
REV Journal on Electronics and Communications, Vol. 4, No. 3–4, July–December, 2014 91

Regular Article

A Complete Method for Reconstructing an Elevation Surface of
3D Point Clouds
Van Sinh Nguyen, Manh Ha Tran, Ba Cong Nhan

School of Computer Science and Engineering, International University, Ho Chi Minh City, Vietnam

Correspondence: Van Sinh Nguyen, nvsinh@hcmiu.edu.vn
Manuscript communication: received 18 December 2014, accepted 8 May 2015

Abstract– Reconstructing the surface of 3D point clouds is a reconstruction from a cloud of 3D points to a triangular mesh.
This process approximates a discrete point cloud by a continuous/smooth surface depending on the input data and the
applications of users. In this paper, we propose a complete method to reconstruct an elevation surface from 3D point clouds.
The method consists of three steps. In the first step, we triangulate an elevation surface of 3D point cloud structured in a 3D
grid. In the second step, we remove the outward triangles to deal with concave regions on the boundary of the triangular
mesh. In the third step, we reconstruct this surface by filling the hole of triangular mesh. Our method could process very
fast for triangulating the surface, preserve the topology and characteristic of the input surface after reconstruction.

Keywords– Surface reconstruction, 3D point cloud, Delaunay triangulation, voxel traversal search, hole filling.

1 Introduction

Reconstructing the surface of 3D point clouds is one
important step in the researched field of geometric
modeling. This process includes simplifying, triangu-
lating, holes filling and refining the surface. The com-
puting time of algorithms and the quality of output
surfaces are two essential objectives that the researchers
are facing. Some existing methods for processing the
surface of triangulation have been studied since many
years. But for the surface of 3D point clouds, it is
still seem a challenge for researchers. In order to save
processing time and capacity of memory, some meth-
ods aim to reduce the number of 3D point clouds
by simplifying [1, 2]. Surface triangulation of a 3D
object is a fast and efficient way to reconstruct such
an approximating surface [3, 4]. Filling the holes and
refining the reconstructed surface are also proposed
in [5, 6].

As mentioned in [7], our purpose is to build an
optimal geological triangulated surface in order to get
the best simulation of the oil reservoir. The problem
in our study comes from the seismic data, with a
very large number of 3D points (that can reach several
millions of points). Therefore, the necessary time to
triangulate these data points with “classical” methods
can be very high (and hence unacceptable in terms of
time and memory). For this reason, the input data are
first structured in a sparse 3D volume as defined by
Philippe Verney [8]. In order to preserve the shape of
the surface, the first step is extracting and simplifying
the boundary of the surface [9]. The proposed method
for simplifying the surface inside its boundary [10] is
an important step for the further meshing step. Indeed,
simplification produces smaller data sets whose density
varies regularly over the surface. The work in this paper

is the next step in which we propose a complete method
to reconstruct the surface of 3D point clouds. In the first
step, our simplified surface is triangulated by using a
fast search algorithm (VTS) that was presented in [11].
In the second step, we propose a method to process
the outward triangles on the boundary to reconstruct
a part of the generated surface [12]. The third step in
this paper, we suggest a method to fill the holes of tri-
angulated surface based on [13] in order to completely
reconstruct the output surface.

The remainder of the paper is organized as follows.
We first present the existing methods for filling the
holes of a triangular mesh in Section 2. Our full method
is presented in detail in Section 3. Section 4 is the
implementation and results. Discussion and evaluation
are presented in Section 5. The last (Section 6) is our
conclusion.

2 Related Works

The methods for triangulating the surface of 3D point
clouds have been widely studied in the field of ge-
ometric modeling and computational geometry. The
complexity of algorithms for meshing and the quality of
generated triangular meshes are two essential objectives
that the researchers are facing. The effectiveness of
methods for triangulating a surface of 3D point clouds
depends not only on the types of the surface, the input
data structure, but also on the characteristics of the
data. Most of these methods are classified into three cat-
egories: contour tracing approach (called implicit sur-
face approach) [3], region growing [14], and sculpting-
based approach (called Delaunay-based approach) [15–
17]. They are detailed in [11, 12].

In this section, we study some existing methods for
filling the holes of a triangular surface that can be

1859-378X–2014-3405 c© 2014 REV



92 REV Journal on Electronics and Communications, Vol. 4, No. 3–4, July–December, 2014

applied in our research to completely reconstruct our
surface. Wu et al. [5] described a method to fill the holes
automatically by using radial basis function (RBF); this
function is also shown in [18, 19]. In the first step, the
boundary of the hole is found by extracting the edges
which belong to one triangle only (they share only
with one triangular face). In the next step, all boundary
points of the holes are marked. In the last step, these
holes are filled based on the marked interpolation
points by using RBF. However, one of drawback of this
method is that the projection from 3D to 2D of the object
does not contain the fold of surface.

Alexandra et al. [13] suggested a method to remesh
and fair the holes of a triangular mesh. At first, the
hole boundary is identified based on the density of
point clouds. This hole is filled in the next step by
connecting the boundary points to create new triangles.
After that, the created triangles are subdivided by using
a partial differential equation scheme in order to restore
the local curvature and guarantee the smoothness of
the hole boundary. At the end, the hole is repaired by
minimizing a discrete thin-plate energy. This method
obtains a good quality mesh (reconstructed surfaces are
smooth and very close from the initial model), but leads
to low running times because of using the multistep
approach.

The above methods can be applied for filling the
holes of a triangular mesh on both 2D and 3D. In our
case, the input data are structured in the 3D grid in
voxels. Therefore, we based on this advantage for build-
ing a complete method to reconstruct the surface of 3D
point clouds. We detail our method in the next section.

3 Methods for Reconstruting the Surface

In this section, we present our full method for recon-
structing the surface of 3D point clouds. The input
data are structured in the 3D grid in voxels [7]. After
simplifying these data [10] to reduce the number of
input data, we triangulate this surface by using a fast
algorithm to speed up the Delaunay Triangulation [11].
The triangular surface is then reconstructed by remov-
ing some outward triangles on the boundary to obtain a
model that approaches the input surface [12]. However,
the generated surface has some holes that need to fill
in order to obtain completely a reconstructed surface.
Next, we will describe in detail for each part.

3.1 Triangulating the Surface

As presented in [10], we have simplified the input
surface. After simplifying, the point distribution is con-
strained (with respect to its density) from the boundary
to the inside of the surface. Moreover, a large number
of points have been removed while keeping the initial
shape of the surface. This is one of the important
steps for further triangular surface processing, because
part of computation in the algorithm depends on the
number of input data points. Our method is detailed
below.

Our method is based on the 2D Delaunay triangu-
lation of the projected point cloud which has been
done in [11]. The elevation surface of 3D point clouds
(after simplifying [10]) is first projected onto a natural
2D grid in the x, y plane. Then, we triangulate the
surface (actually, we compute a Delaunay triangulation
of the 2D point clouds taking advantage of its regular
structure). The main novelty of our approach is that
the neighboring points are searched in a rectangle
supported by the edge ei (of previous triangle) under
consideration. Therefore, our method consists of three
steps. In the first step, we create a first Delaunay
triangle. Starting from the first Delaunay boundary
edge, we find and connect to a neighboring point to
create the first triangle. In the second step, we create
the next triangle, adjacent to the first triangle based
on a criterion of the Delaunay triangle. In the third
step, we triangulate the surface by repeating the process
from the next triangle. After creating the next triangle,
this triangle will become the first triangle for the next
iteration.

3.1.1 Building a seed triangle:
The existing methods for creating the first (seed) trian-
gle are introduced in [12]. In our case, we start from
the left-most boundary point (pb1) to find the closest
neighboring boundary point (pb2) on the boundary.
They are connected to create the first Delaunay bound-
ary edge: eb(pb1, pb2). Then, we find a neighboring
point pi

3 of eb such that pi
3 must satisfy the Delaunay

criterion. Therefore, the triangle 4(pb1, pb2, pi
3) is our

seed triangle: Tfirst. In the previuos work [11], we have
also proved that the Delaunay boundary edge always
exists in our case.

3.1.2 Creating the next triangle:
In order to create the next triangle for each edge ei of
the previous triangle, we need to find a neighboring
point pi

3. The main novelty of our method is that we
apply the voxel traversal search (VTS) [11] to find pi

3.
The advantage of this method is described as follows
and illustrate in Figure 1. For each edge ei(pi

1, pi
2), the

neighboring point pi
3 is searched in one side of ei;

in a rectangle supported by ei(Re(ei)), size k starting
from voxel which intersect to the line L. Then, the
searching process is repeated by extending toward L1
and L2 respectively until finding pi

3. If there is no
point pi

3 on the rectangle of edge ei, we enlarge the
searching by iterative dilations of Re(ei), and stop when
a neighboring point pi

3 satisfying the Delaunay criterion
is found.

3.1.3 Triangulating the surface:
We start form the first boundary Delaunay edge to cre-
ate the first Delaunay triangle Tfirst. Then, put all edges
of Tfirst into a list “EdgePool”. Then, for each edge ei in
the EdgePool, we choose a neighboring point pi

3 based
on step (3.2.2) to create a new adjacent triangle Tnext.
Then, we update the EdgePool by inserting the new
edges of Tnext. After that, the triangulating process
is repeated from Tnext by assigning (Tfirst ← Tnext)
for the next iteration, until finishing the triangulating
process (i.e., the EdgePool is empty). Our method could
triangulate a surface of 3D point clouds very fast (see



V. S. Nguyen et al.: A Complete Method for Reconstructing an Elevation Surface of 3D Point Clouds 93

Figure 1. Finding a neighboring point to create the next triangle
based on VTS [12].

Figure 2. a) The convex hull of a triangular surface; b) The outward
triangles.

Section 4). However, depending on the characteristic of
the geological data, there still exist some holes. We will
process these hole in the next section.

3.2 Removing the Outward Triangles

While triangulating the surface of point clouds, it
normally produces a mesh on the convex hull of the
initial set of points. As we can see in Figure 2, many
triangles lies outside of the boundary (the red color
line). In our case, the boundary of the surface has
determined and processed in [9]. After triangulating
the surface [11], it also generates many undesired tri-
angles which are outside the exterior boundary (see
Figure 2(b)). For this reason, we propose a method to
delete these triangles (called outward triangles) in order
to obtain an optimal triangular surface. We review
our proposed method (which have been done in [12])
to remove the outward triangles as follows. In order

Figure 3. Determination of an outward triangle on the boundary.

to determine the outward triangles, we can base on
computing the angle α formed between each pair of
consecutive edges on the boundary (e.g., two boundary
edges: eb1(pb1, pb2) and eb2(pb2, pb3); angle α at pb2).
If α < π, the triangle 4(pb1, pb2, pb3) is considered
as an outward triangle. This method of course re-
quires computing the boundary of the point set before
meshing. In our case, the boundary has already been
determined in [9]. Therefore, in order to compute and
remove the outward triangles, we just need to follow
the boundary in the clockwise direction and delete the
outward triangles accordingly. Our method is described
as follows.

We first determine the boundary triangles according
to their vertices. For each triangle, if its three vertices
are boundary points, it is considered as a boundary
triangle. Following the boundary clockwise, we then
check and delete the outward triangles. A boundary
triangle is an outward triangle if the dot product (de-
noted as .dot) between two vectors of this triangle (an
inward normal vector of an edge and a vector of an
outside edge) is negative (see Figure 3). The red line
is a boundary line of surface S; pb1, pb2, pb3, pb4 are
boundary points. We check if ((pb3− pb1).dot(N1) < 0)
then the triangle 4(pb1, pb2, pb3) is an outward triangle
of S; similarly, if ((pb4 − pb1).dot(N2) < 0) then the
triangle4(pb1, pb3, pb4) is also an outward triangle of S.

3.3 Filling the Holes of Triangular Surface

In this section, we present our method for filling
the holes of a triangular mesh. We base on the idea
in method [13] to remesh some undersampled areas
(called “holes”) in a triangular meshes. In fact, our
triangular mesh is a surface of geological data. The
particularity of such surface is that the 3D points are
distributed irregularly. The density is often drastically
lesser in some areas than in others: this leads to what
we call “holes”. We first determine the holes by con-
sidering the boundary triangles of the holes. We then
fill and triangulate these holes to completely obtain a
reconstructed surface.

3.3.1 Determining the boundary of the holes:
In order to determine the boundary of the holes, we
base on the previous work [9] to find the boundary
points of these holes first (see Figure 4(a): red points).
For each boundary triangle around a hole, it is formed



94 REV Journal on Electronics and Communications, Vol. 4, No. 3–4, July–December, 2014

Figure 4. Determining the boundary of a hole.

by two boundary points (called boundary edge) and
one interior point (this is also the different point com-
paring to the outward triangles: they are formed by
three boundary points as pointed out in the part 3.3).
This boundary edge only share with one triangular face
(see Figure 4(b): red triangular faces).

3.3.2 Filling and triangulating the holes:
After determining the hole of a triangular mesh, we fill
by inserting the new points into the hole first; and then,
we create a new triangulation between the boundary
points of holes and new inserted points for this patch.
As mentioned in the introduction, our input data are
structured in a 3D grid. Therefore, for each boundary
point of the holes we can base on its neighboring points
to insert the new points. For each time to insert a new
point pn we compute the distance d from pn to the
nearest boundary points pb of the holes by

d(‖pn − pb‖) ≈
1
N

N

∑
i=1

ebi, (1)

where N is the number of boundary edges ebi of
the hole.

After that pn is formed with a boundary edge eb to
create a new triangle Tnew; and Tnew also satisfies the
Delaunay criterion as presented in [11]. The process is
then repeated from Tnew until the hole is full.

In order to preserve the local curvature and guaran-
tee the smoothness of the hole boundary, we also com-
pute the value of z coordinates for each time inserting
this new point pn(x, y, z) into the hole. The z value is
computed as

z(pn) =
1
m

m

∑
j=1

zj(pnei), (2)

where m is the number of neighboring points pnei based
on 4-connectivity of pn.

Figure 5 is an illustration. In Figure 5(a), we insert
three new points, the distance from pn1 to pn2 and to
pn3 approximates the distance between eb. The value of
coordinates z of pn1 is computed based on the z values
of pb1, pb2, pb8. Similarly, the z value of pn2 is calculated
based on the z values of pn1, pb7, pb3, etc.

Figure 5. Inserting and triangulating the hole.

Table I
Comparison of the Processing Times Between the Methods. We

Use the Same Input Data Points and Run on the Same
Computer (Intel 2CoreDue, 2GB of Ram).V. S. Nguyen et al.: A Complete Method for Reconstructing an Elevation Surface of 3D Point Clouds 89

Input CTC VTS BP
points Output faces/ Output faces/ Output faces/

Time: ms Time: ms Time: ms
15626 29871/14631 29871/13360 29990/18984
32402 61073/30911 61073/28984 58030/67871
60511 115828/68797 115828/63223 110982/225037
68956 125463/112117 125463/93246 118273/268276
98231 181851/194682 181851/162451 174582/859341

148317 266187/246435 266187/218713 267842/2017632
886639 1618624/1473188 1618624/1307466 1601158/11951403

Table I
Comparison of the processing times between the methods. We
use the same input data points and run on the same computer

(Intel 2CoreDue, 2GB of Ram).

Figure 6. Comparison of the processing times between the methods:
CTC, VTS and BP. On this graph, we do not plot the last example with
886639 points (in table 1) because it is too far from other examples
and therefore spoils the graph.

faces (in Table I) is a bit different from the classical
triangulation algorithms (in 2D Delaunay triangulation:
the number of triangular faces is at most 2n - 2 - b
triangles; where n is the number of vertices and b
is the number of vertices on the convex hull). After
processing the ourward triangles on the boundary, we
fill some small holes of the triangulated surface. The
result is shown on Figure 9 with the approximation
error approaching the input surface.

5 Discussion and evaluation

In this section, let us give some discussion and evalua-
tion about our method. As presented in [11], the main
novelty of our method for triangulating the surface of
3D point clouds is that the neighboring point pi

3 is
searched in a rectangle supported by the edge ei under
consideration. So that, the most important point of the
proposed method is our particular search in order to
speed up the Delaunay triangulation. In fact, the input
points are in 3D. We first projected them onto a natural
grid in the x, y plane for computing Delaunay triangula-
tion. The surface is then triangulated on 3D by restoring
the z coordinates for each point. The way to search a
neighboring point pi for creating a triangle (p1, pi, p2)
in [15] (in 2D) is nearly the same way of computing
the compactness triangle (CTC in [11]) (i.e. the largest
angle at the found point). This method mostly needs to

Figure 7. Searching a neighboring point: a) computing the compact-
ness; b) voxel traversal search.

compute all neighboring points in one side of an edge
p1, p2 to find the best one (see Figure 7a). Therefore,
the complexity of this computation is always at most
N× i (where N is the number of points of the surface)
for iteration. In our method (VTS in [11]), we aim to
find the point that is close to the position of the third
point of an equilateral triangle created by ei (this point
is always located on the non-empty voxel crossed on
the ray L, if it exists). If there is no point on L, we
dilate from L until finding an appropriate point (see
Figure 7b and Figure 1). For this reason, we do not
need to check all neighboring points as computed in
the method [15]. Another method is known as trian-
gulation of a planar in 2D [16] that the complexity is
expensive for checking the Delaunay criterion of edge
flipping. Therefore, comparing to the existing methods
in 2D [15, 16], the processing time of our method is
faster (see table 1). The BP method [14] computes a
triangle mesh interpolating a given point cloud entirely
in 3D. In order to find a neighboring point, it has
to test all points by pivoting around an edge until
finding the best point; so that, the processing time is
higher. In order to evaluate the quality (smoothness or
accuracy) of our triangulated surface (generated by our
method) with respect to the initial shape of that surface,
we use the Metro tool [21] to compute the distance
between two sampled-points surfaces (S1: the input
surface of 3D point clouds; and S2: the output surface
after simplifying and triangulating S1, as described
in [10]). The initial shape of the BP method is well pre-
served after triangulating while consuming the running
time for the surface triangulation. Our method, VTS
obtained the good results on both processing time and
approximation errors. After triangulating the surfaces,
reconstructing these surfaces by removing the outward
triangles on the boundary and filling the holes, the
initial shape (e.g. curvature, bend, ridge, and valley)
of these surfaces is well preserved (see Figures 9, 10).

6 Conclusion

In conclusion, we propose a complete method for re-
constructing a surface of 3D point clouds based on
three steps. Triangulating step is performed by using
a fast algorithm, which speed up the Delaunay tri-
angulation. The obtained results have shown that the

4 Implementation and Results

We test our method on various data sets that are noisy,
irregular, and with some holes on the surface. Our algo-
rithms are programmed and integrated in Meshlab [20]
as a plug-in. Therefore, we can test the running time
between our method and the existing method in the
Meshlab. We compare the processing times between
our methods: VTS, CTC [11] and “Ball Pivoting” (BP)
(the method in Meshlab). We also compare the shape
of the triangulated surfaces with the input ones. The
processing time of our method is faster and as we will
see, the initial shape of the surface is well preserved.
After triangulating the surfaces and processing their
boundaries with our methods, the total processing
times are presented in Table I. In this table, we used
the same input surfaces to test with the three methods.
Both our neighboring searched methods (VTS and CTC)
are integrated and tested (one by one) in the same
algorithm and on the same computer. They are only
different from their ways to find a neighboring point.
The processing time is a bit different between them (see
Table I), and the reason has also been detailed in [11].
The BP method generated a very good mesh, but the
processing time was higher than our methods. If the
number of input data points increases, the running time
to triangulate the surface is far from our method (see
Figure 6).

We have processed the triangles on the concave parts
of the boundary by removing some outward triangular
faces of surface S (see Figure 8). The exterior boundary
of S and surface S has been processed in the previous



V. S. Nguyen et al.: A Complete Method for Reconstructing an Elevation Surface of 3D Point Clouds 95

Figure 6. Comparison of the processing times between the methods:
CTC, VTS and BP. On this graph, we do not plot the last example with
886639 points (in Table I) because it is too far from other examples
and therefore spoils the graph.

works [9, 10]. Therefore, the number of boundary points
and their density depend on the previous processing
and the initial shape of the surface. For these reasons,
the number of triangular faces (in Table I) is a bit
different from the classical triangulation algorithms (in
2D Delaunay triangulation: the number of triangular
faces is at most 2n − 2 − b triangles; where n is the
number of vertices and b is the number of vertices
on the convex hull). After processing the ourward
triangles on the boundary, we fill some small holes of
the triangulated surface. The result is shown in Figure 9
with the approximation error approaching the input
surface.

5 Discussion and Evaluation

In this section, let us give some discussion and evalua-
tion about our method. As presented in [11], the main
novelty of our method for triangulating the surface
of 3D point clouds is that the neighboring point pi

3
is searched in a rectangle supported by the edge ei
under consideration. So, the most important point of
the proposed method is our particular search in order
to speed up the Delaunay triangulation. In fact, the
input points are in 3D. We first projected them onto
a natural grid in the (x, y) plane for computing the
Delaunay triangulation. The surface is then triangulated
on 3D by restoring the z coordinates for each point.
The way to search a neighboring point pi for creating a
triangle (p1, pi, p2) in [15] (in 2D) is nearly the same way
of computing the compactness triangle (CTC in [11])
(i.e., the largest angle at the found point). This method
mostly needs to compute all neighboring points in one
side of an edge p1, p2 to find the best one (see Fig-
ure 7(a)). Therefore, the complexity of this computation
is always at most N × i (where N is the number of
points of the surface) for iteration. In our method (VTS
in [11]), we aim to find the point that is close to the
position of the third point of an equilateral triangle
created by ei (this point is always located on the non-
empty voxel crossed on the ray L, if it exists). If there

Figure 7. Searching a neighboring point: a) computing the compact-
ness; b) voxel traversal search.

is no point on L, we dilate from L until finding an ap-
propriate point (see Figure 7(b) and Figure 1). For this
reason, we do not need to check all neighboring points
as computed in the method [15]. Another method is
known as triangulation of a planar in 2D [16] that
the complexity is expensive for checking the Delaunay
criterion of edge flipping. Therefore, comparing the
existing methods in 2D [15, 16], the processing time of
our method is faster (see Table I). The BP method [14]
computes a triangle mesh interpolating a given point
cloud entirely in 3D. In order to find a neighboring
point, it has to test all points by pivoting around an
edge until finding the best point; so, the processing time
is higher. In order to evaluate the quality (smoothness
or accuracy) of our triangulated surface (generated by
our method) with respect to the initial shape of that
surface, we use the Metro tool [21] to compute the
distance between two sampled-points surfaces (S1: the
input surface of 3D point clouds; and S2: the output
surface after simplifying and triangulating S1, as de-
scribed in [10]). The initial shape of the BP method is
well preserved after triangulating while consuming the
running time for the surface triangulation. Our method,
VTS obtained the good results on both processing
time and approximation errors. After triangulating the
surfaces, we reconstruct these surfaces by removing the
outward triangles on the boundary and filling the holes,
the initial shape (e.g. curvature, bend, ridge, and valley)
of these surfaces is well preserved (see Figures 9, 10).

6 Conclusion

In conclusion, we have proposed a complete method
for reconstructing a surface of 3D point clouds based
on three steps. The triangulating step is performed by
using a fast algorithm, which speeds up the Delaunay
triangulation. The obtained results have shown that the
processing time is very fast while preserving the mesh
quality [11]. We have processed the outward triangles
on the boundary (taking the advantage of boundary
processing in [9]) to avoid the triangulation of the
concave parts of the surface. This step helps us to
reconstruct the surface in order to obtain a surface
that approaches its initiation [12]. In the last step, we
proposed a method to fill the hole of a triangular
mesh. We based on the neighborhood information on



96 REV Journal on Electronics and Communications, Vol. 4, No. 3–4, July–December, 2014

Figure 8. a) Before and (b) after removing the outward triangles on the boundary.

Figure 9. a) A geological surface of 3D point clouds (232 kb). b) After simplifying by using the elaborate method [10] (cell size = 8, ∂ ≤ 0.12),
triangulating and filling the holes (h), the size of surface: 18 kb; the approximation error between (a) and (b) is ∆max: 0.020; ∆avg: 0.0006; the
triangular faces vary in density from the boundary to the inside of the surface.

Figure 10. a) The input surface of 3D point clouds with 2629 kb. b) After simplifying by using the elaborate method [10] (cell size = 8, ∂ ≤ 0.09)
and triangulating, the size of surface: 68 kb; the approximation error between (a) and (b) is ∆max: 0.018; ∆avg: 0.002; There are some color
points which have shown that the characteristics of the surface are well preserved.

boundary points of the holes that structured in a 3D
grid to fill and triangulate these holes. Our method does
not compute intermediate implicit surfaces (like normal
estimation of boundary points) and the quality of the
triangular mesh is checked by using a tool Metro in [21].
Therefore, the processing time is very fast, the local

curvature of the holes is maintained and the obtained
results are “optimal” geological triangulated surfaces
adapted to our goal. However, the fault on the surface
is not handled because it has been processed before
our work.



V. S. Nguyen et al.: A Complete Method for Reconstructing an Elevation Surface of 3D Point Clouds 97

Acknowledgment

The work in this research is an extending part of a PhD
thesis [7] that is funded by Project 322 of Vietnam Min-
istry of Education and Trainning (MOET). This research
is also funded by International University, Vietnam
National University, Ho Chi Minh city under grant
number T2015-02-IT/HD-DHQT-QLKH. We would like
to thank MOET and the International University for the
funds, and the reviewers for their valuable comments.

References

[1] M. Pauly, M. Gross, and L. P. Kobbelt, “Efficient simpli-
fication of point-sampled surfaces,” in Proceedings of the
conference on Visualization’02. IEEE Computer Society,
2002, pp. 163–170.

[2] Y.-J. Zhang and L.-L. Ge, “A robust and efficient method
for direct projection on point-sampled surfaces,” Inter-
national journal of precision engineering and manufacturing,
vol. 11, no. 1, pp. 145–155, 2010.

[3] H. Hoppe, “Surface reconstruction from unorganized
points,” Ph.D. dissertation, University of Washington,
1994.

[4] J. Ma, “Surface reconstruction from unorganized point
cloud data via progressive local mesh matching,” Ph.D.
dissertation, School of Graduate and Postdoctoral Stud-
ies, The Univerity of Western Ontario, 2011.

[5] X. J. Wu, M. Y. Wang, and B. Han, “An automatic hole-
filling algorithm for polygon meshes,” Computer-Aided
Design and Applications, vol. 5, no. 6, pp. 889–899, 2008.

[6] Z. Li, D. S. Meek, and D. J. Walton, “Polynomial blend-
ing in a mesh hole-filling application,” Computer-Aided
Design, vol. 42, no. 4, pp. 340–349, 2010.

[7] V. S. Nguyen, “3d modeling of elevation surfaces
from voxel structured point clouds extracted from seis-
mic cubes,” Ph.D. dissertation, Aix-Marseille University,
2013.

[8] P. Verney, “Interprétation géologique de données sis-
miques par une méthode supervisée basée sur la
vision cognitive,” Ph.D. dissertation, École Nationale
Supérieure des Mines de Paris, 2009.

[9] V.-S. Nguyen, A. Bac, and M. Daniel, “Boundary extrac-
tion and simplification of a surface defined by a sparse
3d volume,” in Proceedings of the Third Symposium on
Information and Communication Technology. ACM, 2012,
pp. 115–124.

[10] ——, “Simplification of 3D point clouds sampled from
elevation surfaces,” in 21st International Conference on
Computer Graphics, Visualization and Computer Vision
(WSCG), 2013, pp. 60–69.

[11] V. Sinh.N, Alexandra.B, and Marc.D, “Triangulation of
an elevation surface structured by a sparse 3D grid,” in
IEEE Fifth International Conference on Communications and
Electronics (ICCE), 2014, pp. 464–469.

[12] V. S. Nguyen and M. H. Tran, “Reconstruction of an
elevation triangular mesh from 3D point clouds,” Journal
of Science and Technology, Vietnamese Academy of Science
and Technology, vol. 5, no. 4A, pp. 220–29, 2014.

[13] A.Bac, V. Nam, and M.Daniel, “A multistep approach
to restoration of locally undersampled mesh,” in Pro-
ceedings of the 5th international conference on Advances in
geometric modeling and processing (GMP’08), 2008, pp. 272–
289.

[14] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva,
and G. Taubin, “The ball-pivoting algorithm for surface
reconstruction,” IEEE Transactions on Visualization and
Computer Graphics, vol. 5, no. 4, pp. 349–359, 1999.

[15] T.-P. Fang, L. Piegl et al., “Delaunay triangulation using a

uniform grid,” Computer Graphics and Applications, IEEE,
vol. 13, no. 3, pp. 36–47, 1993.

[16] V. Domiter and B. Žalik, “Sweep-line algorithm for con-
strained Delaunay triangulation,” International Journal of
Geographical Information Science, vol. 22, no. 4, pp. 449–
462, 2008.

[17] N.V.TRAN, “Traitement de surfaces triangulées pour la
construction des modèles geologique structuraux,” Ph.D.
dissertation, Université de la Méditerranée, 2008.

[18] G. Casciola, D. Lazzaro, L. B. Montefusco, and S. Mo-
rigi, “Fast surface reconstruction and hole filling using
positive definite radial basis functions,” Numerical Algo-
rithms, vol. 39, no. 1-3, pp. 289–305, 2005.

[19] S. Salamanca, P. Merchán, E. Pérez, A. Adan, and C. Cer-
rada, “Filling holes in 3D meshes using image restora-
tion algorithms,” in International Symposium on 3D Data
Processing, Visualization, and Transmission, vol. 2, 2008.

[20] ISTI. Meshlab, 2013. http://meshlab.sourceforge.net/.
[21] R. P.Cignoni, C.Rocchini, “Metro: Measuring error on

simplified surfaces,” in The Eurographics Association, 1998.

Nguyen Van Sinh is a lecturer of the School
of Computer Science and Engineering at In-
ternational University, Vietnam National Uni-
versity, Ho Chi Minh city. He received the
doctoral degree of computer science in 2013
from the École Doctorale en Mathématiques et
Informatique (ED.184), Aix-Marseille Univer-
sity, France. He received his master degree of
computer science in 2008 from Asian Institute
of Technology, Thailand. His research interests
include computer graphics, images process-

ing, geometric modeling, 3D simulation, and source code security.

Tran Manh Ha is a lecturer of the School
of Computer Science and Engineering at In-
ternational University, Vietnam National Uni-
versity, Ho Chi Minh city. He received his
master degree of computer science in 2004
from the University of Birmingham, United
Kingdom and his doctoral degree of computer
science in 2009 from Jacobs University Bre-
men, Germany. His research interests include
distributed computing, big data analytics, in-
formation retrieval and network management.

Nhan Ba Cong is a master student at the
School of Computer Science and Engineering
at International University, Vietnam National
University, Ho Chi Minh city. He received
the bachelor degree of Computer Science in
2006 from University of Science, Vietnam. He
currently pursues the master degree of Infor-
mation Technology Management. His research
interests include geometric modeling, big data
analytics, mobile computing.


