 24.1945 24.2672 24.2374

Akiyo 29.4774 29.9906 30.0904 30.0767 30.6038 30.5925

Tempete 24.6425 24.7513 24.8496 24.9587 25.1718 25.1410

Waterfall 25.7287 26.4732 26.3755 26.4210 26.5432 26.5424

Lena 28.0495 28.8390 28.8535 28.6890 28.9599 28.9588

Ice 30.2158 30.2228 30.5625 30.7223 31.2431 31.2795

Crew 30.0017 30.3633 30.4266 30.3942 30.7730 30.7731

Football 25.7957 26.0223 26.2009 26.2409 26.4607 26.4292

City 27.0038 27.0314 27.2194 27.0967 27.3647 27.3471

Average
difference 0.3330 0.4182 0.4806 0.7633 0.7538

Table III
SSIM Comparison of the Proposed Deblocking Method

(When Using Texure Map from Original and Compressed Image to Other Methods).

Image JPEG Chen [5] Liu [6] 1D-fuzzy filter[1] Proposed 1 Proposed 2

News 0.8244 0.8317 0.8403 0.8415 0.8561 0.8557

Silent 0.7511 0.7621 0.7654 0.7627 0.7639 0.7639

Foreman 0.7867 0.8151 0.8104 0.8137 0.825 0.8254

Mobile 0.7736 0.7499 0.7668 0.7796 0.7989 0.7965

Mother 0.8152 0.8388 0.8366 0.8377 0.8456 0.8455

Paris 0.7859 0.7744 0.7885 0.8003 0.8110 0.8096

Akiyo 0.8368 0.8671 0.8645 0.8641 0.8780 0.8778

Tempete 0.8111 0.7892 0.8122 0.8164 0.8240 0.8228

Waterfall 0.7410 0.7109 0.7370 0.7382 0.7089 0.7088

Lena 0.7847 0.8046 0.8081 0.8058 0.8103 0.8103

Ice 0.8726 0.8867 0.8930 0.8914 0.9080 0.9081

Crew 0.7927 0.7989 0.8077 0.8040 0.8105 0.8104

Football 0.7812 0.7592 0.7807 0.7884 0.7703 0.7697

City 0.7377 0.6986 0.7214 0.7191 0.7166 0.7162

Average
difference -0.0005 0.0099 0.0120 0.0166 0.0161

(a) (b) (c)

Figure 10. Comparison of deblocking and deringing results on City
frame. (a) Original; (b) Directional fuzzy filter; (c) Proposed method.

8 Conclusions

Block-based image compression causes annoying arti-
facts to visual human. Thus, compressed image quality

(a) (b) (c)

Figure 11. Comparison of deblocking and deringing results on Mo-
bile frame. (a) Original; (d) Directional fuzzy filter; (c) Proposed
deblocking and deringing method.

improvement still attracts many attentions of resear-
chers. This paper proposes a novel method to reduce
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Table IV
PSNR in dB Comparison of the Proposed Deblocking and Deringing Method

(When Using Texure Map from Original and Compressed Image to Other Methods).

Image JPEG Chen [5] Liu [6] Fuzzy filter [1] Proposed 1 Proposed 2

News 27.3155 27.3159 27.5162 27.9429 28.2013 28.1562

Silent 27.8178 28.4832 28.4414 28.6270 28.7671 28.7722

Foreman 28.6129 29.1498 29.1232 29.5627 29.6105 29.6291

Mobile 21.6516 21.5652 21.6859 22.1075 22.2161 22.1274

Mother 30.9931 31.6901 31.6651 32.0772 32.1099 32.1038

Paris 23.8095 23.8791 23.9597 24.4471 24.3943 24.2954

Akiyo 29.4774 29.9906 30.0904 30.2508 30.5678 30.5476

Tempete 24.6425 24.7513 24.8496 24.9493 25.2831 25.2268

Waterfall 25.7287 26.4732 26.3755 26.5614 26.6633 26.6635

Lena 28.0495 28.8390 28.8535 28.9250 29.0568 29.0542

Ice 30.2158 30.2228 30.5625 31.1701 31.1517 31.1624

Crew 30.0017 30.3633 30.4266 30.5095 30.9242 30.9046

Football 25.7957 26.0223 26.2009 26.3534 26.6423 26.5964

City 27.0038 27.0314 27.2194 26.9470 27.5586 27.5338

Average
difference 0.3330 0.4182 0.6654 0.8594 0.8327

Table V
SSIM Comparison of the Proposed Deblocking and Deringing Method

(When Using Texure Map from Original and Compressed Image to Other Methods).

Image JPEG Chen [5] Liu [6] Fuzzy filter [1] Proposed 1 Proposed 2

News 0.8244 0.8317 0.8403 0.8561 0.8542 0.8541

Silent 0.7511 0.7621 0.7654 0.7649 0.7793 0.7795

Foreman 0.7867 0.8151 0.8104 0.8274 0.8206 0.8209

Mobile 0.7736 0.7499 0.7668 0.7846 0.7992 0.7948

Mother 0.8152 0.8388 0.8366 0.8491 0.8470 0.8470

Paris 0.7859 0.7744 0.7885 0.8067 0.8098 0.8069

Akiyo 0.8368 0.8671 0.8645 0.8776 0.8717 0.8717

Tempete 0.8111 0.7892 0.8122 0.8044 0.8303 0.8289

Waterfall 0.7410 0.7109 0.7370 0.7074 0.7517 0.7515

Lena 0.7847 0.8046 0.8081 0.8078 0.8094 0.8094

Ice 0.8726 0.8867 0.8930 0.9102 0.8986 0.8987

Crew 0.7927 0.7989 0.8077 0.8100 0.8200 0.8198

Football 0.7812 0.7592 0.7807 0.7702 0.7948 0.7943

City 0.7377 0.6986 0.7214 0.6894 0.7396 0.7391

Average
difference -0.0005 0.0099 0.0122 0.0237 0.0230

blocking and ringing artifacts in compressed images.
By applying object maps to adapt the fuzzy filters, the
proposed deblocking and deringing method reduces
blocking and ringing artifacts, while significantly pre-
serving much more details of the compressed images.
The object maps are considered including blocking
artifact map, ringing artifact map and enhanced texture
map. These maps are used to control the fuzzy filter’s
strength. Furthermore, the adaptive spread parameters
are optimized to obtain the highest quality. In the
existing image enhancement methods, the deblocking
filter and the deringing filter are separated, this may
be over-filtering at some pixels. This paper proposed
a combined deblocking and deringing algorithm to
improve effect of filtering artifacts and also simplify
the implementation complexity. The simulation results
show that the proposed method is better than other

conventional methods in terms of PSNR, SSIM and
visual quality.
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