
52 REV Journal on Electronics and Communications, Vol. 5, No. 3–4, July–December, 2015

Regular Article

A Combination of Artificial Neural Network and Artificial
Immune System for Virus Detection

Mai Trong Khang1, Vu Thanh Nguyen1, Tuan Dinh Le2

1 University of Information Technology, Ho Chi Minh City, Vietnam
2 Long An University of Economics and Industry, Long An, Vietnam

Correspondence: Mai Trong Khang, khangmt@uit.edu.vn
Communication: received 04 December 2015, revised 10 April 2016, accepted 26 July 2016
Online publication: 22 September 2016, Digital Object Identifier: 10.21553/rev-jec.133
The guest editor coordinating the review of this article and recommending it for publication was Dr. Tran Manh Ha.

Abstract– In this paper, we propose an Artificial Neural Immune Network (ANIN) for virus detection. ANIN is a combination
of Artificial Neural Network (ANN) and Artificial Immune Network (AiNet). In ANIN, each ANN is considered as a detector.
A pool of initial detectors then undergoes a mature process, called AiNet, to improve its recognizing ability. Thus, more
than one ANN objects can cooperate to detect malicious code. The experimental results show that ANIN can achieve a
detection rate of 87.98% on average with an acceptable false positive rate.

Keywords– Artificial neural network, artificial immune network, virus detection.

1 Introduction

Computer viruses are the programs that can inject
themselves into benign programs and execute harmful
instructions without permission or knowledge of the
users. In a typical anti-virus approach, after a com-
puter is infected, the problem is reported and then
a solution will be designed and deployed to protect
the infected computers [1]. Recently, new algorithms in
machine learning and artificial immune system open a
new direction for computer virus detection, which is
potentially more effective than traditional methods.

Artificial Neural Network (ANN) is one of the most
popular algorithms in the field of machine learning
which mimics our nervous system. In the ANN model,
the basic computing units called neurons are intercon-
nected to create a network that can compute values
from inputs [2]. ANN was used to solve human prob-
lems in many areas such as computer vision, speech
recognition, etc. Despite its strong capability of machine
learning and pattern recognition, the training cost of
ANN is high. In addition, it is hard to find an appro-
priate network structure in ANN.

Artificial Immune Network (AiNet) [3] is an Artificial
Immune System (AIS) [4, 5] model which is inspired by
the idiotypical network theory [6, 7]. The AiNet consists
of computing units called antibodies and the connec-
tions among them. According to idiotypical network
theory, these antibodies not only discriminate among
malicious cells (antigens) and benign cells but also
recognize and interact with others. AiNet is an unsu-
pervised learning method that was used successfully
in many areas including clustering, data visualization
and optimizations. However, high computational cost
and large number of user-defined parameters are the
main disadvantages of the AiNet.

In this paper, we propose a hybrid approach, which
combines ANN and AiNet, called Artificial Neural
Immune Network (ANIN) for virus detection. Using
one ANN is difficult to learn all the virus strings even
with a very large number of neurons in the network.
In ANIN, each ANN is a detector and a pool of these
detectors are used in such a way that they can cooperate
to resolve the problem. AiNet is used to train the ANN
detectors in both weight and structure. In addition,
AiNet can minimize the number of detectors by reduc-
ing the overlap between them. Therefore, the approach
is more adaptive in applying to large datasets. Our
experimental results showed that ANIN can achieve
up to 87.98% detection rate with an acceptable false
positive rate.

This paper is organized as follows. Section 2 de-
scribes the related work. Section 3 introduces our ANIN
for virus detection in details. Section 4 presents our
experimental results before the paper is concluded in
Section 5.

2 Related Work

In [8], the authors use multiple sequence alignment
(MSA) techniques from bioinformatics combined with
data mining techniques to recognize malware. MSA
techniques are used to align variable length computer
viral code and then the alignment patterns are obtained
with core, invariant regions of the code occupying fixed
positions. Data mining techniques such as symbolic
rule extraction and ANN then can learn the critical
features to determine into which class the aligned
patterns fall.

In [9], the authors proposed an Intrusion Detection
approach based on the combination of Rough Set meth-
ods and Artificial Immune Network. Rough Set method

1859-378X–2015-3401 c© 2015 REV

M. T. Khang et al.: A Combination of Artificial Neural Network and Artificial Immune System for Virus Detection 53

Figure 1. General model of ANIN.

is applied to reduce the dimension of the dataset by
only getting the most significant features. Then, AiNet
is used to cluster the attacks in the reduced dataset. The
results show a significant improvement in detection rate
when using only critical features.

In [10], the most relevant features are extracted from
Portable Executable (PE) structure of executable files
by Fisher Score and then is learned by an artificial
neural network. Although their approach can identify
unknown virus patterns, they use only one deployed
artificial neural network as learning model which is not
efficient in both training cost and performance for large
data.

In [11], ANN is integrated with Clonal Selection
Algorithm (CSA) to create a new virus detection ap-
proach. The CSA is used to train a pool of immature
detector to adapt with the problem-space. After the
training, mature detectors can cooperate to detect viral
code. However, the coverage of detector has not been
examined and many irrelevant detectors are obtained,
which cause low detection rate.

In [12], the authors combined Negative Selection Al-
gorithm with Artificial Immune Network. Negative Se-
lection Algorithm is used to create the first generation
of detectors and AiNet is used to improve detectors’
coverage and enhancing the ability of unknown virus
detection. The limitation of their approach is that they
use strings for detecting strings.

3 The Proposed Approach

This section describes our proposed Artificial Neural
Immune Network (ANIN) for virus detection in detail.

ANIN consists of three main components. The first
component, called training data, which consists of a set
of viral files and a set of benign files and is used for
training and detecting stage. The second component
is the population of detectors, called antibodies. The
detectors are the ANN objects used for recognizing
foreign and benign particles. And the third component
is AiNet, which can be considered as a training process
for generating and maturing detectors. The general
model of ANIN is described in Figure 1.

The first part of this section describes the techniques
for generating and refining the training data from
the collected files. In the second part, the structures

Figure 2. String extraction mechanism.

of detectors as well as relevant issues are described.
The third and the fourth parts describe the training
algorithm and the mechanism for using the obtained
detectors, respectively.

3.1 Training Data Generation

In our approach, viral files are collected from an on-
line source [13] and benign files are normal programs.
After they are collected, the strings with length L are ex-
tracted from files. The overlap between two continuous
strings is L/2. The extraction mechanism is described
as shown in Figure 2.

Because computer viruses need a host program, a
viral file contains not only malicious codes but also
benign codes. The extracted strings from the viral
files construct a viral string set. The benign string set
contains extracted strings from normal executable files.
These strings undergo the Negative Selection Algo-
rithm to remove benign strings from the viral string set.
The training data generation algorithm is described in
Algorithm 1.

To determine if two strings are considered as matched,
the Hamming distance or r contiguous distance can
be either used. Hamming [5] distance is calculated as

Algorithm 1: Training Data Generation Algorithm
Notation:
Extract(f): return strings extracted from file f .
Match(x, y): return true if string x matches string y.

Initialization:
SVS ← ∅
SBS ← ∅
SVF ← viral files
SBF ← benign files

for each f ∈ SVF do
SVS ← SVS ∪ Extract(f)

end for
for each f ∈ SBF do

SBS ← SBS ∪ Extract(f)
end for
for each string x ∈ SVS do

for each string y ∈ SBS do
if Match(x, y) then

x is excluded from SVS
end if

end for
end for

54 REV Journal on Electronics and Communications, Vol. 5, No. 3–4, July–December, 2015

Figure 3. General structure of an ANN object.

follows:

h(x, y) =
N

∑
n=1

Xn ⊕Yn, (1)

where N is the length of strings, Xn and Yn are the nth

bit of string x and the nth bit of string y. Xn⊕Yndenotes
the XOR logic operation.

In order to reduce the computation cost, the clus-
tering algorithm, called DBSCAN, clusters malicious
strings in viral string set [14]. The obtained clusters are
then called antigens. In each antigen, the average dis-
tance from each element to the others is calculated and
the one with the smallest value is kept as a delegate.

3.2 Detectors

In ANIN, detectors are the multilayer feed-forward
neural networks with the bipolar sigmoid activation
function and are used to discriminate between viral and
benign patterns.

To obtain a simple representation scheme for training
process, these ANN objects are encoded into two arrays.
A weight array is an array of real numbers, which
are the weights of connections between neurons in the
network. The structure array with integer elements is
used to describe the network structure.

The structure array is described as S0S1S2...Sk where
k(k ≤ 3) is the number of layers in network and Sj(0 ≤
j ≤ k) denotes the number of neurons in layer j (S0 is
the input layer and Sk is the output layer).

Each ANN’s neuron has a set of weights W:
w0w1...wm where wm denotes the weight of a connection
from neurons in the previous layer to this neuron.
Therefore, the weight array can be constructed by:
WiWi+1...Wn where n is the number of neurons and
wi(0 ≤ i ≤ n) is the neuron ith in the network. An ANN
object with structure array: 2 3 1 and weight array: 0.3
0.2 0.4 0.1 0.5 0.7 0.8 0.5 0.6 is described in Figure 3.

In addition, to determine how well a detector works,
the fitness function is used to calculate its antigenic
affinity value f as follows:

f =
2

error+ fpr
, (2)

where fpr is the false positive rate, and the error is
calculated as

error =
1
n ∑ vi, (3)

where vi denotes the absolute difference between com-
puted output and string’s labelled value in antigen and
n is the number of strings in antigen.

As mentioned earlier, each detector in the network
can interact with both the foreign particles and other
objects. To determine the interaction among an ANN
object and the others, we introduce a binary array
whose elements are the recorded recognition values
of the ANN object with respect to the learning data.
Hamming Distance is then used to calculate how well
an ANN object interacts with the others from these
arrays.

3.3 Training Algorithm

After the detectors are created, they undergo a ma-
ture process to improve their affinity. The process con-
sists of 2 main parts: the first part is the interaction be-
tween detectors and antigens, and the second part is the
interaction among detectors themselves. The general
form of AiNet algorithm is described as in Algorithm 2.

In the first part of the algorithm (inside the loop
for), the affinity values of detectors with presented
antigen are calculated and these detectors are cloned
proportionally to their affinity. Metadynamics step re-
moves clones whose affinity is less than a predefined
threshold. The interaction and suppression operation in
this part are called the clonal interaction and the clonal
suppression, and are used for determining the inter-
action between clonal detectors and removing clones
based on predefined threshold, respectively.

In the second part, the similarity between each pair
of network antibodies is calculated by the procedure In-
teraction (Smemory). In the Network Suppression step,
the procedure Suppression (Smemory) will eliminate
antibodies whose interacting affinity is above the prede-
fined threshold. New random antibodies are generated.

In order to stop the training process, various forms
of stopping criterion have been used such as a number
of iterations, a predefined affinity value or a predefined
threshold is used to examine the difference between two
continuous generations of detectors. In the ANIN, the
absolute difference between two average fitness values
of consecutive generations is calculated and compared
to a predefined value to check the stop iterations.
Instead of using a fixed threshold, a mechanism is
introduced to define the value manually during the
learning process. In each iteration, training statistics
are recorded to help observe the learning and stop the
process at any time.

3.4 Detection Mechanism

In our approach, dangerous level is used to deter-
mine how dangerous a file is. A file with a large value
of dangerous level is considered as dangerous. The
dangerous level of a file is calculated based on one of

M. T. Khang et al.: A Combination of Artificial Neural Network and Artificial Immune System for Virus Detection 55

Algorithm 2: General Form of AiNet Algorithm
Notation:
Smemory: set of memory detectors.
Sclonal: set of clonal detectors.
X, Y: either Smemory or Sclonal, depending on the
input of the algorithm’s procedure.
AffinityComputation(X, a): compute affinities of all
elements in X with respect to antigen a.
ClonalSetection(X): select a number of elements with
highest affini-ty in X and reproduce them proportion-
ally to their affinity.
Metadynamics(X): remove elements in X whose affin-
ity with current antigen is less than a predefined
threshold.
Interaction(X): determine the network interaction
among elements in X.
Suppression(X): Remove elements whose affinity
with each other is more than a predefined threshold.
Update(X, Y): Incorporate elements in X with all
elements in Y.
DiversityHandling(X): Introduce a set of new ran-
domly generated element into the X.

while not stopping criterion met do
for each antigen a do

AffinityComputation(Smemory,a)
Sclonal ← ClonalSetection(Smemory)
Metadynamics(Sclonal)
Interaction(Sclonal)
Suppression(Sclonal)
Update(Sclonal, Smemory)

end for
Interaction(Smemory)
Suppression(Smemory)
DiversityHandling(Smemory)

end while

all the strings extracted from the file. The dangerous
level of a string is computed by averaging the value
outputted by all the detectors as follows:

DL(s) =
∑
|DS|
i=1 compute(di, s)

|DS| , (4)

where DS is the detector set, s is the presented string
and DL(s) is its dangerous level, di is the ith detector
in DS and

compute(di, s) =

{
1, if s is dangerous to di,
0, otherwise.

(5)

The dangerous level of a file is determined in the
following as the rate between viral strings and total
strings and is used to detect that file:

DL(F) = ∑ DL(s)
|F| , (6)

where |F| is the number of strings in file F. These
dangerous level concepts are introduced in [15].

The dangerous levels of files in training data
are calculated and are used to construct new

Table I
Training Data

54 REV Journal on Electronics and Communications: Article scheduled for publication in Vol. 5, No. 3–4, July–December, 2015

antigen are calculated and these detectors are cloned
proportionally to their affinity. Metadynamics step re-
moves clones whose affinity is less than a predefined
threshold. The interaction and suppression operation in
this part are called the clonal interaction and the clonal
suppression, and are used for determining the inter-
action between clonal detectors and removing clones
based on predefined threshold, respectively.

In the second part, the similarity between each pair
of network antibodies is calculated by the procedure In-
teraction (Smemory). In the Network Suppression step,
the procedure Suppression (Smemory) will eliminate
antibodies whose interacting affinity is above the prede-
fined threshold. New random antibodies are generated.

In order to stop the training process, various forms
of stopping criterion have been used such as a number
of iterations, a predefined affinity value or a predefined
threshold is used to examine the difference between two
continuous generations of detectors. In the ANIN, the
absolute difference between two average fitness values
of consecutive generations is calculated and compared
to a predefined value to check the stop iterations.
Instead of using a fixed threshold, a mechanism is
introduced to define the value manually during the
learning process. In each iteration, training statistics
are recorded to help observe the learning and stop the
process at any time.

3.4 Detection Mechanism

In our approach, dangerous level is used to deter-
mine how dangerous a file is. A file with a large value
of dangerous level is considered as dangerous. The
dangerous level of a file is calculated based on one of
all the strings extracted from the file. The dangerous
level of a string is computed by averaging the value
outputted by all the detectors as follows:

DL(s) =
∑
|DS|
i=1 compute(di, s)

|DS| (4)

where DS is the detector set, s is the presented string
and DL(s) is its dangerous level, di is the ith detector in
DS and

compute(di, s) =

{
1, if s is dangerous to di

0, otherwise
(5)

The dangerous level of a file in equation (6) is deter-
mined as the rate between viral strings and total strings
and is used to detect that file.

DL(F) = ∑ DL(s)
|F| (6)

where |F| is the number of strings in file F. These
dangerous level concepts are introduced in [15].

The dangerous levels of files in training data
are calculated and are used to construct new
training data, whose element has two field <
dangerous level, label >. An ANN object is then de-
ployed as a learning model to study these data and is
used to detect files in the testing set.

Table I
Training data

Data
Training files Testing files

Viral Files Benign Files Viral Files Benign Files
Dataset 1 80 20 10 10
Dataset 2 200 50 25 25
Dataset 3 400 100 50 50
Dataset 4 800 200 100 100
Dataset 5 1600 400 200 200
Dataset 6 2000 500 250 250

4 Evaluation

A virus detection program was implemented in C# to
evaluate our approach. The program allows the users
to define parameters manually as well as observe the
learning process and the experimental results.

4.1 Evaluation Metrics
In order to evaluate ANIN, the following metrics are

used [12, 15]:
• Detection rate and false positive rate: The first

experiment was carried out to study the detection
rate and the false positive rate of our model as well
as the effect of the number of files in dataset on the
performance of the model.

• The correlation between Network suppression
threshold and the performance of the model: In
the Network Suppression step of the training algo-
rithm, any pair of detectors in the network, whose
affinity is greater than the predefined threshold,
are excluded as well as new detectors are gener-
ated into the pool. Network Suppression Threshold
(NST) has a significant impact on the total coverage
of detectors, which are important to the ANIN
performance. In our experiment, we investigate
how NST affects the detection rate as well as the
false positive rate of ANIN.

In order to evaluate our approach, we also compare our
approach with the approach in [11].

4.2 Training Data
In ANIN, the experimental data are divided into six

smaller datasets. In each dataset, the viral files and
benign files are randomly selected from the collected
data. The training data are shown in Table I.

4.3 Experimental Results
The results of the first experiment are shown in

Table II.
As shown in Table II, ANIN can achieve up to 92%

detection rate (dataset 2). The average detection rate
and false positive rate achieved for the 6 datasets are
87.98% and 8.72% respectively. Therefore, with appro-
priate predefined parameters (the NST is 0.8 and the
stopping value is 0.05), the detection rate is reasonably
high with the acceptable false positive rate (below 15%).
We also observe that there is a relationship between the

training data, whose element has two field <
dangerous level, label >. An ANN object is then de-
ployed as a learning model to study these data and is
used to detect files in the testing set.

4 Evaluation

A virus detection program was implemented in C# to
evaluate our approach. The program allows the users
to define parameters manually as well as observe the
learning process and the experimental results.

4.1 Evaluation Metrics

In order to evaluate ANIN, the following metrics are
used [12, 15]:
• Detection rate and false positive rate: The first

experiment was carried out to study the detection
rate and the false positive rate of our model as well
as the effect of the number of files in the dataset
on the performance of the model.

• The correlation between Network suppression
threshold and the performance of the model: In
the Network Suppression step of the training algo-
rithm, any pair of detectors in the network, whose
affinity is greater than the predefined threshold,
are excluded as well as new detectors are gener-
ated into the pool. Network Suppression Threshold
(NST) has a significant impact on the total coverage
of detectors, which are important to the ANIN
performance. In our experiment, we investigate
how NST affects the detection rate as well as the
false positive rate of ANIN.

In order to evaluate our approach, we also compare our
approach with the approach in [11].

4.2 Training Data

In ANIN, the experimental data are divided into six
smaller datasets. In each dataset, the viral files and
benign files are randomly selected from the collected
data. The training data are shown in Table I.

4.3 Experimental Results

The results of the first experiment are shown in
Table II.

As shown in Table II, ANIN can achieve up to 92%
detection rate (Dataset 2). The average detection rate

56 REV Journal on Electronics and Communications, Vol. 5, No. 3–4, July–December, 2015

Table II
The Correlation between the Number of Files in Dataset and

the Performance of the Models

M. T. Khang et al.: A Combination of Artificial Neural Network and Artificial Immune System for Virus Detection 55

Table II
. The correlation between the number of files in dataset and

the performance of the models

Data
Detection rate (%) False Positive Rate (%)

ANIN Method in [11] ANIN Method in [11]
Dataset 1 90 100 0 0
Dataset 2 92 96 4 8
Dataset 3 88 84 8 6
Dataset 4 87 90 13 14
Dataset 5 86.5 83.5 12.5 11.5
Dataset 6 84.4 80.4 14.8 16.4
Average 87.98 88.98 8.72 9.32

Figure 4. The correlation between Network Suppression Threshold
and Detection Rate as well as False Positive Rate on dataset 4

size of the dataset and the performance of the model. A
large dataset may result in worse performance (lower
detection rate and higher false positive rate). This is due
to the fact that a large dataset creates a larger problem-
space for detectors to cover and thus, much effort is
required to train the detectors. In this case, the results
may not be good if the number of detectors is not large
enough or the learning process fails to converge.

Figure 4 shows the correlation between Network
Suppression Threshold (NST) and the detection rate
as well as false positive rate on the dataset 4. Our
results showed that the detection rate could achieve up
to 91% with 0.95 network suppression threshold. We
also observe that the larger the network suppression
threshold is, the higher the detection rate is. With the
large value of NST, the training process forces the
detectors to cover new area instead of occupied areas.
In such situation, with the same detectors, the total
coverage is larger, which results in higher detection
rate. However, as we can see in Figure 4, too large or
too small NST value may cause high false positive rate.

Table II compares the detection rate and false positive
rate between our approach and the approach in [11].
As shown in Table II, the average detection rate of the
method in [11] is higher than ANIN average detection
rate. However, the detection rate of the method in [11]
is lower than ANIN detection rate when the testing
set is larger (see Figure 5). The detection rate of the
method in [11] is 100% with dataset 1 whereas ANIN
detection rate is 90%. When applying to dataset 5 and
6, the detection rate of the method in [11] are 83.5% and

Figure 5. The comparison of experimental results between ANIN
and the method in [11] (Series1: ANIN detection rate, Series2: ANIN
ANIN false positive rate, Series3, Series4: detection rate and false
positive rate of the method in [11])

80.4% whereas ANIN has higher detection rate (86.5%
and 84.4% respectively). There is not much difference in
false positive rate between the two methods. With the
same amount of detectors in the training process, ANIN
tries to reduce the overlap between them. Therefore, the
total coverage is better.

5 Conclusion

In this paper, we propose an Artificial Neural Immune
Network (ANIN) for virus detection, a hybrid approach
which combines ANN and AiNet. ANIN takes the
benefits of both the recognition ability of ANN model
and the adaptive ability of AiNet model in training
a number of detectors concurrently. The detectors are
ANN objects that undergo a mature process to im-
prove both their structure and weights. The result is a
pool of matured detectors that can cooperate to detect
malicious codes. The experimental results show that
ANIN can achieve 87.98% detection rate on average
with an acceptable false positive rate. In the future,
we will study on how to apply data mining techniques
and rough set techniques in ANIN to extract the most
critical features in order to improve the training process.

References

[1] E. Al Daoud, I. H. Jebril, and B. Zaqaibeh, “Computer
virus strategies and detection methods,” Int. J. Open
Problems Compt. Math, vol. 1, no. 2, pp. 12–20, 2008.

[2] W. S. McCulloch and W. Pitts, “A logical calculus of
the ideas immanent in nervous activity,” The bulletin of
mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[3] L. Nunes de Casto and F. J. Von Zuben, “An evolu-
tionary immune network for data clustering,” in Neural
Networks, 2000. Proceedings. Sixth Brazilian Symposium on.
IEEE, 2000, pp. 84–89.

[4] D. Dasgupta and F. Nino, Immunological computation:
theory and applications. CRC press, 2008.

[5] J. Al-Enezi, M. Abbod, and S. Alsharhan, “Artificial
immune systems-models, algorithms and applications,”
2010.

[6] N. K. Jerne and J. Cocteau, “Idiotypic networks and other
preconceived ideas,” Immunological reviews, vol. 79, no. 1,
pp. 5–24, 1984.

Figure 4. The correlation between Network Suppression Threshold
and Detection Rate as well as False Positive Rate on Dataset 4.

and false positive rate achieved for the 6 datasets are
87.98% and 8.72% respectively. Therefore, with appro-
priate predefined parameters (the NST is 0.8 and the
stopping value is 0.05), the detection rate is reasonably
high with the acceptable false positive rate (below 15%).
We also observe that there is a relationship between the
size of the dataset and the performance of the model. A
large dataset may result in worse performance (lower
detection rate and higher false positive rate). This is due
to the fact that a large dataset creates a larger problem-
space for detectors to cover and thus, much effort is
required to train the detectors. In this case, the results
may not be good if the number of detectors is not large
enough or the learning process fails to converge.

Figure 4 shows the correlation between Network
Suppression Threshold (NST) and the detection rate
as well as false positive rate on the Dataset 4. Our
results showed that the detection rate could achieve up
to 91% with 0.95 network suppression threshold. We
also observe that the larger the network suppression
threshold is, the higher the detection rate is. With the
large value of NST, the training process forces the
detectors to cover new area instead of occupied areas.
In such situation, with the same detectors, the total
coverage is larger, which results in higher detection
rate. However, as we can see in Figure 4, too large or
too small NST value may cause high false positive rate.

Table II compares the detection rate and false positive
rate between our approach and the approach in [11].
As shown in Table II, the average detection rate of the
method in [11] is higher than ANIN average detection

Figure 5. The comparison of experimental results between ANIN
and the method in [11] (Series 1: ANIN detection rate, Series 2: ANIN
ANIN false positive rate, Series 3, Series 4: detection rate and false
positive rate of the method in [11]).

rate. However, the detection rate of the method in [11]
is lower than ANIN detection rate when the testing set
is larger (see Figure 5). The detection rate of the method
in [11] is 100% with Dataset 1 whereas ANIN detection
rate is 90%. When applying to Datasets 5 and 6, the
detection rate of the method in [11] are 83.5% and 80.4%
whereas ANIN has higher detection rate (86.5% and
84.4% respectively). There is not much difference in
false positive rate between the two methods. With the
same amount of detectors in the training process, ANIN
tries to reduce the overlap between them. Therefore, the
total coverage is better.

5 Conclusion

In this paper, we propose an Artificial Neural Immune
Network (ANIN) for virus detection, a hybrid approach
which combines ANN and AiNet. ANIN takes the
benefits of both the recognition ability of ANN model
and the adaptive ability of AiNet model in training
a number of detectors concurrently. The detectors are
ANN objects that undergo a mature process to im-
prove both their structure and weights. The result is a
pool of matured detectors that can cooperate to detect
malicious codes. The experimental results show that
ANIN can achieve 87.98% detection rate on average
with an acceptable false positive rate. In the future,
we will study on how to apply data mining techniques
and rough set techniques in ANIN to extract the most
critical features in order to improve the training process.

6 Acknowledgment

This research is funded by Vietnam National University,
Ho Chi Minh City (VNU-HCM) under grant number
C2016-26-05.

References

[1] E. Al Daoud, I. H. Jebril, and B. Zaqaibeh, “Computer
virus strategies and detection methods,” Int. J. Open
Problems Compt. Math, vol. 1, no. 2, pp. 12–20, 2008.

M. T. Khang et al.: A Combination of Artificial Neural Network and Artificial Immune System for Virus Detection 57

[2] W. S. McCulloch and W. Pitts, “A logical calculus of
the ideas immanent in nervous activity,” The bulletin of
mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[3] L. Nunes de Casto and F. J. Von Zuben, “An evolutionary
immune network for data clustering,” in Proceedings.
Sixth Brazilian Symposium on Neural Networks. IEEE,
2000, pp. 84–89.

[4] D. Dasgupta and F. Nino, Immunological computation:
theory and applications. CRC press, 2008.

[5] J. Al-Enezi, M. Abbod, and S. Alsharhan, “Artificial
immune systems-models, algorithms and applications,”
2010.

[6] N. K. Jerne and J. Cocteau, “Idiotypic networks and other
preconceived ideas,” Immunological reviews, vol. 79, no. 1,
pp. 5–24, 1984.

[7] N. K. Jerne, “Towards a network theory of the immune
system.” in Annales d’immunologie, vol. 125, no. 1-2, 1974,
pp. 373–389.

[8] Y. Chen, A. Narayanan, S. Pang, and B. Tao, “Multi-
ple sequence alignment and artificial neural networks
for malicious software detection,” in Eighth International
Conference on Natural Computation (ICNC). IEEE, 2012,
pp. 261–265.

[9] M. A. Rassam and M. A. Maarof, “Artificial immune
network clustering approach for anomaly intrusion de-
tection,” Journal of Advances in Information Technology,
vol. 3, no. 3, pp. 147–154, 2012.

[10] S. Shah, H. Jani, S. Shetty, and K. Bhowmick, “Virus
detection using artificial neural networks,” International
Journal of Computer Applications, vol. 84, no. 5, 2013.

[11] V. T. Nguyen, N. P. Anh, M. T. Khang, N. H. Ngan,
N. Q. Thai, and N. T. Quoc, “A combination of clonal
selection algorithm and artificial neural networks for
virus detection,” in Advances in Computer Science and its
Applications. Springer, 2014, pp. 95–100.

[12] V. T. Nguyen, T. T. Nguyen, K. T. Mai, and T. D. Le, “A
combination of negative selection algorithm and artificial
immune network for virus detection,” in Future Data and
Security Engineering. Springer, 2014, pp. 97–106.

[13] “Computer virus collection,” 2015. [Online]. Available:
https://vxheaven.org/vl.php

[14] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, “Density-
based clustering in spatial databases: The algorithm
gdbscan and its applications,” Data mining and knowledge
discovery, vol. 2, no. 2, pp. 169–194, 1998.

[15] R. Chao and Y. Tan, “A virus detection system based
on artificial immune system,” in International Conference
on Computational Intelligence and Security (CIS’09), vol. 1.
IEEE, 2009, pp. 6–10.

Mai Trong Khang received the B.S. degree in
Computer Science from University of Infor-
mation Technology, Ho Chi Minh City, Viet-
nam in 2013. He is currently pursuing the M.S.
degree in Computer Science from University
of Information Technology, Ho Chi Minh City,
Vietnam. He is a Teaching Assistant and Re-
searcher at Software Engineering, University
of Information Technology, Ho Chi Minh City,
Vietnam. His research interests include virus
detection and computer security.

Vu Thanh Nguyen received the Ph.D degree
in Information Technology from Moscow State
University and Russian Academy of Sciences.
Assoc. Prof. Dr. Nguyen is the Dean of the
Faculty of Software Engineering, University of
Information Technology, Ho Chi Minh City,
Vietnam. His research interests include soft-
ware technology and knowledge technology.

Tuan Dinh Le received the Ph.D degree in
Computer Science and Engineering from the
University of New South Wales, Sydney. He
is currently the Vice Rector at the Long An
University of Economics and Industry, Tan An
City, Long An, Vietnam. His research interests
include novel application, low power com-
munication, security and compressive sensing
in wireless sensor network and Internet of
Things (IoT). Dr. Tuan published regularly in
top rated sensor network and mobile comput-
ing journals.

