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Abstract– The article introduces a new LDPC decoding algorithm based on Equivalent Parity Check Matrix. Simulation
results show that the new LDPC decoding algorithm can improve LDPC decoding performance. Compared to some other
improvements, the new LDPC decoding algorithm, which is simpler, can detect errors and be applied to LDPC codes for
great-length LDPC codes.
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1 Introduction

Belief Propagation Algorithm (BPA) decoding algo-
rithm for short or medium length low-density parity-
check (LDPC) codes [1] is affected by short cycles in
the parity check matrix H, so it does not achieve the
performance of Maximum Likelihood (ML) decoding.
Several study results publicized at [2, 3] with BPA-OSD
(Ordered Statistic Decoding) algorithm can consider-
ably improve the quality of LDPC codes. However, this
algorithm is quite complex and difficult to apply to
great-length LDPC codes. In this article, we introduce
the concept of equivalent parity check matrix and soft
syndrome to build a new decoding algorithm called Be-
lief Propagation Algorithm based on Equivalent parity
check matrix H (BPA-EH) with performance to reach
Union Bound (UB) – UB is used to estimate of ML
decoding performance in high signal noise ratio region.
New decoding algorithm BPA-EH is much simpler than
a decoding algorithm BPA-OSD and it can be applied
to great-length LDPC codes.

2 Low-Density Parity-Check Codes

Assume a binary (n, k) LDPC code with length n and
dimension k, then parity check matrix is Hm×n, where
m = n − k is number of check sums. Information
bits u = u1, u2, . . . , uk are encoded into a codeword
Y = y1, y2, . . . , yn, then modulated and transmitted
through channel. The input of the BPA decoder is Log
Likelihood Ratio (LLR):

L(ȳi) = log
Pr(ȳi = 0 |r )
Pr(ȳi = 1 |r ) (1)

where r is the set of symbols acquired from channel and
Pr(ȳi = 0 |r ) is the conditional probability. Normally,
the matrix H is a sparse matrix with a small number

of values “1” in each row and each column. The ma-
trix of LDPC codes can also be described by Tanner
graph [4] with bit nodes v1, v2, . . . , vn and check nodes
s1, s2, . . . , sm. If value “1” is available at each position
of the matrix, then there is a connection between bit
nodes and check nodes. A BPA algorithm [1, 5, 6] is an
iterative decoding algorithm with two main steps: 1)
make calculation in rows to update information for all
check nodes and send information from check nodes
to bit nodes, 2) make calculation in columns to update
information for bit nodes and send information from bit
nodes to check nodes. The output of the BPA decoder is
LLR of bits L(ȳi=1,2...,n), which is used for hard decision
to become a codeword Ȳ = (ȳ1, ȳ2, . . . , ȳn). If syndrome
s of Ith iteration:

s = Ȳ.HT = [0, 0, . . . , 0] (2)

then stop iterative decoding. The process is repeated
until the number of times of iteration I reaches
Imax. Next, we will study LDPC codes with the code
rate R = 1/2: C1: 96.48.3.964 with size (48,96), C2:
252.252.3.252(252,504), C3: 504.504.3.504(504,1008), and
C4:4000.2000.3.243(2000,4000), which are introduced
at [7]. The maximum number of iteration is Imax = 100.
Suppose that modulation is ideal BPSK and Additive
White Gaussian Noise (AWGN) memoryless channel
has spectral density N0/2

3 Definition of Equivalent Parity Check

Matrix and Soft Syndrome

Definition 1: An Equivalent Parity Check Matrix (He) of
the matrix H is a matrix that satisfies the equation:

Y.He
T = [0, 0, . . . , 0], (∀Y, He 6= H) (3)

From the theory of linear codes,

Y.HT = [0, 0, . . . , 0] (4)
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is a set of linear equations. As a result, if one of its
rows is replaced with a sum of two other rows, then
a new set of equations are still satisfied. Accordingly,
the matrix He can be created from the matrix H. To
ensure the sparse property of the matrix He, we only
consider the case in which the row r(a) of the matrix
H(a = 1, 2 . . . , m) is replaced with the sum of modulo
2 of rows r(b) and r(c):

He = H
∣∣∣r(a)=r(b)⊕r(c), a 6=b 6=c (5)

Definition 2: Soft Syndrome (SS) L(si=1,2...,m) is defined
as LLR of check nodes si=1,2...,m with:

L(si=1,2...,m) = log
Pr
(
si = 1

∣∣L (ȳj=1,2...n
) )

Pr
(
si = 0

∣∣L (ȳj=1,2...n
) ) (6)

We have an equation:

si = ∑
⊕

(
ȳj ⊕ H (i, j)

)
, j ∈ Vi, i = 1, . . . , m (7)

where Vi is a set of edges from bit nodes to check nodes
in the Tanner graph (the positions at which the value
of the row i of the matrix H is “1”) and the operation
⊕ is operator of modulo 2. From algebraic studies of
LLR at [8, 9], we have:

L(si) = log
∏

j∈Vi

(
eL(ȳj) + 1

)
+ ∏

j∈Vi

(
eL(ȳj) − 1

)
∏

j∈Vi

(
eL(ȳj) + 1

)
− ∏

j∈Vi

(
eL(ȳj) − 1

)
≈ ∏

j∈Vi

sign
(

L(ȳj)
)

min
j∈Vi

∣∣L(ȳj)
∣∣ (8)

4 Proposed Decoding Algorithm

The matrix He satisfies a condition that it is a check
matrix for LDPC codes and a sparse matrix with the
number of the values “1” only increasing at the row a
is not considerable, so it can be used to decode LDPC. A
new LDPC decoding algorithm includes two following
stages:

Stage 1: Decoding LDPC with the input (1) by BPA
algorithm with a regular check matrix H. Similar to
BPA decoding, check the condition at each time of
iteration is

Ȳ1.HT = [0, 0, . . . , 0] (9)

If (9) satisfied, stop iterative decoding and give a code-
word Ȳ1. If (9) not satisfied, perform the stage 2.

Stage 2: Re-decoding BPA with the input 1 by equiv-
alent parity check matrix He At each re-decoding γ, the
check condition is

Ȳ2.He
T = [0, 0, . . . , 0] (10)

where Ȳ2 is a hard decision codeword according to the
matrix He. Combine both decoding stage, we have LLR:

L̄(ȳi=1,2...,n) = L1(ȳi=1,2...,n) + Lγ
2 (ȳi=1,2,...,n) (11)
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Figure 1. BER and FER of codes C1

where L1(ȳi=1,2,...,n) is LLR of the stage 1, Lγ
2 (ȳi=1,2,...,n)

is LLR of the stage 2 at re-decoding γ, if (10) is not
satisfied, then check:

Ȳ3.He
T = [0, 0, . . . , 0] (12)

where Ȳ3 is hard decision according to L̄(yi=1,2,...,n).
If the decoded codeword is valid, then get out the

stage 2 and give a codeword Ȳ2 or Ȳ3. If (9), (10) and (12)
are not satisfied, then keep re-decoding other matrices
He until γ = γmax. This algorithm is called BPA-EH
(BPA based on Equivalent H). For a matrix H with the
size m× n, there will be m×

(
m−1
2

)
matrices He, so it

requires method to select a matrix He, which provides
re-decoding first to reduce the average number of times
of re-decoding.

Experimental results shows that the average number
of times of re-decoding can be reduced if select r(a),
r(b) and r(c) based on the ascending order of absolute
values of L1(si=1,2,...,m).

We propose a method to select r(a), r(b) and r(c)
as follows: After the stage 1 is conducted, the value
of L1(si=1,2,...,m) will be calculated and r(a), r(c) are
selected based on the ascending order of |L1(si)|, r(b)
is selected based on the descending order of |L1(si)|,
and a 6= b 6= c.

5 The Performance of BPA-EH

Figure 1 and 2 show Monte-Carlo simulation results
of Bit Error Ratio (BER) and Frame Error Rate (FER)
of BPA and BPA-EH for codes C1 and C2. In this
case, the maximum number of times of re-decoding
γmax =

(
m−1
2

)
= (m− 1)× (m− 2)/2 Figure 1 shows

the performance of BPA-EH is 0.5 dB better than that
of BPA at error ratio region of BER=10−5 for the code
C1. Figure 2 shows the performance of BPA-EH can be
improved up to 0.8 dB at error ratio region of BER=10−7
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Figure 2. BER and FER of code C2.
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Figure 3. BER of code C2 with different γmax

for the code C2.

Pe < ∑
d=dmin

aQ
(√

2dREb/N0

)
, Q(x) =

1
2

er f c
(

x√
2

)
(13)

where a is the number of codewords with distance
d and dmin which is a minimum distance. Distance
spectrum of LDPC codes is calculated as (10) for C1
is a = [2, 0, 9, 0, 42, 0, 470], dmin = 6. It means code C1
has 2 codewords with the minimum distance dmin = 6,
9 codewords with the distance dmin = 8, 42 codewords
with the distance dmin = 10,. . . Distance spectrum of
code C2 is a = [2, 0, 22, 0, 117, 0, 481] with dmin = 20.

Simulation results in the Figures 1 and 2 show that
the performance of decoding BPA-EH can reach the per-
formance of decoding ML when the codeword length
is short. Figure 3 shows the performance of BPA-EH
of code C2 with the maximum number of times of re-
decoding in the stage 2 is γmax = 1, 10, 251, 31375 . It
is found out that BER and FER will reduce if increase
γmax. Specifically, in Figure 3, the BPA-EH with γmax =
1 (one time of re-decoding) achieves 0.2dB at BER=10−7.
While the BPA-EH with γmax = 10, γmax = 251 and
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Figure 4. BER of codes C2, C3, C4 with γmax = 50

γmax = 31375 outperform the BPA by 0.4dB, 0.6dB and
0.8dB, respectively.

Figure 4 shows the performance of C2, C3, C4 with
γmax = 50. The BER of BPA-EH can increase consider-
ably for codes with medium and great length. For a set
of codes with great length C3, C4, it requires to increase
γmax to reach an effective gain.

6 Compare the Complexity and

Performance of BPA-EH and BPA-OSD

To bridge the gap between BPA and ML decodings
for short or medium length LDPC codes, a reliability-
based order statistic decoding (OSD) was proposed to
combine with the BPA decoding [2, 3]. For such a
BPA-OSD reprocessing strategy, if no valid codeword is
found at some iteration of the BPA decoding (stage 1),
the delivered reliability information is used as the input
to the OSD (stage 2). In the stage 2, the OSD performs
a Gaussian estimation on the generator matrix. Next,
re-encode all the codewords with the total number of
error bits from 1 to p based on systematic form of G,
and compute the decoding metric associated with each
constructed codeword. Select the most likely codeword
among the ∑

p
`=0

(
k
`

)
constructed candidate codewords.

The BPA-OSD decoder is quite complex. According
to [2, 3], the binary operations for Gaussian elimination
is of the order O

(
n3) the integer and binary operations

for each phase ` (1 ≤ ` ≤ p) of order-p OSD is
O
(

n`+1
)

.
As a result, the length of n is large and the complexity

increases by the exponential function of n, so it is too
complex to be implemented.

The difference between an algorithm BPA-EH and
an algorithm BPA-OSD is that we use the re-decoding
technique. The matrix He is created from the matrix H,
which is also a sparse matrix. Therefore, similar to the
algorithm BPA, the complexity of an algorithm BPA-EH
increases by the function γmaxO (n)

Besides, the BPA-EH algorithm can check and detect
errors, then early stop re-decoding in the stage 2, so the
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Figure 5. Compare BPA-EH with BPA and BPA-OSD of C2

real complexity is only the function γaO (n) of which
γa is the average number of times of re-decoding.

On the other hand, the BPA-EH algorithm is flexible,
which enables to freely adjust γa to improve the quality
at given Eb/N0. Besides, the BPA-EH algorithm can
early stop re-decoding in the stage 2; meanwhile the
algorithm BPA-OSD always has to perform to the end
of Gaussian estimation and re-encoding. As a result,
the decoder BPA-EH is simpler and more flexible than
a BPA-OSD algorithm.

In addition, the BPA-OSD algorithm has no property
to detect errors because its output is always a valid
codeword; meanwhile the algorithm BPA-EH can still
detect errors and be convenient to be applied to the
Automatic Repeat Request (ARQ) system. The compar-
ison of performance of the BPA-EH and the BPA-OSD
for C2 is shown in Figure 5. As seen in the Figure 5, the
decoding performance of BPA-EH(251) and that of BPA-
EH(31375) is only about 0.2dB and 0.1dB respectively
lower than that of BPA-OSD.

7 Conclusion

The article proposes a new LDPC decoding algorithm,
which enables to improve the performance of LPDC
decoding. This new decoding BPA-EH algorithm is
based on definitions of equivalent check matrix and Soft
Syndrome.

From mathematical analyses of Soft Syndrome re-
lated to error events, we propose a method to create
equivalent check matrix based on the order of Soft
Syndrome, which enables to reduce the number of
times of re-decoding.

The simulation results show the performance of an
algorithm BPA-EH can be close to the optimal de-
coding quality ML for LDPC codes with short-length
codeword. Compared to regular BPA algorithms, an
BPA-EH algorithm can considerably improve the per-
formance at low error ratio region with acceptable
complexity.

A BPA-EH decoding algorithm with complexity is a

1st-grade linear function with the length of codewords,
so it can be used for LDPC codes with great lengths.
Compared to other improvements of LDPC decoding
such as a BPA-OSD algorithm, a BPA-EH algorithm
is simpler and more flexible, but still can ensure an
important function of LDPC codes, which is to detect
errors after decoding.

In this article, we only propose a method to replace
a row of matrix H with the sum of its two other rows
while there are many other ways to create matrix He
Our suggested way to select a, b, c is not optimal
yet. There must be a better method so as to reduce
the number of times of re-decoding and that is our
direction of further study.
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